University of Macau

Faculty of Science and Technology

Department of Electrical and Electronics Engineering

Part A: Course Outline

Course Title:	Digital System – I									
Course Code:	ELEC110Year of Study: 2^{nd} semester of 1^{st} ye									
Compulsory/Elective:	Compulsory	•								
Course Prerequisites:	None									
Prerequisite Knowledge	Fundamental knowledge of electricity and electricity	ectronics circuits								
Class/Laboratory Schedule:	2-hour Lecture and 2-hour Tutorial, Quiz or Lab-Experiment per week									
Duration	One semester	Credit Units 3								
Text Books* and References:	 * "Digital Design–Principles & Prac Inc., Chapter 1 to Chapter 6 and Section "Digital Principles and Design", Dom New York, McGraw-Hill Higher Educ "A First Course In Digital Systems I P. Uyemura, (數字系統設計入門教科 版社. 	on 11.1. nald D. Givone, cation. Design: An Integ 星集成方法 [The State University of grated Approach", John 英文影印版]), 科學出							
Course Description:	[4] "數字電子技術基礎", 閭石(清華大 Info. Tech., Power Electronics Tech. Network Tech. etc. are widely used now Digital Electronics and Digital System. Digital System–I and Digital System–II. In Digital System–I, mainly teaches the as <u>various gates</u> (AND, OR, Invert, NA Inclusive, OC, OD, TS, TG, SW gates) like DTL, TTL, CMOS, ECL etc. Lec calculate the parameter values of compo Digital System–I is <u>Switching Algebra o</u> simplification method, Karnaugh Map simplification method, which is a key the & Design of Digital Systems. Then of <u>Combinational Circuits</u> will be ex Combinational Circuits, such as Enco Full-Adder, Comparator, Multiplexer, (Arithmetic and Logic Unit), MSI (Midd introduced. Finally, the <u>VHDL program</u> designing and simulating the Combination	Communication wadays. Their c The course is o basic elements o ND, NOR, NO and <u>different t</u> earn their featu onents. The rathe or Boolean Alge o simplification coretical tool oft the <u>Analysis</u> plained with do oder, Decoder-I c, Demultiplexo dle Size Integration	Tech. and Computer common background is divided into two parts: of Digital System, such T-AND-OR, Exclusive, ypes of digital circuit are characteristics and er important content in ebra including Formula method and Hybrid en used in the Analysis 5 & Design method etail and some typical Displayer, Half-Adder, er and other ALU ted circuit) etc. will be e and a CAD tool for							

	1 Pagia alamenta of Combinational Logia Cinquita, such as various gates							
	1. <u>Basic elements</u> of <u>Combinational Logic Circuits</u> , such as <u>various gates</u>							
	(AND, OR, Invert, NAND, NOR, NOT-AND-OR, Exclusive, Inc.							
	OC, OD, TS, TG, SW gates) and <u>different types of digital circuit</u> like DTL,							
	TTL, CMOS, ECL etc.							
	2. <u>Switching Algebra</u>							
Topics Covered	3. <u>Analysis & Design method</u> of <u>Combinational Logic Circuits</u> , such as							
	analyze and design Encoder, Decoder-Displayer, Half-Adder, Full-Adder,							
	Comparator, Multiplexer, Demultiplexer and other ALU (Arithmetic and							
	Logic Unit), MSI (Middle Size Integrated circuit) etc.							
	4. VHDL programming language and a CAD tool for designing and							
	simulating the combinational logic circuits.							
	1. Digital System–I is the background of further studying the Digital							
	System–II;							
	2. Provide the useful knowledge, analysis & design methods and development							
Course Objectives:	skills to students, educate them be able to analyze, design, create,							
	implement, test and adjust the various digital systems according to the							
	concrete demands of real world by using the existing popular digital							
	hardware components and CAD tools in both board-level & VLSIC systems							
	[a, b, c, d, e, k], [h, j].							
	Assignments and Quiz: 20%							
Course Assessment:	Lab-Experiments: 30%							
	Final Examination: 50%							
	This course contributes to EEE program outcomes that develop students'							
	abilities to:							
	a. Ability to apply knowledge of mathematics, science and engineering.							
	b. Ability to design and conduct experiments.							
	c. Ability to design a system, component or process to meet desired needs.							
	d. Ability to function on multidisciplinary teams.							
	e. Ability to identify, formulate and solve engineering problems.							
Relationship to Program	k. Ability to use the techniques, skills and modern engineering tools necessary							
Objectives and	for engineering practice.							
Outcomes								
	a) analyze, design, simulate, construct and test the various combinational logic							
	circuits according to the engineering requirements or technical specifications.							
	b) calculate the proper parameter values of components in combinational logic							
	circuits.							
	c) identify, formulate and solve encountered engineering problems in							
	combinational logic circuits.							

		techniques, skills and modern CAD engineering tools ind	lependently in							
	enginee	ering practice.								
	Week no.	Topics	Program Criteria							
		Gate Circuits and Characteristic Curves:								
	5	• Various gate circuits like AND, OR, Invert, NAND, NOR, NOT-AND-OR, Exclusive, Inclusive gates and different types of digital circuit like DTL, TTL, CMOS, ECL etc.;								
		 TTL NAND gate: basic circuit, static and dynamical characteristic curves; 	BC, CS, ES, CV							
		• Calculate the proper parameter values of components in gates and combinational logic circuits by using characteristic curves								
		• Other type of gate: OC, TS gates								
		Switching Algebra and Its Application:								
		• Operational Principle of Switching Algebra;								
	3	• Formula Simplification Method;	BC, CS, ES,							
	5	• Karnaugh Map Simplification Method;	CV							
		• Hybrid Simplification Method;								
Course Contents and		• Simplify the Logic Function with Constraints.								
Relationship to Program		Combinational Logic Circuits: Analysis and Design:								
Criteria:	4	 Analysis Method of Combinational Circuit: Exclusive/Inclusive gates and Half-Adder, Various Combinational Logic Circuits; 								
		 Design Method of Combinational Logic Circuit: Encoder/Priority Encoder, Full-Adder, Full & Half subtracters, Digital Comparator, Odd/Even Inspector, Multiplexer, Dimultiplexer and other ALU (Arithmetic and Logic Unit); 								
		 Flexible Applications of Middle-Size IC; 								
		 Race-Hazard problems of Combinational Logic Circuit and their solutions. 								
	1	VHDL Language and CAD Tool for Designing & Simulating Combinational Logic Circuits:								
		 HDL and VHDL Hardware Description Language for designing and simulating Combinational Logic Circuit CAD Tool: Max+Plus-II 	BC, CS, ES, CV							
		• Design and Simulate Combination Logic Circuits by using CAD tool								
	1	 MOS, CMOS and Hybrid Logic: MOS and CMOS basic gate circuits and characteristic curves OD, TG, SW gates Uwbrid Logic and its applications 	BC, CS, ES, CV							
Contribution of C		Hybrid Logic and its applications	· · · · · ·							
Contribution of Course		rse prepares students to work professionally in the area of digital elect elated fields. Students should be able to apply knowledge of digita								
to meet the professional component:	digital s	ystem, and methods of analysis, design and CAD to solve d ing problems.								
Course Instructor(s):	Prof. D	ONG Mingchui								
Prepared by:		ONG Mingchui								

Part B: General Course Information and Policies

Instructor:Prof. DONG MingchuiOffice: 1/F of Block IIIOffice Hour:Wednsday 3:30~6:00 p.m. or by appointmentPhone:4520e-mail:mcdong@umac.mo;dmc@sftw.umac.mo4520

Program Criteria Policy:

Course VS Program Criteria

Scale: 1 (Highest) to 4 (Lowest)

Course	PS	DIC	BS	CS	ES	DE	LA	CV	DM
Digital System - I			1	1	1			3	

Terms:

Probability and Statistics (PS), Differential and Integral Calculus (DIC), Basic Science (BS), Computer Science (CS), Engineering Science (ES), Differential Equation (DE), Linear Algebra (LA), Complex Variables (CV), Discrete Mathematics (DM)

Program Outcome Policy:

Course VS Course Outcomes

(H= Highly Related, S = Supportive, N = None)

Course	a	b	c	d	e	f	g	h	i	j	k
Digital System - I	Η	Η	Η	S	Η	Ν	Ν	S	Ν	S	Н

The electrical and electronics engineering program outcomes are:

- a. Ability to apply knowledge of mathematics, science and engineering.
- b. Ability to design and conduct experiments.
- c. Ability to design a system, component or process to meet desired needs.
- d. Ability to function on multidisciplinary teams.
- e. Ability to identify, formulate and solve engineering problems.
- f. Understanding of professional and ethical responsibility.
- g. Ability to communicate effectively.
- h. Broad education necessary to understand the impact of engineering solutions in global and societal context.
- i. Recognition of the need for and an ability to engage in life-long learning.
- j. Knowledge of contemporary issues.
- k. Ability to use the techniques, skills and modern engineering tools necessary for engineering practice.

Course Assessment Policy:

- Homework assignments will be given to students according to the course progress. The result of each assignment should be done independently by student and submitted to teacher within 2 weeks, no late homework is accepted. Zero mark will be given when homework is copied.
- At least 5 quizzes will be held during the tutorial courses in a semester.
- 5 Lab-experiments will be performed during the semester. 2 students form one group and group report should be handed up within 2 weeks after assignment.
- At the end of semester, a 3-hour close-book final examination will be performed.