University of Macau

Faculty of Science and Technology

Department of Electrical and Computer Engineering

Part A: Course Outline

Course Title:	Control Systems II						
Course Code:	ELEC 312 Year of Study: 3						
Course Mode:	Theoretical with substantial laboratory/ practice content						
Compulsory/Elective:	Elective						
Course Prerequisites:	ELEC 313						
Prerequisite Knowledge	Classical Control Theory; Linear Algebra						
Class/Laboratory Schedule:	Theory class: 4 hours; Tutorial/Practice class: 2 hour (per week)						
Duration	One semester Credit Units 3.5						
Text Books and	 "Modern Control Systems," R.C. Dorf and R.H. Bishop, 12th ed., Prentice-Hall, 2010. "Feedback Control of Dynamic Systems," G.F. Franklin, J.D. Powell and A. 						
References:	Emami-Naeini, 6 th ed., Prentice-Hall, 2009.						
	[3] "Modern Control Engineering," K. Ogata, 5 th ed., Prentice-Hall, 2009.						
	[4] "Linear System Theory and Design," C.T. Chen, 3 rd ed., Oxford University Press, 1998.						
Course Description: This course offers a continuation of control system analysis and design, emphasis on PID control and compensator design (lead, lag, lead-lag), an introduction to modern control theory, which covers basic concepts and principal system modeling, analysis and controller design for linear time-invariant system the state space approach including state variable models, controllable							
Topics Covered 1. Introduction to modern control theory; 2. State space method and state variable models; 3. Time domain analysis, stability analysis; controllability and observability; 4. State feedback control and observer design; 5. PID control and compensator design; 6. Control system simulation using Matlab/Simulink and Control Toolbox.							
Course Objectives:	 Introduce to students some real systems, which use modern control theory. [a, e, k] Introduce to students mathematical modeling of physical systems with the state space approach. [a, e, k] Introduce students to analysis of feedback control systems with the state space approach. [a, b, e, k] Introduce students to design of modern control systems with the state space 						

	approach. [a, b, c, e, k]									
	5. Introduce students to PID control and compensator design. [a, b, c, e, k]									
	Assignments : 15%									
	Quiz :15%									
Course Assessment:	Lab Experiments: 15%									
	Mid-term Exam: 15%									
	Final Exam. : 40%									
	This course pri	marily contributes to EEE program outcomes that dev	elop students							
	abilities to:		-							
	a. Ability to app	bly knowledge of mathematics, science and engineering.								
	c. Ability to de	sign a system, component or process to meet desired nee	eds.							
Relationship to Program	5									
Objectives and	This course sec	ondarily contributes to EEE program outcomes that dev	elon students							
Outcomes	abilities to:		erop statemis							
	 b. Ability to de 	sign and conduct experiments.								
	e Ability to ide	entify formulate and solve engineering problems								
	c. Ability to use the techniques, skills and modern engineering tools necessary for									
	angingaring pro	eties	cessary for							
	engineering practice.									
	Week	Topics	Program							
	no.	1	Criteria							
	Introd	uction	CS, ES							
	n Basic C modern	a control systems								
Course Contents and	Model	ing and Representations in State Space	DIC, ES, DE,							
Relationship to Program	2 State sj	pace method and state variable models, state space	LA							
Criteria:	Systen	Analysis via State Space Approach	DIC, ES, DE,							
	3 Solutio	n to state differential equation and time domain analysis,	LA							
	Design	of State Variable Feedback Control Systems	DIC, ES, DE,							
	3 Pole pl	acement, full-state feedback control design, observer design,	LA							
	integra	ted control system with full-state feedback and observer								
	4 PID C	ontrol and Compensator Design	DIC, CS, ES, DF_CV							
	1 Matla	CAD tools and Lab Experiments	ES, CS							
Contribution of Course	This course pre	pares students to work professionally in the area of auto	matic control							
to meet the professional	and the related	fields. Students should be able to know and apply the kr	nowledge of							
component.	control system	design and analysis with both classical and mo	odern control							
Course Instructor(s)	Dr. Feng War	sorve problems and meet desired needs in practice.								
	Dr. Felig wall									
Draparad by:	Dr. Ean ~ War									

Part B: General Course Information and Policies

Instructor:	Dr. Feng Wan	Office:	N423
Office Hour:	Tuesday 3:30 ~ 6:30 p.m. or by appointment	Phone:	4473
E-mail:	fwan@umac.mo		

Programme Educational Objectives

- 1. **Problem Solving:** Graduates have the ability to think in a critical and evaluative manner and to consider a broad perspective, in order to solve technical and nontechnical problems.
- 2. Leadership and Communication: Graduates will provide effective leadership, act in an ethical manner and skills will include the ability to communicate well and to work successfully within diverse groups.
- 3. **Market Acceptance:** Graduates will have successful careers in the academic environment, industrial and government organizations.
- 4. **Technical Competence:** Graduates will be technically competent and have a thorough grounding in the fundamentals of math and science in electrical and electronics engineering and experience in engineering design. They will be able to use modern engineering techniques, skills, and tools to fulfill societal needs.

	Problem	Leadership and	Market	Technical
	Solving	Communication	Acceptance	Competence
Control Systems: II	1	3	3	1

Scale: 1 (Highest) to 4 (Lowest)

Remark:

☐ Objective for "Problem Solving" can be achieved by assignments, quizzes, ☐ mid-term exam, final exam and projects.

- H Objective for "Leadership and Communication" can be achieved by field visit, report writing and presentation. However, leadership training is not given by this course.
- **H** Objective for "Market Acceptance" can be achieved by the course subject that is related to general control theory and principles as well as control technology and systems in industry.
- H Objective for "Technical Competence" can be achieved by using fundamentals of math and science in electrical and computer engineering and experience in design and implementation of modern control systems.

Program Criteria Policy:

Course VS Program Criteria

Scale: 5 (Highest) to 1 (Lower)

Course	PS	DIC	BS	CS	ES	DE	LA	CV	DM
Control Systems II		1	3	1	5	2	4	2	

Terms:

Probability and Statistics (PS), Differential and Integral Calculus (DIC), Basic Science (BS), Computer Science (CS), Engineering Science (ES), Differential Equation (DE), Linear Algebra (LA), Complex Variables (CV), Discrete Mathematics (DM)

Program Outcome Policy:

Course VS Course Outcomes

((H=	Highly	Related,	$\mathbf{S} =$	Supporti	ve, N =	None)
	<pre></pre>						

Course	a	b	c	d	e	f	g	h	i	j	k	1
Control Systems II	Н	S	Н	S	Н	Ν	N	Ν	N	N	Н	N

The electrical and electronics engineering program outcomes are:

- a. Ability to apply knowledge of mathematics, science and engineering.
- b. Ability to design and conduct experiments.
- c. Ability to design a system, component or process to meet desired needs.
- d. Ability to function on multidisciplinary teams.
- e. Ability to identify, formulate and solve engineering problems.
- f. Understanding of professional and ethical responsibility.
- g. Ability to communicate effectively.
- h. Broad education necessary to understand the impact of engineering solutions in global and societal context.
- i. Recognition of the need for and an ability to engage in life-long learning.
- j. Knowledge of contemporary issues.
- k. Ability to use the techniques, skills and modern engineering tools necessary for engineering practice.

Ability to use the computer/IT tools relevant to the discipline along with an understanding

of their processes and limitations

I.

Curriculum Detail

ELEC 312 Control Systems I

Timetabled work in hours per week		No of teaching	Total hours	No /Duration of exam	Max marks available from:		
Lecturer	Tutor	Practice	weeks		papers	Exams	Course
4	- 1	-	14	0.1	0/51	C 0	40

<u>**Term:**</u>6th

Hours Percentage content of									
Lecturer	Lab/tut	Other	Maths	Basic	Engineering	Engineering	Complementary	Computer	
				Science	Science	Design and	Studies	Studies	
						Synthesis			
56	14/14	0	20	10	20	30	10	10	

Design Elements

% of Design	Design Content in	Design Project	Design Content in		
Content	Course Work		Laboratories		
20%	X		Х		

Course Assessment Policy:

- **H** There will be approximately 4 homework assignments. Homework is due one week after assignment unless otherwise noted, no late submission is accepted. Zero mark will be given when homework is copied. Possible revision of homework grades may be discussed with the grader within one week from the return of the marked homework.
- **X** A number of small quizzes will be held during the semester.
- Here one mid-term exam and one final exam will be given with 2 hours and 3 hours respectively.

PDF to Word