University of Macau

Undergraduate Civil Engineering, Electrical and Electronic Engineering, Electromechanical Engineering, Software Engineering Programs

Coordinating Unit:	Department of Mathematics, Faculty of Science and Technology		
Supporting Unit(s):	Nil	MATH 1111 Year of Study: 1	
Course Code:	Probability and Statistics		
Course Title:	Nil		
Compulsory/Elective:	Compulsory		
Course Prerequisites:	MATH101 Mathematical Analysis I		
Prerequisite Knowledge:	One semester	Two hours of lecture and two hours of tutorial per week.	
Duration:	Nil		
Class/Laboratory Schedule:	This course introduces the students with the fundamental concepts and principles of probabilities and statistics. It prepares students to work professionally when dealing with engineering problems related to probability and statistics. The topics include probability, binomial, Poisson and normal distribution, sampling distribution, hypothesis testing, simple linear regression and correlation.		
Laboratory/Software Usage:	1. Understand the fundamental theories and principles of probability and statistics [a]		
Course Description:	2. Perform basic calculations for probability and statistical inference [e]		

	\square Lecture	\square Service learning
	\square Guest speakers	\square Internship
Pedagogical	\square Case study	\square Field study
Methods：	\square Role playing	\square Company visits
	\square Student presentation	\square e－learning
	\square Project	\square Independent study
	\square Simulation game	\square Others：\square
	\square Exercises and problems	

Major Assessment Methods： For each Major Assessment Method below，please indicate the specific pedagogical methods involved（by putting a \checkmark in the relevant box（es）on the right－hand side）．	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \tilde{0} \\ & \text { 亿 } \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{0} \\ & 0 \\ & 0 \\ & 00 \\ & 0.0 \\ & 0.0 \end{aligned}$	烒 0 0 0 0 0 0 0 0 0 0	E 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0	0 0 0 0 0 0.0 0 0 0.0 0.0 0.0				$\begin{aligned} & \text { 曹 } \\ & \text { 兑 } \\ & \text { 荌 } \end{aligned}$	T3 0 0 0 0 0	0 0 0 0 B 苞 に．		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0.0 \\ & 0.0 \\ & 0 \end{aligned}$	
Class Participation／ Discussion（0\％）														
Assignments（15\％）							\checkmark							
Quizzes（0\％）														
Midterm Exam（35\％）												\checkmark		
Final Exam（50\％）												\checkmark		
Others（please specify）														
Course Web：（if any）														

Course Content: (topic outline)	Week no.	Topics	Assignment no.	LO no.
	1, 2, 3	Introduction to Statistics - Decision-Making Under Uncertainty - Probability v.s. Inferential Statistics Probability Theory - Addition Rule and Mutually Exclusive Events - Multiplication Rule and Statistically Independent Events - Conditional Probability and Bayes’ Rule Random Variables and Probability Distribution - Discrete and Continuous Probability Distributions - Joint Probability Distributions	1, 2	1
	4, 5, 6	Mathematical Expectation - Mean of Random Variable - Variance and Covariance of Random Variables - Chebyshev's Theorem Some Discrete Probability Distribution - Binomial Distribution - Hyper-geometric Distribution - Poisson Distribution	3, 4	2, 3
	7, 8	Some continuous Probability Distribution - Normal Distribution - Area Under the Normal Curve - Normal Approximation to the Binomial - Chi-squared Distribution	5	3
	9	Midterm examination		
	10	Sampling Distribution - Central Limit Theorem - Sampling Distribution of Means and Variances - t-Distribution - F-Distribution	6	3
	$\begin{aligned} & 11,12, \\ & 13 \end{aligned}$	One- and Two-sample Tests of Hypothesis - One and Two-Tailed Tests - One- and Two-Sample Tests on Means - One- and Two-Sample Tests on Proportions - One- and Two-Sample Tests on Variances - Goodness-of-Fit Test	7	4
	14	Simple Linear Regression and Correlation	8	5
	TBA	Final Examination		

TBA: To be arranged by the Registry

Contribution to Program Outcomes:	Program Outcomes	$\begin{gathered} \text { Contribution to POs }{ }^{\text {\# }} \\ 5---------->\quad 1 \\ \text { Significant } \quad \text { Least } \end{gathered}$				
		5	4	3	2	1
	(a) apply knowledge of mathematics, science, and engineering	\checkmark				
	(b) design and conduct experiments, and analyze data					
	(c) design components, systems or processes in presence of constraints					
	(d) Function in a multi-disciplinary team					
	(e) Engineering problem solving					
	(f) Understand professional and ethical responsibility					
	(g) Communicate effectively					
	(h) Understand the impact of engineering solutions to the society					
	(i) Recognize the need and have the ability for lifelong learning					
	(j) Have knowledge of contemporary issues					
	(k) Apply the skills, techniques, modern engineering tools					
	(l) Use the computer/IT tools relevant to the discipline					
	\# Note 5: Significant contribution; 4: Supporting contribution; 3: Moderate co 2: Marginal support; 1: Least support					

