University of Macau Undergraduate Software Engineering Program

Coordinating Unit:	Department of Mathematics, Faculty of Science and Technology							
Supporting Unit(s):	Nil							
Course Code:	MATH 200 Year of Study: 2							
Course Title:	Mathematical Analysis III							
Compulsory/Elective:	Compulsory							
Course Prerequisites:	Nil							
Prerequisite Knowledge:	Nil							
Duration:	One semester	Credit Units:	4					
Class/Laboratory Schedule:	Three hours of lecture and two hours of tutorial per week.							
Laboratory/Software Usage:	Nil							
Course Description:	This course aims at providing students with a solid foundation of basic techniques in discrete mathematics. The topics include elementary set theory, counting principle, and graph theory							
Course Objectives:	 Understand the fundamental theories of calculus of several variables. [a] Be able to formulate physical problems using partial derivatives and multiple integrals. [a] Possess the problem-solving skills using derivatives and integrals. [a] 							
	Upon completion of this course, students are expected to:							
Learning Outcomes	1. be able to compute partial derivatives [PO: a]:							
(LOs):	2. be able to calculate double, triple and line integrals [PO: a];							
	3. have basic understanding of conservative field and potential functions [PO: a]							
Texts & References: (* recommended textbook(s))	 * Calculus, 6th Ed, C. H. Edwards and D. E. Penney, Prentice Hall. Calculus and analytical geometry, 9th Ed. Thomas and Finney, Addison Wesley. 							
Student Assessment:	 Assignments: 10% Midterm examination: 30% Final examination: 60% 							
Learning Outcome Assessment:	Assignments, midterm and final examination							

	☑ Lecture	□ Service learning
	□ Guest speakers	□ Internship
	□ Case study	□ Field study
Pedagogical	□ Role playing	□ Company visits
Methods:	□ Student presentation	□ e-learning
	Project	□ Independent study
	□ Simulation game	□ Others:
	☑ Exercises and problems	

Major Assessment Methods: For each Major Assessment Method below, please indicate the specific pedagogical methods involved (by putting a ✓ in the relevant box(es) on the right-hand side).	Case Study	Role Playing	Student Presentation	Individual project/paper	Group project/paper	Simulation Game	Exercises & problems	Service learning	Internship	Field Study	Company visits	Written examination	Oral examination	Others (please specify)
Class Participation/ Discussion (0%)														
Assignments (10%)							~							
Midterm Exam (30%)												~		
Final Exam (60%)												~		
Others (please specify)														
Course Web: (if any)	http://www.sftw.umac.mo/~fstitl/2012-calculus.html													

	Week Topics no.				
	1	Introduction:			
		Coordinate system, vector and scalar products			
		Equation of straight lines, planes and quadratic surfaces, cylinders			
		Interior and Boundary points			
	2	Functions of several variables	1		
		Domain and Range of functions, Graph and Level curves, Limits			
		Limits and Continuity			
	-	Laws of limits, Composition and continuity of functions.			
	3	Partial and Mixed Derivatives, Tangent Planes	2		
		Tangent planes, and Geometric Meaning, Differentials			
	4	Global and Local Minimum and Maximum	3		
		Existence Theorem, Critical Points, Derivative Tests			
	5	Applications of Partial Derivatives	4		
		First order approximation, Chain Rules, Directional Derivatives,			
		Rate of Most Rapid Changes, Geometric meaning of Gradients,			
		Lagrange Multipliers			
Course Content:	6	Double and Triple Integrals	5		
(topic outline)		Double Integral, Iterated integral Area, Volume and Double Integrals			
		Cross section and Interchange of order of integration			
	7	Transformation and Triple Integrals	6		
		Polar coordinates, Application of double integrals,			
		Triple integral, Cross section Method			
	8	Review and Mid-Term Examination			
	9	Surface Area, and Curves	7		
		Vector Fields and their operators,			
		Review of Parameterization of Curve.			
	10	Line integral	8		
		Line integral, Evaluation of Line Integral, Fundamental Theorem			
	11 12	Detential Exactions and Crean Theorem	0		
	11-12	Potential functions and Independence of Path	2		
		Green's Theorem and its applications			
	13-14	Applications of Integral	10		
		Geometric meaning of divergence and flux of vector fields			
		Surface Integrals, Divergence Theorem, Stokes' Theorem and			
		Review			
	TBA	Final Examination			

TBA: To be arranged by the Registry

Course Instructor(s): Dr. I. T. Leong
--