University of Macau

Undergraduate Computer and Information Science Program

Coordinating Unit:	Department of Mathematics, Faculty of Science and Technology
Supporting Unit(s):	Nil
Course Code:	MATH201 ${ }^{\text {a }}$ Year of Study:
Course Title:	Mathematical Analysis IV
Compulsory/Elective:	Compulsory
Course Prerequisites:	MATH102 Mathematical Analysis II and MATH200 Mathematical Analysis III
Prerequisite Knowledge:	The fundamental theories of calculus, e.g., limits, continuity, derivatives, partial derivatives, integrals, series.
Duration:	One semester \quad Credit Units: ${ }^{\text {a }}$
Class/Laboratory Schedule:	Three hours of lecture and two hours of tutorial per week.
Laboratory/Software Usage:	Nil
Course Description:	This course aims at preparing students to study their advanced engineering courses. Topics include ordinary differential equations, Laplace transformation, Fourier series \& integrals, and complex variable functions.
Course Objectives:	1. understand the basic knowledge in engineering mathematics. 2. be able to solve some mathematical problems arising in engineering
Learning Outcomes (LOs):	Upon completion of this course, students are expected to: 1. be able to solve the ordinary differential equations; [PO: a] 2. be able to compute Laplace transforms and employ it for solving the initial value problems; [PO: a] 3. be able to calculate Fourier series, and understand the Fourier integrals and transforms; [PO: a] 4. understand the concept of analytic functions of one complex variable. [PO: a]
Texts \& References: (* recommended textbook(s))	1. *Advanced Engineering Mathematics (9 ${ }^{\text {th }}$ ed.), E. Kreysizig, John Wiley \& Sons, 2006.* 2. Advanced Engineering Mathematics ($5^{\text {th }}$ ed.), Peter V. O’ Neil, Thomson Leaning, 2003.
Student Assessment:	- Assignments: 15% - Midterm examination: 40% - Final examination: 45%
Learning Outcome Assessment:	- assignments, midterm and final examinations

	\square Lecture	\square Service learning
	\square Guest speakers	\square Internship
Pedagogical	\square Case study	\square Field study
Methods：	\square Role playing	\square Company visits
	\square Student presentation	\square e－learning
	\square Project	\square Independent study
	\square Simulation game	\square Others：
	\square Exercises and problems	

Major Assessment Methods： For each Major Assessment Method below，please indicate the specific pedagogical methods involved（by putting a \checkmark in the relevant box（es）on the right－hand side）．	$\begin{aligned} & \text { O} \\ & \text { D } \\ & 0 \\ & \tilde{0} \\ & 0 \end{aligned}$	$\begin{aligned} & 00 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 00 \\ & 0 . \\ & 0 . \end{aligned}$		E 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0.0 0 0 0.0 0.0	品 0 0 0 0 0 0 0 0		n 号 त 0 0 0 0 0 0	$\begin{aligned} & \text { 艮 } \\ & \text { 䓲 } \\ & \text { 客 } \end{aligned}$				O 0 0 0 0 0 0 0 0 0	
Class Participation／ Discussion（0\％）														
Assignments（15\％）							\checkmark							
Quizzes（0\％）														
Midterm Exam（40\％）												\checkmark		
Final Exam（45\％）												\checkmark		
Others（please specify）														
Course Web：（if any）														

Course Content: (topic outline)	Week no.	Topics	Assignment no.	LO no.
	1,2	First order ordinary differential equations Basic concepts of first order ODEs, separable equations, exact equations with integrating factors, first order linear ODEs	1,2	1
	3,4,5	Second order linear ODEs Homogeneous linear equations of $2^{\text {nd }}$ order with constant coefficients, Euler-Cauchy equations, Wronskian, nonhomogeneous linear equations of $2^{\text {nd }}$ order, methods of undetermined coefficients	3,4,5	1
	6	Higher order linear ODEs Higher homogeneous linear equations with constant coefficients, higher order nonhomogeneous linear equations	6	1
	7-8	Complex number and functions Complex number, complex plane, polar form of complex number, derivative and analytic function, Cauchy-Riemman equations, Laplace's equations, harmonic equations	7,8	4
	9	Midterm examination		
	10-11	Laplace transforms Laplace transforms, inverse Laplace transforms, shifting theorem, transformation of derivatives \& integrals, solving ODEs by Laplace transforms, convolution, integral equations	9,10	2
	12-14	Fourier series, integrals, and transforms Fourier series, half range expansions, Fourier series in complex form, Fourier integrals, Fourier transforms	11,12	3
	TBA	Final Examination		

TBA: To be arranged by the Registry

Contribution to Program Outcomes:	Program Outcomes	Contribution to POs 5 \#------------> 1 Significant Least				
		5	4	3	2	1
	(a) apply knowledge of mathematics, science, and engineering	\checkmark				
	(b) design and conduct experiments, and analyze data					
	(c) design components, systems or processes in presence of constraints					
	(d) Function in a multi-disciplinary team					
	(e) Engineering problem solving					
	(f) Understand professional and ethical responsibility					
	(g) Communicate effectively					
	(h) Understand the impact of engineering solutions to the society					
	(i) Recognize the need and have the ability for lifelong learning					
	(j) Have knowledge of contemporary issues					
	(k) Apply the skills, techniques, modern engineering tools					
	(l) Use the computer/IT tools relevant to the discipline					
	$\begin{array}{ll}\text { \# Note } & \text { 5: Significant contribution; 4: Supporting contribution; 3: Moderat } \\ & \text { 2: Marginal support; 1: Least support }\end{array}$					
Course Instructor(s):	Prof. Haiwei Sun and Dr. Ieng-Tak Leong					

Appendix: Rubric for the Program Outcome Assessment

5 (100-80\%): Excellent; 3 (80-60\%): Average; 1 (<60\%): Poor

Rubric for (a)	5 (Excellent)	3 (Average)	1 (Poor)
Understand the theoretic background	Students understand theoretic background and the limitations of the respective applications.	Students have some confusion on some background or do not understand theoretic background completely	Students do not understand the background or do not study at all
Use a correct model and formulation correctly	Students choose a model correctly and properly apply correct techniques	Students choose a wrong model sometime, use a wrong formula, or a different technique	Students use a wrong model and wrong formula, or do not know how to model
Compute the problem correctly	Students use correct techniques, analyze the problems, and compute them correctly	Students sometime solve problem mistakenly using wrong techniques	Students do not know how to solve problems or use wrong techniques completely
Rubric for (b)	5 (Excellent)	3 (Average)	1 (Poor)
Conduct experiments	Student successfully completes the experiment, records the data, analyzes the experiment's main topics, and explains the experiment concisely and well.	Student successfully completes the experiment, records the data, and analyzes the experiment's main topics.	Student either does not complete the experiment successfully, or completes it successfully but does not record the correct data.
Design experiments	Student understands what needs to be tested and designs an appropriate experiment that takes into account the limitations of the equipment and measurement accuracy.	Student understands what needs to be tested and designs an appropriate experiment, but may not fully understand the limitations of the measurements.	Student does not understand what needs to be tested and/or does not design an appropriate experiment.
Rubric for (c)	5 (Excellent)	3 (Average)	1 (Poor)
Design capability and design constraints	Student understands very clearly what needs to be designed and the realistic design constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.	Student understands what needs to be designed and the design constraints, but may not fully understand the limitations of the design constraints	Student does not understand what needs to be designed and the design constraints.
Process to meet desired needs	Student understands very clearly the process of the design	Student understands what the needs of the process design, but may not fully understand the limitations of the design constraints	Student does not understand the process.
Rubric for (d)	5 (Excellent)	3 (Average)	1 (Poor)
Ability to work in teams	Performance on teams is excellent with clear evidence of equal distribution of tasks and effort as well as frequent meetings of the team members.	Performance on teams is acceptable with one or more members carrying a larger amount of the effort as well as infrequent meetings of the members or one or more members being absent from several meetings.	Performance on teams is poor to unacceptable with one or two members clearly carrying the majority of the effort as well as inadequate team meeting or one or more members missing the majority of the meetings.
Multi-disciplinary teams	Team consists of members from two or more different engineering/science/business fields (this could contain some	Team consists of members from two or more concentrations within the Department of Electrical and	Team consists of members from the same concentration within the Department of Electrical and Computer

	members not actually enrolled in the course but interacting as part of a competition, collaboration, etc.)	Computer Engineering	Engineering
5 (Excellent)			

-End-

