University of Macau Faculty of Science and Technology

PHYS203 – Physics II Syllabus, 1st Semester 2011/2012

Part A – Course Outline

Compulsory course in Electromechanical Engineering, Electrical and Computer Engineering, and Civil and Environmental Engineering

Course description:

This is the second part of a calculus-based introductory Physics for student majoring in engineering.

Prerequisite:

PHYS120 - Physics I

Textbook:

• David Halliday, Robert Resnick, Jearl Walker, *Principles of Physics*, 9 Edition, John Wiley & Sons, Inc., 2011 (ISBN: 978-0-470-56158-4). This textbook has been translated into 29 different languages around the world.

Reference:

• Serway Jewett, Physics for Scientists and Engineers (ISBN: 0-534-42398-1)

Course objectives:

- 1. to provide the students with a clear and logical presentation of the basic concepts and principles,
- 2. to strengthen an understanding of the concepts and principles through a broad range of interesting applications to the real world.

Topics covered:

Chapter 21: Electric Charge (Electric Charge, Conductors and Insulators, Coulomb's Law, Charge is Quantized, Charge is Conserved),

- **Chapter 22: Electric Fields** (The Electric Field, Electric Field Lines, The Electric Fields due to a Point Charge; an Electric Dipole; a Line of Charge; a Charged Disk, A Point Charge in an Electric Field, A Dipole in an Electric Field),
- **Chapter 23: Gauss' Law** (Flux of an electric Field, Gauss' Law, Gauss' law and Coulomb's Law, A Charged Isolated Conductor, Applying Gauss' Law: Cylindrical Symmetry, Planar Symmetry and Spherical Symmetry),
- **Chapter 24: Electric Potential** (Electric Potential Energy, Electric Potential, Equipotential Surfaces, Calculating the Potential from the Field, Potentials due to a Point Charge, a Group of Point Charges; an Electric Dipole; a Continuous Charge Distribution, Calculating the Field from the Potential, Electric Potential Energy of a System of Point Charges, Potential of a Charged isolated Conductor),
- **Chapter 25: Capacitance** (Capacitance, Calculating the Capacitance, Capacitance in parallel and in series, Energy stored in an Electric Field, Capacitor with a Dielectric, Dielectrics and Gauss' Law),
- **Chapter 26: Current and Resistance,** (Electric Current, Current Density, Resistance and Resistivity, Ohm's Law, A Microscopic View of Ohm's Law, Power in Electric Circuits, Semiconductor, Superconductor),
- Chapter 27: Circuits ("Pumping" Charges, Work, Energy and Emf, Calculating the Currents in Single-Loop and Multi-loop Circuits),
- **Chapter 28: Magnetic Fields** (Definition of *B*, Crossed Field: Discovery of the Electron, Hall Effect, A Circulating Charged Particle, Cyclotron and Synchrotron, Magnetic Force on a Current-Carrying Wire, Torque in a Current Loop, The Magnetic Diploe Moment),
- **Chapter 29: Magnetic Fields due to Currents** (Calculating the Magnetic Field Due to a Current, Force between two Parallel Currents, Ampere's Law, Solenoids and Toroids, A Current-Carrying Coil as a Magnetic Dipole),
- **Chapter 30: Induction and Inductance** (Faraday's Law of Induction, Lenz's Law, Induction and Energy Transfer, Induced Electric Fields, Inductors and Inductance, Self-Induction, Energy Stored in a Magnetic Field, Energy Density of a Magnetic Field, Mutual Induction),
- Chapter 31: Electromagnetic Oscillations and Alternating Current ((LC Oscillations, The Electrical-Mechanical Analogy, Damped Oscillation in an RLC circuit, Alternating Current, Forced Oscillation, The Series RLC Circuit, Power in Alternating Circuits, Transformers),
- Chapter 32: Maxwell's Equations (Maxwell's Equations),
- **Chapter 33: Electromagnetic Waves** (Maxwell's Rainbow, The Travelling electromagnetic Waves, Energy transport and the Poynting Vector, Radiation Pressure, Polarization, Reflection and Refraction, Total Internal Reflection, Polarization by Reflection),
- Chapter 34: Images (Mirrors, Spherical Refracting Surface, Thin Lenses, Optical Instruments)
- **Chapter 35: interference** (Young's Interference Experiment, Coherence, Intensity in Double-Slit Interference, Interference from Thin Film, Michelson's Interferenter),
- **Chapter 36: Diffraction** (Diffraction and the Wave Theory of Light, Diffractions by a Single Slit; by a Circular Aperture; by a Double-Slit, Diffraction Gratings, X-Ray Diffraction).

Class schedule and credits:

Timetabled work in hours per week			No of	Total hours	Total credits	No / Duration of
Lecture	Tutorial	Practice	teaching			exam papers
			weeks			
5	1	2	14	112	5.5	1 / 3 hours

FST Phys203					
Week	Date	Content	Note		
1	8/28 - 9/3	Chapter 21 , Chapter 22			
2	9/4 - 9/10	Chapter 23 , Chapter 23/24			
3	9/11 - 9/17	Chapter 24 , Chapter 25	9/13 holiday		
4	9/18 - 9/24	Chapter 26 , Chapter 27			
5	9/25 - 10/1	Chapter 27/28 , Chapter 28			
6	10/2 10/8	Holiday, holiday	10/3,10/5,holiday		
7	10/9 - 10/15	Chapter 29 , Test 1	10/12 Test 1 (21 - 27)		
8	10/16 - 10/22	Chapter 29/30 , Chapter 30			
9	10/23 - 10/29	Chapter 30 , Chapter 31			
10	10/30 - 11/5	Chapter 31/33 , holiday	11/2 holiday		
11	11/6 - 11/12	Chapter 33 , Test 2	11/9 Test 2 (28 - 31)		
12	11/13 - 11/19	Chapter 34 , Chapter 34			
13	11/20 - 11/26	Chapter 35 , Chapter 35			
14	11/27 - 12/3	Chapter 36 , Chapter 36	12/2 last class		

Course content:

Maths	Basic	Engineering	Engineering	Complementary	Computer	Total 100%
	Science	Science	Design and	Studies	Studies	
			Synthesis			
0	100%	0	0	0	0	100%

Persons who prepared this description:

Prof. Jun Chen

Part B – General Course Information and Policies

1st Semester 2011/2012

Instructor:	Prof. Jun Chen	Office:	
Office Hour:	By appointment	Phone:	(853) 6634 8998
Email:	junchen@macau.ctm.net		

Time/Venue:

Mondays 11:30 – 13.30 / WLG206, Tuesdays 11:30 – 13:30/HG02, 1 4:30 - 16:30 / WLG206, Wednesdays 8:30 - 10:30 / ILG126, 11:30 – 13:30/ILG129, Thursdays 11:30 – 13:30/JG07, Fridays 11:30 – 13:30/HG02

Assessment:

Final assessment will be determined on the basis of:

Quiz	5%
Test I	20%
Test II	25%
Final Exam (3-hour close-book exam):	50%

Grading System:

The credit is earned by the achievement of a grade from 'A' to 'D'; 'F' carries zero credit.

Letter Grades	Grade Points	Percentage
А	4.0 (Excellent)	93-100
A-	3.7 (Very good)	88-92
B+	3.3	83-87
В	3.0 (Good)	78-82
B-	2.7	73-77
C+	2.3	68-72
С	2.0 (Average)	63-67
C-	1.7	58-62
D+	1.3	53-57
D	1.0 (Pass)	50-52
F	0 (Fail)	Below 50

Grades are awarded according to the following system:

Homework Policy:

The completion and correction of homework is a powerful learning experience; therefore:

- There will be a homework assignment for each chapter.
- No homework will be graded, but the quizzes for each week will be based on the homework.

Mid-term Exam:

There is no mid-term exam in this course, but there will be two tests instead. Test I covers the content of Electricity and test II covers the content of Magnetism. Each test takes 100-minute.

Note

- Attendance is strongly recommended.
- No make-up exam is given except for CLEAR medical proof.
- Cheating is absolutely prohibited by the university.