
 1

University of Macau
Faculty of Science and Technology

Department of Computer and Information Science
SFTW241 Programming Languages Architecture I

Syllabus
2nd Semester 2011/2012
Part A – Course Outline

Compulsory course in Computer Science

Course description:
(2-1-2) 4.5 credits. This course provides in-depth coverage of object-oriented programming principles and
techniques using C++. Topics include classes and objects, vectors, overloading, inheritance, polymorphism,
templates, stream I/O, file processing and exception handling. Optional topics include the comparison of C++ with
other OOP languages such as Java.

Course type:
Theoretical with substantial laboratory/practice content

Prerequisites:
• SFTW120

Textbook(s) and other required material:
• Paul Deitel and Harvey Deitel. (2009) C++ How to Program. Prentice Hall, US.

References:
• Stephen Prata. (2004). C++ Primer Plus. 5th ed., Sams.
• Bruce Eckel. (2006). Thinking in Java. Prentice Hall.

Major prerequisites by topic:
• Programming languages and algorithms

Course objectives:
• Learn the basic concepts of object oriented programming (OOP), demonstrated by the use of C++ [a]
• Able to develop solutions to problems demonstrating the use of standard language constructs [c,e,k]
• Able to develop solutions to problems demonstrating the use of data abstraction, encapsulation, overloading,

inheritance, and polymorphism. [c,e,k]
• Apply the use of templates to enable software reuse [c,e,k]
• Practice OOP techniques on small (assignments) and medium-size projects [c,e,k,l]

Topics covered:
• Introduction (5 hours): Review the concepts, history, and the different types of programming languages.

Introduce a typical C++ program development environment. Give a brief introduction to the industry-standard
object-oriented system modeling language, the UML. To test-drive C++ applications in GNU C++ on Linux.

• Basic concepts of classes and objects (5 hours): Learn how to define a class and use it to create an object,
define member functions to implement the class’s behaviors, declare data members to implement the class’s
attributes, and initialize a class by constructor. Introduce the techniques to engineer a class to separate its
interface from its implementation and encourage reuse.

• Arrays, vectors, and pointers (5 hours): Learn to use array data structure and discuss the way to declare,
initialize, and refer to array elements. Learn the basic searching and sorting techniques. Learn to declare and
manipulate multidimensional arrays and the use of the C++ standard library class template. Review pointers.
Discuss the similarities and differences between pointers and references, and the relationships between pointers
and arrays.

• Classes (10 hours): Understand class scope and learn how to access class members via different ways. Discuss
the use of constructors and destructors, and the order of calling. Learn the use of const objects and member
functions, and the use of friend functions and friend classes. Discuss the concept of a container class and the

 2

notion of iterator classes that walk through the elements of container classes. Study the use of proxy classes to
hide implementation details from a class’s clients.

• OOP techniques - Overloading, Inheritance, and Polymorphism (15 hours): Learn what and how to use
operator overloading to simplify programming. Discuss the way to overload operators for user-defined classes
and operators, and to convert objects from one class to another. Introduce the string class. Discuss the use of
inheritance; learn the notions of base classes and derived classes, and the relationships between them. Introduce
the protected member access specifier. Learn to use constructors and destructors in inheritance hierarchies.
Understand the differences between public, protected, and private inheritance. Study the use of polymorphism and
its advantages in programming. Distinguish between abstract and concrete classes, and how to create abstract
classes. Show how C++ implements virtual functions and dynamic binding, and how virtual destructors work.

• Templates (5 hours): Study the use of templates to enhance software reuse. Discuss the differences between
function templates and function-template specializations. Learn to use class templates to create groups of related
types and functions. Learn to overload function templates, and to understand the relationships among templates,
friends, inheritance, and static members.

• Stream I/O and file processing (5 hours): Overview of the stream-I/O class hierarchy. Learn to use and to
format input and output. Study the way to create, read, write and update files, both sequential file processing and
random-access file processing. Discuss the differences between formatted-data and raw-data file processing.

• Exception handling (5 hours): Introduce exceptions and the standard exception hierarchy. Learn to use try,
catch, and throw to detect, handle, and indicate exceptions, respectively. Learn to process uncaught and
unexpected exceptions.

• From C++ to Java (10 hours): A brief overview of the Java programming language, compare the differences
between C++ and Java in terms of the use of objects, string operations, references, memory management, and
the way of error handling, etc. The Java deployment model will be introduced.

Class/laboratory schedule:

Timetabled work in hours per week No of teaching
weeks

Total
hours

Total
credits

No/Duratio
n of exam

papers Lecture Tutorial Practice
2 1 2 14 70 4.5 1 / 3 hours

Student study effort required:

Class contact:
Lecture 28 hours
Tutorial 14 hours
Hands-on practice 28 hours

Other study effort
Self-study 30 hours
Homework assignment 20 hours
Project / Case study 15 hours

Total student study effort 135 hours

Student assessment:
Final assessment will be determined on the basis of:
Homework 20% Project 30%
Mid-term 20% Final exam 30%

Course assessment:
The assessment of course objectives will be determined on the basis of:
• Homework, project and exams
• Course evaluation

Course outline:

Weeks Topic Course work

1 Introduction
Programming languages and OOP, typical C++ development

 3

Weeks Topic Course work
environment, object-oriented analysis and design

2
Introduction to classes and objects
Defining classes, objects, member functions, constructors,
destructors

3
Arrays, vectors, and pointers
Declaring, initializing and using arrays, arrays and functions,
searching and sorting, class template vector, declaring,
initializing and using pointers, pointer operators

4-5

Classes
Class scope, accessing class members, separating interface
from implementation, use of const, object members, friend
functions and friend classes, data abstraction and information
hiding

6
Operator overloading
Fundamentals and restrictions, overloading stream operators,
unary operators and binary operators; dynamic memory
management, converting between types

7
Inheritance
Base classes and derived classes, protected members, public,
protected, and private inheritance

Midterm exam

8
Polymorphism
Polymorphism, relationships among objects in an inheritance
hierarchy, type fields, abstract classes and pure virtual functions

9 Templates
Function templates, overloading function templates, class templates

10

Stream I/O and file processing
Classic streams vs. standard streams, iostream library, stream
input and putput, stream format states and manipulators, files
and streams, create, access, update sequential and
random-access files,

Project

11
Exception handling
Processing exceptions, rethrow an exception, unexpected
exceptions, stack unwinding, exceptions and inheritance, standard
library exception hierarchy

12-13
From C++ to Java
Comparing the OOP with Java to C++ in the use of objects, string
operations, references, memory management, error handling, etc.
The Java deployment model.

14 Review for exam

Contribution of course to meet the professional component:
This course prepares students with fundamental knowledge and experiences to constructing a language processor.

Relationship to CS program objectives and outcomes:
This course primarily contributes to the Computer Science program outcomes that develop student abilities to:
(a) an ability to apply knowledge of mathematics, science, and engineering.
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as

economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
(e) an ability to identify, formulate, and solve engineering problems.
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

The course secondarily contributes to the Computer Science program outcomes that develop student abilities to:
(l) an ability to use the computer/IT tools relevant to the discipline along with an understanding of their processes

and limitations.

 4

Relationship to CS program criteria:
Criterion DS PF AL AR OS NC PL HC GV IS IM SP SE CN

Scale: 1 (highest) to 4 (lowest) 4 2 4 2 4 3

Discrete Structures (DS), Programming Fundamentals (PF), Algorithms and Complexity (AL), Architecture and
Organization (AR), Operating Systems (OS), Net-Centric Computing (NC), Programming Languages (PL),
Human-Computer Interaction (HC), Graphics and Visual Computing (GV), Intelligent Systems (IS), Information
Management (IM), Social and Professional Issues (SP), Software Engineering (SE), Computational Science (CN).

Course content distribution:

Percentage content for

Mathematics Science and engineering subjects Complementary electives Total
0% 100% 0% 100%

Coordinator:
Prof. Zhiguo Gong

Persons who prepared this description:
Dr. Shirley W. I. Siu

 5

Part B – General Course Information and Policies

2nd Semester 2011/2012
Instructor: Dr. Shirley W. I. Siu Office: N327B
Office hour: To be announced Phone: 8397 4378
Email: utakosiu@umac.mo

Time/Venue: To be announced

Grading distribution:

Percentage Grade Final Grade Percentage Grade Final Grade
100 - 93 A 92 - 88 A−

87 - 83 B+ 82 - 78 B
77 - 73 B− 72 - 68 C+
67 - 63 C 62 - 58 C−
57 - 53 D+ 52 - 50 D

below 50 F

Comment:
The objectives of the lectures are to explain and to supplement the text material. Students are responsible for
the assigned material whether or not it is covered in the lecture. Students who wish to succeed in this course
should read the textbook prior to the lecture and should work all homework and project assignments. You are
encouraged to look at other sources (other texts, etc.) to complement the lectures and text.

Homework policy:
The completion and correction of homework is a powerful learning experience; therefore:
• There will be 4-6 homework assignments.
• Homework is due 10 days after assignment unless otherwise noted, no late homework is accepted.
• The course grade will be based on the average of the homework grades.

Course project:
The project is probably the most exciting part of this course and provides students with meaningful
experience to design and implement a medium size system applying all the OOP techniques learnt
throughout this course:
• You will work with group of four students for the course project.
• The requirements will be announced and discussed in class.
• The project will be presented at the end of semester.

Exam:
One 2-hour mid-term exam will be held during the semester. Both the mid-term and the final exam are
closed book examinations. There will be occasional in-class quizzes.

Note:
• Check UMMoodle (https://ummoodle.umac.mo/) for announcement, homework and lectures. Report any

mistake on your grades within one week after posting.
• No make-up exam is given except for CLEAR medical proof.
• Cheating is absolutely prohibited by the university.

mailto:utakosiu@umac.mo

 6

Appendix:

Rubric for Program Outcomes

Rubric for (a) 5 (Excellent) 3 (Average) 1 (Poor)

Understand the
theoretic

background

Students understand
theoretic background and

the limitations of the
respective applications.

Students have some
confusion on some

background or do not
understand theoretic

background completely.

Students do not understand
the background or do not

study at all.

Rubric for (c) 5 (Excellent) 3 (Average) 1 (Poor)

Design
capability and

design
constraints

Student understands very
clearly what needs to be
designed and the realistic
design constraints such as
economic, environmental,
social, political, ethical,

health and safety,
manufacturability, and

sustainability.

Student understands what
needs to be designed and
the design constraints, but
may not fully understand

the limitations of the design
constraints.

Student does not
understand what needs to

be designed and the design
constraints.

Rubric for (e) 5 (Excellent) 3 (Average) 1 (Poor)

Identify
applications in

engineering
systems

Students understand problem
and can identify fundamental

formulation.

Students understand problem
but cannot apply formulation,
or cannot understand problem.

Students cannot identify
correct terms for engineering

applications.

Modeling,
problem

formulation and
problem solving

Students choose and properly
apply the correct techniques.

Students model correctly but
cannot select proper technique
or model incorrectly but solve

correctly accordingly.

Students at loss as to how to
solve a problem.

Rubric for (k) 5 (Excellent) 3 (Average) 1 (Poor)

Use modern
principles,

skills, and tools
in engineering

practice

Student applies the
principles, skills and tools

to correctly model and
analyze engineering

problems, and understands
the limitations.

Student applies the
principles, skills and tools
to analyze and implement

engineering problems.

Student does not apply
principles and tools

correctly and/or does not
correctly interpret the

results.

Rubric for (l) 5 (Excellent) 3 (Average) 1 (Poor)
Use modern
computer/IT
tools relevant

to the
discipline

Student uses computer/IT
tools relevant to the

engineering discipline, and
understands their

limitations.

Student uses computer /IT
tools relevant to the

engineering discipline.

Student does not use
computer/IT tools

relevantly, and does not
understand their

limitations.

