
 1

University of Macau

Faculty of Science and Technology

Department of Computer and Information Science

SFTW341 Compiler Construction

Syllabus

1
st
 Semester 2012/2013

Part A – Course Outline

Compulsory course in Computer Science

Course description:
(4-1) 4.5 credits. Modern compiler design, use of automatic tools, compilation techniques and program
intermediate representations; scanner, recursive descent parser, bottom-up parser, code generation and optimization;
semantic analysis and attribute grammars, transformational attribute grammars.

Course type:
Theoretical with substantial laboratory/practice content

Prerequisites:
 SFTW223

Textbook(s) and other required material:
 David A Watt and Deryck F Brown. (2000) Programming Language Processors in JAVA — Compilers and

Interpreters. Prentice Hall, US.

References:
 Reis, A. J. D. (2011). Compiler Construction Using Java, JavaCC, and Yacc. Wiley-IEEE Computer Society Pr.
 Alfred V Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D Ullman. (2007). Compiler: Principles, Techniques and

Tools. 2nd ed., Prentice Hall.
 Charles N. Fischer, Ron K. Cytron, and Richard J. LeBlanc. (2010). Crafting A Compiler. Pearson Higher

Education.

Major prerequisites by topic:
 Programming languages and algorithms
 Formal languages and finite state automata
 Regular expressions and grammars
 Logical operations

Course objectives:
 Learn the detailed operation of the major phases of a compiler [a, c]
 Introduce the theory behind the various phases, including regular expressions, context free grammars, and finite

state automata [a, e]
 Apply the theoretical foundations that form the basis of compilation [a, e]
 Design and implement parts of a compiler for a small imperative-style programming language [a, c, e, k]
 Practice software engineering design principles on a medium size project [a, c, e, k, l]

Topics covered:
 Basic Concepts (7 hours): Review the concepts of high-level programming languages, and their syntax,

contextual constrains and semantics, with examples from well-known programming systems. Introduce basic
terminology of language processors: translators, compilers, interpreters, source and target languages, and real
and abstract machines. Study the way of using language processors with Tombstone diagram.

 Theoretical Foundations (6 hours): Review the fundamentals of formal language concepts, including
finite-state automata, regular expressions, construction of equivalent deterministic finite-state automata from
regular expressions, context-free grammars, grammar notation, derivations, and parse trees.

 2

 Syntactic Analysis (8 hours): Study the details of syntactic analysis, including scanning, parsing, and abstract
syntax tree construction. Introduce recursive-descent parsing techniques, and show how a parser and scanner
can be systematically constructed from source language's syntactic specification.

 Contextual Analysis (8 hours): Study the details of contextual analysis module, in case of that the source
language exhibits static bindings and is statically typed. Introduce the techniques to validate identifier which is
related to language's scope rules, and type checking which is related to language's type rules.

 Run-Time Organization (8 hours): Discuss the relationship between the source language and the target
machine. Show how target machine instructions and storage must be marshaled to support the higher-level
concepts of source language. The topics include data representation, expression evaluation, storage allocation,
routines and their arguments, garbage collection, and run-time organization of simple object-oriented languages.

 Code Generation (12 hours): Study the details of code generation. Show how to organize the translation from
source language to object code. It relates the selection of object code to the semantics of source language in a
stack-based machine. Basic techniques of code optimization are introduced at different phases: profiler
optimization, intermediate code optimization and target code optimization.

 Interpreters & Compiler Tools (6 hours): Look inside interpreters. It gives examples of interpreters for both
low-level and high-level languages, as well as introduces the compiler construction tools: Lex & Yacc.

Class/laboratory schedule:

Timetabled work in hours per week No of teaching
weeks

Total
hours

Total
credits

No/Duratio
n of exam

papers Lecture Tutorial Practice

4 1 Nil 14 70 4.5 1 / 3 hours

Student study effort required:

Class contact:

Lecture 56 hours

Tutorial 14 hours

Other study effort

Self-study 42 hours

Homework assignment 9 hours

Project / Case study 15 hours

Total student study effort 136 hours

Student assessment:
Final assessment will be determined on the basis of:
Homework 10% Project 20%
Mid-term 30% Final exam 40%

Course assessment:
The assessment of course objectives will be determined on the basis of:
 Homework, project and exams
 Course evaluation

Course outline:

Weeks Topic Course work

1-2

Introduction
Specification of programming language, language processors,
Tombstone diagrams, bootstrapping, architecture of compiler,
different analytical phases

3
Theoretical Foundations
Finite-state automata, regular expression, context-free grammar

Course Project

4-5

Syntactic Analysis
Grammar transformation, parsing strategy, development of
recursive-descent parser, intermediate representation (abstract
syntax trees), scanner and error handling

Assignment#1

 3

Weeks Topic Course work

6-7
Contextual Analysis
Organization of identification, type & scope checking, analysis
algorithm

Assignment#2

8-9
Run-Time Organization
Data representation, expression evaluation, storage allocation,
routines and heap storage allocation

Midterm exam

10-11
Code Generation
Code function, code template, generation algorithm,
manipulation of constants & variables, procedures & functions

Assignment#3

12
Code Optimization
Basic block, flow graph, local optimization, global
optimization, peephole optimization, and loop optimizations

13

Interpretation
Interactive interpretation, recursive interpretation
Compiler Construction Tools
Lex & Yacc

14 Project Demonstration

Contribution of course to meet the professional component:
This course prepares students with fundamental knowledge and experiences to constructing a language processor.

Relationship to CS program objectives and outcomes:
This course primarily contributes to the Computer Science program outcomes that develop student abilities to:
(a) an ability to apply knowledge of mathematics, science, and engineering.
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as

economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
(e) an ability to identify, formulate, and solve engineering problems.
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

The course secondarily contributes to the Computer Science program outcomes that develop student abilities to:
(l) an ability to use the computer/IT tools relevant to the discipline along with an understanding of their processes

and limitations.

Relationship to CS program criteria:

Criterion DS PF AL AR OS NC PL HC GV IS IM SP SE CN

Scale: 1 (highest) to 4 (lowest) 4 2 1 2

Discrete Structures (DS), Programming Fundamentals (PF), Algorithms and Complexity (AL), Architecture and
Organization (AR), Operating Systems (OS), Net-Centric Computing (NC), Programming Languages (PL),
Human-Computer Interaction (HC), Graphics and Visual Computing (GV), Intelligent Systems (IS), Information
Management (IM), Social and Professional Issues (SP), Software Engineering (SE), Computational Science (CN).

Course content distribution:

Percentage content for

Mathematics Science and engineering subjects Complementary electives Total

0% 100% 0% 100%

Coordinator:
Prof. Xiao Shan Li

Persons who prepared this description:
Dr. Fai Wong

 4

Part B – General Course Information and Policies

1st Semester 2012/2013

Instructor: Dr. Fai Wong Office: R108
Office hour: Mon ~ Fri 11:00 am – 13:00 pm, or by appointment Phone: 8397 8051
Email: derekfw@umac.mo

Time/Venue: Mon 8:30 – 10:30, L108 (lecture)
 Thu 8:30 – 10:30, L108 (lecture)
 Sat 13:30 – 15:30, J418 (tutorial)

Grading distribution:

Percentage Grade Final Grade Percentage Grade Final Grade

100 - 93 A 92 - 88 A

87 - 83 B+ 82 - 78 B

77 - 73 B 72 - 68 C+

67 - 63 C 62 - 58 C

57 - 53 D+ 52 - 50 D

below 50 F

Comment:
The objectives of the lectures are to explain and to supplement the text material. Students are responsible for
the assigned material whether or not it is covered in the lecture. Students who wish to succeed in this course
should read the textbook prior to the lecture and should work all homework and project assignments. You are
encouraged to look at other sources (other texts, etc.) to complement the lectures and text.

Homework policy:
The completion and correction of homework is a powerful learning experience; therefore:
 There will be approximately 3 homework assignments.
 Homework is due one week after assignment unless otherwise noted, no late homework is accepted.
 Homework must be neatly typed and printed on a word-processor.
 The course grade will be based on the average of the homework grades.

Course project:
The project is probably the most exciting part of this course and provides students with meaningful
experience to extend and enhance an existing compiler and interpreter:
 You will work with group of two students for the course project.
 The requirements will be announced and discussed in class.
 The project will be presented at the end of semester.

Exams:
One 2-hour mid-term exam will be held during the semester. Both the mid-term and final exams are closed
book examinations. There will be occasional in-class assignment.

Note:
 Check UMMoodle (https://ummoodle.umac.mo/) for announcement, homework and lectures. Report any

mistake on your grades within one week after posting.
 No make-up exam is given except for CLEAR medical proof.
 Cheating is absolutely prohibited by the university.

mailto:derekfw@umac.mo

 5

Appendix:

Rubric for Program Outcomes

Rubric for (a) 5 (Excellent) 3 (Average) 1 (Poor)

Understand the
theoretic

background

Students understand
theoretic background and

the limitations of the
respective applications.

Students have some
confusion on some

background or do not
understand theoretic

background completely.

Students do not understand
the background or do not

study at all.

Rubric for (c) 5 (Excellent) 3 (Average) 1 (Poor)

Design
capability and

design
constraints

Student understands very
clearly what needs to be
designed and the realistic
design constraints such as
economic, environmental,
social, political, ethical,

health and safety,
manufacturability, and

sustainability.

Student understands what
needs to be designed and
the design constraints, but
may not fully understand

the limitations of the design
constraints.

Student does not
understand what needs to

be designed and the design
constraints.

Rubric for (e) 5 (Excellent) 3 (Average) 1 (Poor)

Identify
applications in

engineering
systems

Students understand
problem and can identify
fundamental formulation.

Students understand
problem but cannot apply

formulation, or cannot
understand problem.

Students cannot identify
correct terms for

engineering applications.

Rubric for (k) 5 (Excellent) 3 (Average) 1 (Poor)

Use modern
principles,

skills, and tools
in engineering

practice

Student applies the
principles, skills and tools

to correctly model and
analyze engineering

problems, and understands
the limitations.

Student applies the
principles, skills and tools
to analyze and implement

engineering problems.

Student does not apply
principles and tools

correctly and/or does not
correctly interpret the

results.

Rubric for (l) 5 (Excellent) 3 (Average) 1 (Poor)

Use modern
computer/IT
tools relevant

to the
discipline

Student uses computer/IT
tools relevant to the

engineering discipline, and
understands their

limitations.

Student uses computer /IT
tools relevant to the

engineering discipline.

Student does not use
computer/IT tools

relevantly, and does not
understand their

limitations.

