Power Quality Study in Macao

Sio-Un Tai*, Man-Chung Wong*, Ming-Chui Dong*, Ying-Duo Han**

Faculty of Science and Technology, University of Macau, Macau, SAR, P.R. China
 ** Department of Electrical Engineering, Tsinghua University, Beijing, P.R. China

Abstract—This paper reports power quality measurements in thirteen locations of Macao. The results are analyzed and compared with relevant standards for evaluating the quality of power in Macao. The data collected provides the initial core of documentation for future reference and follow-up of the trends at the end-users.

Index Terms—power quality, voltage RMS variation, voltage sag/swell, voltage imbalance, flicker, harmonics, neutral current, power factor, frequency.

I. INTRODUCTION

Power quality has become an increasing concern for utilities and their electrical customers, in recent years; there has been proliferation of modern electronics such as computer loads, variable speed drives and industrial logic controllers. While such devices are sensitive to the variation of the supply voltage, they are also the source for power quality disturbances. Due to their nonlinear nature, these loads inject harmonic current into the power system and cause voltage harmonic distortion. There is a need to understand how the disturbances will affect sensitive loads and develop appropriate specifications, or install appropriate power conditioning systems. Harmonics can result in equipment heating. communication interface and control malfunctions. Voltage sags of only few cycles can cause loss of computer data or errors. The increased concern for power quality has resulted in significant advances in monitoring equipment that can be used to characterize disturbances and power quality variations [1].

Macao is a part of China's territory. It is located on the Southeast coast of China to the west of the Pearl River Delta. Moreover, there are not any formal regulations for harmonics, imbalance and flicker in Macao. According to Macao power supply company (CEM) Statistics 2004 shows in Table 1, the energy consumption of hotel & commercial building is the most, the next is residential building, and then is public administrative building and industrial building. Therefore, a power quality study is recommended to perform at different types of buildings in Macao, they are: Industrial type: a special facility building (Fac), Public type: three public administrative buildings (Pub A, B & C), Residential type: five residential buildings (Res A, B, C, D & E), Other type: a commercial building (Com), a hotel (Hot), a middle school (Sch) and an indoor sport center (Cen).

The measurement terms include 15-minute averages voltage RMS variation, voltage sag/swell, 15-minute maximum voltage harmonic, 15-minute maximum

voltage imbalance, voltage flicker Pst and Plt, 15-minute averages neutral current RMS, 15-minute maximum current harmonic, 15-minute averages power factor and 15-minute maximum and minimum frequency variation. On the other hand, the measurement period for each location is one week (seven days) for achieving the whole pattern, the measurement point is main power distribution panel of building and the measurement equipment is power quality analyzer ACE-4000.

This paper is divided into five sections, the first section is introduction, the second section is power quality standards, the third section is results of monitoring, the fourth section is estimation of power quality in Macao, and the final section is conclusions.

Table 1

		Table I		
Electricity (consumption	distribution i	n Macao in ye	ear 2004
Customer	No. of	Percentage	Sales	Percentage
	customer		energy	
Domestic	173,760	87.1%	588.9	31.3%
			GWH	
Wholesale &	21,119	10.6%	972.6	51.6%
retail, hotels			GWH	
& recreation,				
commercial				
Industrial	2,422	1.2%	141.9	7.5%
			GWH	
Public sector	2,281	1.1%	180.7	9.6%
& street	<i>.</i>		GWH	
lighting				

II. POWER QUALITY STANDARDS

In this power quality study, it uses the standard limits in Table 2 for evaluating the performance.

	Table 2 Power quality standards				
Item	Standard Limits	Standard From			
Voltage RMS	230V phase to neutral	Macao			
variation	+5% ~ -10% (207V ~241.5V)				
	Neutral to ground <3V	[2]			
Voltage sag/swell	207V (-10%) <v<sub>RMS<253V</v<sub>	IEEE 1159-			
	(+10%)	1995			
Voltage harmonic	THD _V % < 5%	IEEE 1159-			
		1995			
Voltage imbalance	<2%	Mainland China			
Voltage flicker	Pst <1.0, Plt <0.8	Mainland China			
Neutral current RMS	<20% of phase current RMS	[3]			
Current harmonic	Isc/IL *	IEEE 519-1992			
	<20, TDD ₁ %<5%				
	20<50, TDD ₁ %<8%				
	50<100, TDD _I %<12%				
	100<1000, TDD _I %<15%				
	>1000, TDD ₁ %<20%				
Power factor	>0.85	Mainland China			
Frequency	±2% (49 ~ 51Hz)	Macao			
variation					

* I_{SC}=maximum short-circuit current at PCC

 I_L =maximum demand load current at PCC

This work was supported by the Research Committee of University of Macau.

III. RESULTS OF MONITORING

Some of the major measurement results are summarized in this section. Measurement involved voltage RMS variation, voltage sag/swell, voltage harmonic, voltage imbalance, voltage flicker, neutral current, current harmonic, power factor and frequency variation.

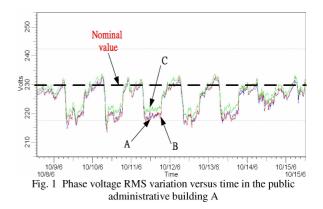

A. Voltage RMS Variation

Table 3 shows the 15-minute averages phase voltage RMS variation measurement results. All results are within the limits. Moreover, in most cases the measured values are under 230V. Fig. 1 shows the measured figure of the public administrative building A which is always lower than 230 V and even lower than 220V during office hours.

Besides, one form of common-mode noise in threephase power systems is the voltage difference between neutral and ground. The effect of this noise on the computer system is somewhat debatable, yet computer vendor specifications typically call for less than 0.5-3V [2]. In this study it finds that the high values in the public administrative building A, the residential building B, C & D and the hotel exceed 3V. Fig. 2 shows the measured 15-minute maximum neutral voltage RMS and maximum neutral current RMS figures of the public administrative building A, basically the voltage follows the current. Moreover, the neutral voltage values of this building are higher than the neutral voltage values of other measured buildings, most of the values exceed 3V during office hours. It is believed that it is caused by the impedance of the electric cable between transformer and main distribution panel of the building since system earthing is classified as TN-S in Macao. Fig. 3 shows the measured 15-minute maximum neutral voltage RMS and maximum neutral current RMS figures of the residential building D, the voltage values are generally between 1V and 3V except the one 8.378V. It is believed that the high value comes from the local power network since there is not obvious rising on the neutral current before, during and after the event. Moreover, similar status also happens in the residential building B& C and the hotel.

Table 3 Measured voltage RMS variation

Location	Phas		Phase B		Phase B	
	Max.	Min.	Max.	Min.	Max.	Min.
Fac	229.0V	219.7V	228.8V	218.6V	229.3V	219.8V
Pub A	232.5V	213.5V	233.2V	213.9V	233.8V	216.2V
Pub B	232.9V	218.3V	232.6V	217.8V	233.6V	218.4V
Pub C	234.5V	220.8V	234.2V	220.6V	235.1V	221.8V
Res A	230.3V	220.0V	231.0V	222.3V	231.3V	222.6V
Res B	231.4V	222.5V	231.8V	223.1V	232.0V	222.7V
Res C	232.7V	223.4V	232.5V	222.5V	232.0V	222.6V
Res D	231.7V	221.6V	232.2V	222.6V	230.2V	220.9V
Res E	231.8V	221.9V	231.9V	221.7V	232.8V	222.4V
Com	233.4V	221.1V	233.4V	221.2V	234.2V	221.5V
Hot	232.6V	223.4V	232.8V	223.0V	233.6V	224.3V
Sch	232.5V	219.3V	233.2V	220.1V	233.3V	223.7V
Cen	234.8V	223.5V	235.0V	224.0V	235.5V	224.9V

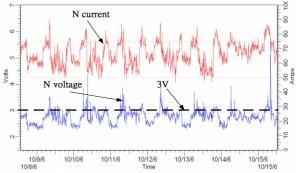
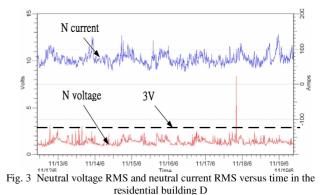



Fig. 2 Neutral voltage RMS and neutral current RMS versus time in the public administrative building A

B. Voltage Sag/Swell

Table 4 shows there are 79 and 8 voltage sag events have been recorded during the monitoring period in the special facility building and the public administrative building A respectively. All events are inside the CBEMA envelop. Therefore, it is believed they are not potentially hazardous for sensitive equipments. For special facility building, the sags are caused by the starting of the 320KW large capacity traditional water pump. For public administrative building A, the sags are mainly caused by the impedance of the electric cable between transformer and main distribution panel since the current RMS among phase lines have not large differences before, during and after the event, and no similar event happens in the other building which is using the same transformer with the public administrative building A. Fig. 4 shows one of the sags which is inside the CBEMA envelop at phase A of the public administrative building A.

Table 4						
	Measured voltage sags					
Location	Phase	No. of	Min. voltage RMS sags &			
		sags	duration (cycles)			
Fac	A	30	203V & 12 cycles			
	В	25	201V & 13 cycles			
	С	24	200.8V & 13 cycles			
Pub A	Α	8	206.6V & 1 cycle			
	В	0	N/A			
	С	0	N/A			
Others	Α	0	N/A			
	В	0	N/A			
	С	0	N/A			

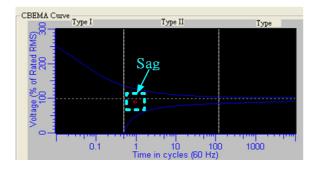


Fig. 4 CBEMA curve with recorded one voltage disturbance at phase A of the public administrative building A

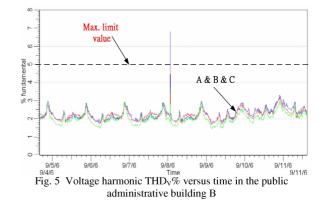

C. Voltage Harmonic

Table 5 shows the 15-minute maximum total voltage harmonic distortion THD_v% measurement results. Almost all results are within the limits except some values in the public administrative building B. Besides, order 3, 5 & 7 are main harmonic components of all the buildings. Fig. 5 shows the measured voltage THD_v% figure of the public administrative building B, the voltage distortion is generally between 2% and 3% except the one 6.823%, the periods of the event are 100 cycles. It is believed that the harmonic comes from the local power network since there is not obvious rising on the total current harmonic distortion THD_trms before, during and after the harmonic event.

Moreover, there is a worth point to concern is the background voltage harmonic, it occurs in the commercial building, the hotel, the middle school and the indoor sport center. Fig. 6 shows the current harmonic has different patterns than the voltage ones in the commercial building. Current harmonic THD_Irms is high but voltage harmonic THD_V% is low during office hours, and it is opposite during non-office hours. This is the result of the fact that the voltage distortion at this location is not governed only by the harmonic current injected by the customer, but also is primarily determined by other loads on the same transformer feeder or the local power network [4]. Since the commercial building and the hotel are using their own transformers and there are no other loads from other users, and high background voltage harmonic occurs at night and it seems that it will not produce high current harmonic at that period, it is believed that it is caused by the local power network.

Table 5Measured voltage harmonic THDv%

	Weasured voltage narmonic TTDV//					
Location	Phase A	Phase B	Phase C			
	(Max.)	(Max.)	(Max.)			
Fac	3.205%	3.417%	3.545%			
Pub A	2.322%	2.696%	2.851%			
Pub B	6.823%	4.797%	3.766%			
Pub C	1.873%	1.799%	2.073%			
Res A	2.714%	2.210%	2.506%			
Res B	3.026%	2.513%	2.801%			
Res C	3.510%	3.127%	3.289%			
Res D	4.198%	3.559%	3.884%			
Res E	2.922%	2.549%	2.581%			
Com	3.156%	2.649%	2.820%			
Hot	3.293%	3.076%	3.101%			
Sch	2.940%	2.788%	2.722%			
Cen	2.677%	2.464%	2.516%			

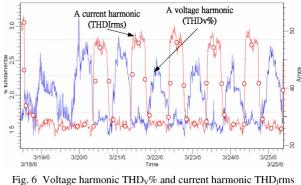
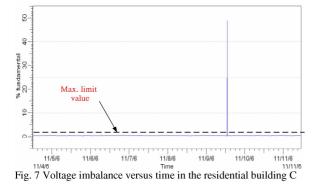
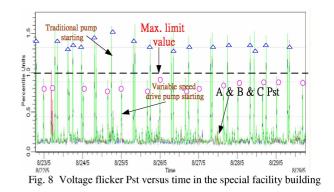



Fig. 6 Voltage narmonic $1HD_V\%$ and current narmonic $1HD_Irm$ versus time in the commercial building

D. Voltage Imbalance

Table 6 shows the 15-minute maximum voltage imbalance measurement results. Almost all results are within the limits except some values in the public administrative building B, the residential building C and the middle school. Fig. 7 shows the measured figure of the residential building C, its imbalance is generally between 0.5% and 1% except the one 48.89%, the period of the high imbalance value is 1 cycle, it is believed that the imbalance comes from the local power network and the main imbalance is on phase angles since the voltage RMS and the current RMS among phase lines have not large differences before, during and after the event. Similar status also happens in the public administrative building B and the middle school.

	Table 6					
Measured voltage imbalance						
Location	Max.	Min.				
Fac	1.973%	0.344%				
Pub A	1.336%	0.441%				
Pub B	2.204%	0.267%				
Pub C	0.836%	0.315%				
Res A	0.893%	0.292%				
Res B	0.760%	0.298%				
Res C	48.890%	0.271%				
Res D	0.640%	0.186%				
Res E	0.769%	0.338%				
Com	0.638%	0.326%				
Hot	0.714%	0.362%				
Sch	2.108%	0.402%				
Cen	0.986%	0.314%				



E. Voltage Flicker

Table 7 shows the voltage flicker Pst and Plt measurement results. Most of the measured values are within the limits except some values in the special facility building and the public administrative building A. Fig. 8 shows the measured flicker Pst figure of the special facility building, the high values (around 0.9~1.5pu) are caused by 320KW large capacity water pump starting, in general its values are only around 0.2pu. On the other hand, it is believed that the high values of the public administrative building A are mainly caused by the impedance of the electric cable between transformer and main distribution panel.

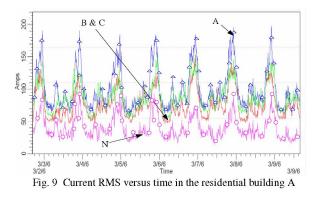
Table 7 Sured voltage flicker Bet & Dlt

Measured voltage flicker Pst & Pit							
Location	Phase A (Max.)		Phase E	Phase B (Max.)		Phase C (Max.)	
	Pst	Plt	Pst	Plt	Pst	Plt	
Fac	1.466	0.937	1.558	0.990	1.612	1.009	
Pub A	1.532	1.286	1.223	0.889	1.109	0.519	
Pub B	0.854	0.190	0.755	0.221	0.610	0.205	
Pub C	0.701	0.244	0.724	0.252	0.734	0.254	
Res A	0.246	0.122	0.247	0.136	0.251	0.128	
Res B	0.285	0.142	0.278	0.154	0.277	0.148	
Res C	0.225	0.122	0.250	0.145	0.236	0.126	
Res D	0.390	0.136	0.460	0.155	0.408	0.143	
Res E	0.247	0.108	0.268	0.123	0.253	0.122	
Com	0.361	0.238	0.358	0.246	0.409	0.265	
Hot	0.406	0.176	0.428	0.191	0.439	0.195	
Sch	0.507	0.334	0.667	0.336	0.857	0.291	
Cen	0.343	0.150	0.347	0.157	0.335	0.156	

F. Neutral Current RMS

In general the neutral current RMS should not exceed 20% of the phase current RMS [3]. Table 8 shows that the 15-minute averages neutral current RMS exceed 20% of the phase current in the residential building A, B, C, D & E, the hotel, the middle school and the indoor sport center, they are between 30.1% and 91.6% of phase current. Fig. 9 shows in the residential building A, the phase current RMS is around 160A during non-office hours and 70A during office hours, the neural current RMS is around 100A during non-office hours and 20A during office hours, the neutral current exceed 20% of the phase current.

Table 9 & 10 show the neutral current RMS including fundamental and harmonic measurement results during office and non-office hours of the public administrative building A & B & C, the residential building C & D & E, the commercial building and the indoor sport center. The tables show that current harmonic THD₁% is between around 60% and 244% during office hours and 5 of 8 locations exceed 100%. On the other hand, between around 47% and 172% during non-office hours and 6 of 7 locations exceed 100%. It is concluded that harmonic components on neutral current play a larger role than the linear load unbalances.


Table 8 Measured phase and neutral current RMS

Measured phase and neutral current RMS					
Location	Phase A	Phase B	Phase C	Neutral (Max.)	
	(Max.)	(Max.)	(Max.)	(% of phase current)	
Fac	1797A	1801A	1373A	121.3A (8.8%)	
Pub A	305.1A	304.9A	308.5A	44.94A (14.7%)	
Pub B	1.629KA	1.637KA	1.639KA	130.2A (7.9%)	
Pub C	966.8A	985.6A	960.0A	101.2A (10.5%)	
Res A	198.4A	154.5A	153.7A	106.5A (69.2%)	
Res B	163.5A	120.8A	171.2A	94.23A (78.0%)	
Res C	245.3A	241.9A	307.2A	112.7A (46.5%)	
Res D	243.9A	263.5A	253.9A	99.04A (40.6%)	
Res E	142.9A	147.8A	156.9A	67.1A (46.9%)	
Com	454.0A	448.0A	419.7A	82.77A (19.7%)	
Hot	310.6A	337.6A	261.9A	89.24A (34.2%)	
Sch	227.6A	243.9A	254.5A	68.57A (30.1%)	
Cen	52.06A	32.54A	31.69A	29.04A (91.6%)	

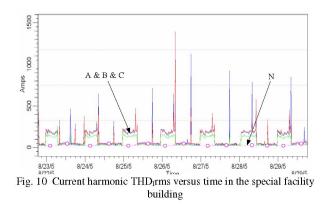
Table 9
 Measured neutral current RMS during office hour

Mea	sured neutra	I current RMS during	g office hours
Location	Neutral	Neutral current	Neutral current
	current	fundamental	harmonic RMS
	RMS	RMS	$(THD_I\%)$
Pub A	37.2A	22.46A	29.49A (131.3%)
Pub B	111.2A	51.6A	98.53A (190.9%)
Pub C	84.42A	30.84A	75.39A (244%)
Res C	72.7A	59.75A	40.91A (68.46%)
Res D	30.46A	23.22A	18.47A (79.5%)
Res E	37.54A	20.31A	30.31A (149.2%)
Com	69.53A	47.9A	55.44A (115.7%)
Cen	24.43A	20.79A	12.85A (61.8%)

Table 10 Measured neutral current RMS during non-office hours					
Location	Neutral Neutral current Neutral current				
	current	fundamental	harmonic RMS		
	RMS	RMS	(THD _I %)		
Pub A	24.49A	12.18A	20.56A (168.8%)		
Pub B	53.93A	36.62A	38.28A (104.5%)		
Pub C	30.85A	14.83A	25.6A (172.6%)		
Res C	85.67A	46.01A	71.27A (154.9%)		
Res D	70.76A	41.48A	56.43A (136.0%)		
Res E	43.55A	24.62A	35.5A (144.1%)		
Com	34.23A	30.5A	14.47A (47.4%)		

G. Current Harmonic

Table 11 shows the 15-minute maximum current harmonic THD_Irms measurement results. And according to the short circuit current and the demand load current of the locations, it gets the $TDD_1\%$ limits shows in Table 12. Table 12 also shows the calculated TDD_I%, almost all results are within the limits except some values in the special facility building, and the high values mainly are caused by the running of 320KW large capacity variable speed drive water pump and the starting of the 320KW large capacity traditional water pump. Fig. 10 shows the current harmonic THD₁rms in the special facility building is around 200A (TDD₁%=10%) during the running of variable speed drive water pump but some exceed 500A (TDD₁%=25%) or even 1000A (TDD₁%=50%) at traditional water pump starting. Besides, order 3, 5 & 7 are main harmonic components of all the buildings.

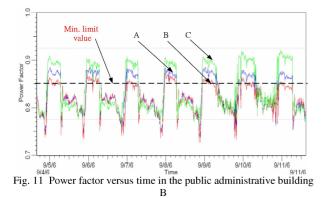

Table 11

	Measured current narmonic THD _I rms					
Location	Phase A	Phase B	Phase C			
	(Max.)	(Max.)	(Max.)			
Fac	1394A	1364A	254.5A			
Pub A	17.89A	14.96A	23.33A			
Pub B	72.92A	73.7A	108.5A			
Pub C	47.35A	47.32A	58.14A			
Res A	33.13A	34.85A	31.05A			
Res B	28.43A	28.85A	30.18A			
Res C	35.09A	39.86A	39.58A			
Res D	34.68A	40.64A	32.84A			
Res E	26.7A	26.49A	28.08A			
Com	52.76A	52.99A	51.25A			
Hot	77.24A	79.12A	61.79A			
Sch	27.91A	27.12A	29.11A			
Cen	6.434A	5.452A	10.59A			

 Table 12

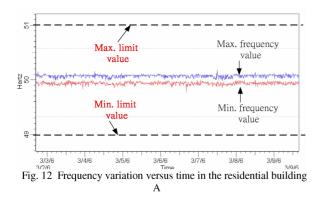
 Current harmonic TDD₁% limits and calculated current harmonic TDD₁% from measured current harmonic THD₁rms

	D ₁ /c from mee	to area carrent	marinomie 1111	Truno
Location	$TDD_I\%$	Phase A	Phase B	Phase C
	Limit	$TDD_I\%$	$TDD_I\%$	$TDD_I\%$
Fac	5%	69.70%	68.20%	12.73%
Pub A	12%	3.58%	2.99%	4.67%
Pub B	8%	4.56%	4.60%	6.78%
Pub C	8%	4.74%	4.73%	5.81%
Res A	12%	5.52%	5.81%	5.18%
Res B	12%	4.74%	4.81%	5.03%
Res C	12%	5.85%	6.64%	6.60%
Res D	12%	5.78%	6.77%	5.47%
Res E	12%	4.45%	4.42%	4.68%
Com	5%	2.64%	2.65%	2.56%
Hot	8%	4.83%	4.95%	3.86%
Sch	15%	9.30%	9.04%	9.70%
Cen	15%	8.04%	6.81%	13.24%



H. Power Factor

Table 13 shows the 15-minute averages power factor measurement results. Some values exceed the limits except in the special facility building and the hotel. Fig. 11 shows the measured figure of the public administrative building B, its power factor is around 0.82 during office hours and 0.88 during non-office hours. In other words, it is high during non-office hours but low during office-hours. Since the measured power factor of two centralized air-conditioning systems in this research is around 0.82 during running and the running current of the systems exceeds 40% of the total running current of the buildings, it is believed that the low values during office hours is mainly caused by the centralized air-conditioning system.


	Table 13						
Measured power factor							
Location	Phase A		Phase B		Phase C		
	Max.	Min.	Max.	Min.	Max.	Min.	
Fac	0.939	0.879	0.944	0.876	0.926	0.862	
Pub A	0.963	0.792	0.972	0.791	0.962	0.807	
Pub B	0.885	0.735	0.879	0.727	0.922	0.758	
Pub C	0.959	0.724	0.967	0.724	0.937	0.714	
Res A	0.957	0.729	0.942	0.710	0.922	0.688	
Res B	0.938	0.766	0.915	0.721	0.934	0.742	
Res C	0.939	0.819	0.967	0.867	0.893	0.735	
Res D	0.956	0.814	0.932	0.809	0.852	0.685	
Res E	0.912	0.720	0.897	0.723	0.920	0.788	
Com	0.953	0.808	0.950	0.825	0.915	0.758	
Hot	0.997	0.910	0.996	0.911	0.993	0.887	
Sch	0.953	0.761	0.996	0.750	0.969	0.627	
Cen	0.741	0.634	0.807	0.400	0.898	0.330	

. . .

I. Frequency Variation

The 15-minute maximum and minimum measured frequency is 50.2Hz and 49.8Hz respectively, it is $\pm 0.4\%$ of the nominal value and all results are within the limits. Fig. 12 shows the frequency variation in the residential building A.

IV. ESTIMATION OF POWER QUALITY IN MACAO

Table 14 shows a summary of power quality in Macao which is based on the measured results in the above thirteen locations of Macao. Here, it neglects the findings on electric cable impedance which may cause high neutral voltage, voltage sag and flicker in the administrative building A since only one location has these problems and the status is not in usual in Macao. Moreover, for the power quality in the whole Macao, estimation is made as below: - Voltage RMS variation: In general it is within the standard limits. Most voltage RMS values are under 230V. Lower voltage RMS values during office hours due to the running of large capacity equipments such as centralized air-conditioning system.

- Voltage sag/swell and flicker: In general they are mainly inside the industrial building. Besides, the sag and flicker will be reduced since industry will be reduced and increasing the use of variable speed drive (VSD) systems in Macao. On the other hand, the sags are within the CBEMA envelop. Moreover, there is not any swell event.

- Voltage harmonic and voltage imbalance: In general they are within the standard limits. But sometimes there are high values which exceed the limits and might come from the local power network. On the other hand, the voltage harmonic will be increased due to the use of VSD systems are increasing continuously in Macao.

- Neutral current RMS: Some values exceed 20% of phase current, and it is mainly in the residential building since in general the electrical appliance inside the building are single-phase equipment.

- Current harmonic: In general $TDD_1\%$ is within the limits. On the other hand, the current harmonic will be increased due to the use of VSD systems are increasing continuously in Macao.

- Power factor: In general most values exceed the standard limits. But it is believed that power factor will be improved since the end-users start to install capacitor banks in Macao for saving money.

- Frequency: All is within the standard limits.

Table 14							
Summary of power quality in Macao based on measured results							
Item	Туре	Measurement Results					
Voltage RMS Variation	Industrial, Public, Residential.	Phase voltage is within the limits, some neutral voltage values exceed 3V which may be caused					
v anation	Others	by the local power network.					
Voltage Sag/Swell	Industrial	Voltage sag events are mainly caused by large power capacity equipment. Moreover, all is within the CBEMA envelop.					
	Public, Residential, Others	No sag/swell event.					
Voltage Harmonic	Industrial, Public, Residential, Others	All is within the limits except some high values are caused by the local power network. Order 3, 5 & 7 are main voltage harmonic components. Somewhere background voltage harmonic are found.					
Voltage Imbalance	Industrial, Public, Residential, Others	All is within the limits except some high values are caused by the local power network.					
Voltage Flicker	Industrial	Some values exceed the limits and it is mainly caused by large power capacity equipments.					
	Public, Residential, Others	All is within the limits.					
Neutral Current	Industrial, Public	All is within 20% of phase current and harmonic is main component.					
RMS	Residential, Others	Some values exceed 20% of phase current RMS and harmonic is main component.					

Table 14

Current Harmonic	Industrial	Some TDD ₁ % values exceed the limits and it is mainly caused by large power capacity equipments. Order 3, 5 & 7 are main current harmonic components.
	Public, Residential, Others	All is within the limits. Order 3, 5 & 7 are main current harmonic components.
Power Factor	Industrial, Public, Residential, Others	In most cases exceed the limits.
Frequency variation	Industrial, Public, Residential, Others	All is within the limits.

V. CONCLUSIONS

A power quality monitoring in the thirteen locations of Macao has been reported. In general the results shows that phase voltage and frequency are within the limits, neutral voltage, voltage harmonic THD_v% and voltage imbalance sometimes exceed the limits and may come from the local power network, voltage sag, flicker and current harmonic TDD_I% sometimes exceed the limits in industrial building and may come from large power equipment, somewhere neutral current exceeds 20% of phase current and harmonic is main component, most power factor exceeds the limits and somewhere background voltage harmonic are found, order 3, 5 & 7 are main voltage harmonic components, order 3, 5 & 7 are main current harmonic components. Moreover, an estimation of power quality for the whole Macao also be reported, it mainly points out that voltage sag and flicker will be reduced since the industry will be reduced and increasing the use of variable speed drive (VSD) systems in Macao, voltage harmonic and current harmonic will be increased due to the use of VSD systems and power factor will be improved since the end-users start to install capacitor banks in Macao.

ACKNOWLEDGEMENT

The authors would like to thank the Research Committee of University of Macao for their supports, and also thank the persons of the thirteen buildings for their support and helpful for this power quality monitoring.

REFERENCES

- Eloi Ngandui, and Cedric Meignant, "Power quality monitoring and analysis of a university distribution system," *IEEE CCECE*, vol. 2, pp. 863-867, May 2001.
- [2] Gruzs, T.M., "A survey of neutral currents in three-phase computer power systems," *IEEE Trans. on industry applications*, vol. 26, pp. 719-725, July-August 1990.
- [3] A. C. Liew, "Excessive neutral currents in three-phase fluorescent lighting circuits," *IEEE Trans. on industry applications*, vol. 25, no. 4, pp. 776-782, July/August 1989.
- [4] Alexander E. Emanuel, John A. Orr, David Cyganski, Edward M. Gulachenski, "A survey of harmonic voltages and currents at the customer's bus," *IEEE Trans. on power delivery*, vol. 8, No. 1, pp. 411-421, January 1993.