Stronger uncertainty principles for hypercomplex signals

Yan Yang, Pei Dang & Tao Qian

To cite this article: Yan Yang, Pei Dang & Tao Qian (2015) Stronger uncertainty principles for hypercomplex signals, Complex Variables and Elliptic Equations, 60:12, 1696-1711, DOI: 10.1080/17476933.2015.1041938

To link to this article: http://dx.doi.org/10.1080/17476933.2015.1041938

Published online: 26 May 2015.

Article views: 96

Citing articles: 4
Stronger uncertainty principles for hypercomplex signals
Yan Yanga, Pei Dangb* and Tao Qianc

aSchool of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, China; bFaculty of Information Technology, Macau University of Science and Technology, Macao, China; cFaculty of Science and Technology, Department of Mathematics, University of Macau, Macao, China

Communicated by J. DU

(Received 7 March 2015; accepted 13 April 2015)

In this paper, for real para-vector-valued signals, we obtain stronger uncertainty principles in terms of covariance and absolute covariance based on Fourier transform in both directional and the spatial cases. We provide certain conditions that give rise to the equal relation between the two uncertainty principles. Examples are presented to verify the results.

Keywords: uncertainty principle in higher dimensions; Fourier transform; covariance

AMS Subject Classifications: 46F10; 30G35

1. Introduction
Uncertainty principle in time–frequency planes plays an important role in signal processing [1–11] and in physics [12–21]. The classical form of uncertainty principle states that for a given signal of unit energy \(f(t)\) with Fourier transform
\[
\hat{f}(\omega) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt,
\]
the product of spreads of the signal in the time domain and the frequency domain is bounded by a lower bound
\[
\sigma_t^2 \sigma_{\omega}^2 \geq \frac{1}{4},
\]
where \(\sigma_t^2\) and \(\sigma_{\omega}^2\) are the duration and bandwidth of a signal \(f(t)\), defined, respectively, by
\[
\sigma_t^2 := \int_{-\infty}^{\infty} (t - \langle t \rangle)^2 |f(t)|^2 dt
\]
and
\[
\sigma_{\omega}^2 := \int_{-\infty}^{\infty} (\omega - \langle \omega \rangle)^2 |\hat{f}(\omega)|^2 d\omega,
\]
*Corresponding author. Email: pdang@must.edu.mo

© 2015 Taylor & Francis
respectively. Here,
\[\langle t \rangle := \int_{-\infty}^{\infty} t |f(t)|^2 dt \]
is the mean time and
\[\langle \omega \rangle := \int_{-\infty}^{\infty} \omega |\hat{f}(\omega)|^2 d\omega \]
is the mean frequency.

If \(f(t) \) is expressed in the polar form \(f(t) = |f(t)|e^{i\theta(t)} = \rho(t)e^{i\theta(t)}, \) then a stronger version of uncertainty principle [13] is
\[
\sigma_t \sigma_\omega \geq \left| -\frac{1}{2} + i\text{Cov}_{t\omega} \right| = \frac{1}{2} \sqrt{1 + 4\text{Cov}^2_{t\omega}}, \tag{1.1}
\]
where \(\text{Cov}_{t\omega} \) is the covariance of the signal defined by
\[
\text{Cov}_{t\omega} := \int_{-\infty}^{\infty} (t - \langle t \rangle)(\theta'(t) - \langle \omega \rangle)\rho^2(t) dt.
\]
The covariance is a measurement of the relation between instantaneous frequency, \(\theta'(t) \), and time \(t \).

Recently, in [22], Dang et al. strengthen the result of (1.1), they obtained
\[
\sigma_t \sigma_\omega \geq \left| -\frac{1}{2} + i\text{COV}_{t\omega} \right| = \frac{1}{2} \sqrt{1 + 4\text{COV}^2_{t\omega}}, \tag{1.2}
\]
where \(\text{COV}_{t\omega} \) is the absolute covariance of a signal defined by
\[
\text{COV}_{t\omega} := \int_{-\infty}^{\infty} |(t - \langle t \rangle)(\theta'(t) - \langle \omega \rangle)|\rho^2(t) dt.
\]
Due to the trivial inequality \(\int_{-\infty}^{\infty} (t - \langle t \rangle)(\theta'(t) - \langle \omega \rangle)\rho^2(t) dt \leq \int_{-\infty}^{\infty} |(t - \langle t \rangle)(\theta'(t) - \langle \omega \rangle)|\rho^2(t) dt \), (1.2) is stronger than (1.1).

Without loss of generality, we let \(\langle t \rangle = 0 \) and \(\langle \omega \rangle = 0 \). The essence of uncertainty principle will not be affected.

For the importance of uncertainty principle, there are many efforts to extend it to various types of functions and integral transformations. Recently, researchers discussed the uncertainty relations for fractional Fourier transform [6,10,23] and linear canonical transform.[9,20,24,25] A stronger uncertainty principle in LCT involving the phase derivative of the signal was discussed in [26].

While in higher dimensional spaces, how to describe the uncertainty principle? In Clifford algebra, Hitzer et al. [27–30] investigated a directional uncertainty principle for the Clifford–Fourier transform, which describes how the variances (in arbitrary but fixed directions) of a multi-vector-valued function and its Clifford–Fourier transform are related. Using the scalar-valued phase derivative of hypercomplex signals,[31] two uncertainty principles, of which one is for scalar-valued hypercomplex signals and the other is for axial form hypercomplex signals, for Fourier transforms were studied in [32]. In [33], we prove the classical uncertainty principles without covariance using the LCT of hypercomplex signal. To our knowledge, a work on the investigation of the stronger uncertainty relations with covariance of hypercomplex signal is not carried out yet.
In the present work, we study the real para-vector-valued signals. Using the polar form of it, the stronger uncertainty principles with covariance and absolute covariance for the real para-vector-valued signal are established. These uncertainty principles prescribe a larger bound on the product of the effective widths of real para-vector-valued signals in the time and frequency domains. Examples are given to verify the results.

The article is organized as follows. Section 2 gives a brief introduction to some general definitions and basic properties of Clifford analysis. In Section 3, some important properties about Fourier transforms are recalled. They are necessary to prove the uncertainty principles. The latest results about the Heisenberg uncertainty principle with absolute covariance and covariance are generalized for the real para-vector-valued signals in Section 4. At last, we give some examples to verify the results in Section 5.

2. Clifford algebra

The theory of Clifford algebras is intimately connected with the theory of quadratic forms and orthogonal transformations. They generalize the real numbers, complex numbers, quaternions and several other hypercomplex number systems.\[34,35\] Clifford algebras have important applications in a variety of fields including geometry, theoretical physics and digital image processing. They are named after the English geometer William Kingdon Clifford.

Most of the basic knowledge and notation in relation to Clifford algebra hereby are referred to [36] and [37].

Let $\{e_1, \ldots, e_m\}$ be basic elements satisfying $e_i e_j + e_j e_i = -2\delta_{ij}$, where $\delta_{ij} = 1$ if $i = j$, and $\delta_{ij} = 0$ otherwise, $i, j = 1, 2, \ldots, m$. Let

$$R_m^m = \{x_0 + \underline{x} \mid x_0 \in \mathbb{R}, \underline{x} \in \mathbb{R}^m\},$$

where

$$R^m = \{\underline{x} \mid \underline{x} = x_1 e_1 + \cdots + x_m e_m, x_j \in \mathbb{R}, j = 1, 2, \ldots, m\}$$

be identical with the usual Euclidean space \mathbb{R}^m.

An element in R^m is called a real vector and an element in R_m^m is called a real para-vector. The multiplication of two real para-vectors $x_0 + \underline{x} = \sum_{j=0}^{m} x_j e_j$ and $y_0 + \underline{y} = \sum_{j=0}^{m} y_j e_j$ is given by

$$(x_0 + \underline{x})(y_0 + \underline{y}) = (x_0 y_0 + \underline{x} \cdot \underline{y}) + (x_0 \underline{y} + y_0 \underline{x}) + (\underline{x} \wedge \underline{y})$$

with

$$\underline{x} \cdot \underline{y} = -\sum_{j=1}^{m} x_j y_j = \frac{1}{2}(\underline{x} \underline{y} + \underline{y} \underline{x}) = -\langle \underline{x}, \underline{y} \rangle$$

$$\underline{x} \wedge \underline{y} = \sum_{i<j} e_{ij} (x_i y_j - x_j y_i) = \frac{1}{2}(\underline{x} \underline{y} - \underline{y} \underline{x}).$$

There are three parts altogether, a scalar part $x_0 y_0 + \underline{x} \cdot \underline{y}$, a vector part $x_0 \underline{y} + y_0 \underline{x}$ and a bi-vector part $\underline{x} \wedge \underline{y}$, respectively. We denote the scalar part of $(x_0 + \underline{x})(y_0 + \underline{y})$ by $\text{Sc}((x_0 + \underline{x})(y_0 + \underline{y}))$.

Downloaded by [University of Macau Library] at 00:26 24 August 2017
The real (complex) Clifford algebra generated by e_1, e_2, \ldots, e_m, denoted by $Cl_{0,m}$, is the associative algebra over the real (complex) field \mathbb{R} (\mathbb{C}). A general element in $Cl_{0,m}$, therefore, is of the form

$$x = \sum_S x_S e_S,$$

$x_S \in \mathbb{R}$ (\mathbb{C}) and $e_S = e_{i_1}e_{i_2} \ldots e_{i_l}$, and S runs over all the ordered subsets of $\{1, 2, \ldots, m\}$, namely

$$S = \{1 \leq i_1 < i_2 < \cdots < i_l \leq m\}, \quad 1 \leq l \leq m.$$

The conjugation of e_S is defined by $\bar{e}_S := \bar{e}_l \cdots \bar{e}_1$, where $\bar{e}_j = -e_j$. Especially, we have $\bar{e}_1 e_j = -e_j e_1$. So the Clifford conjugates of a vector x and a bi-vector $x \wedge y$ are $\bar{x} = -x$ and $\bar{x} \wedge \bar{y} = -x \wedge y$, respectively.

The natural inner product between x and y in $Cl_{0,m}$, denoted by $\langle x, y \rangle$, is the complex number $\sum_S x_S y_S$, where $x = \sum_S x_S e_S, x_S \in \mathbb{C}$ and $y = \sum_S y_S e_S, y_S \in \mathbb{C}$. The norm associated with this inner product is

$$|x| = \langle x, x \rangle^{1/2} = \left(\sum_S |x_S|^2\right)^{1/2}.$$

For $p = 1$ and 2, the Clifford-valued modules $L^p(\mathbb{R}^m; Cl_{0,m})$ are defined by

$$L^p(\mathbb{R}^m; Cl_{0,m}) := \left\{ f : \mathbb{R}^m \to Cl_{0,m} \mid \|f\|^p_{L^p(\mathbb{R}^m; Cl_{0,m})} = \int_{\mathbb{R}^m} |f(x)|^p d \bar{x} < \infty \right\}.$$

For two Clifford-valued signals $f, g \in L^2(\mathbb{R}^m; Cl_{0,m})$ can be equipped with a Hermitian inner product,

$$\langle f, g \rangle_{L^2(\mathbb{R}^m; Cl_{0,m})} := Sc \left[\int_{\mathbb{R}^m} f(x) \overline{g(x)} d \bar{x} \right] \quad (2.1)$$

whose associated norm is

$$\|f\|_{L^2(\mathbb{R}^m; Cl_{0,m})} := \left(\int_{\mathbb{R}^m} |f(x)|^2 d \bar{x}\right)^{1/2}.$$

In this paper, we study the signals which are defined in \mathbb{R}^m taking values in \mathbb{R}^m_1. That is

$$f(x) : \mathbb{R}^m \to \mathbb{R}^m_1,$$

$$f(x) = f_0(x) + f_1(x)e_1 + f_2(x)e_2 + \cdots + f_m(x)e_m,$$

where $f_i(x), i = 1, 2, \ldots, m$ is real-valued functions.

For any signal $f(x) \in (\mathbb{R}^m, \mathbb{R}^m_1)$, we have the polar form [31]:

$$f(x) = f_0(x) + f_1(x)e_1 + f_2(x)e_2 + \cdots + f_m(x)e_m$$

$$= |f(x)| e^{\theta(x)} \rho(x),$$

$$= \rho(x) e^{i\theta(x)},$$

where $\rho(x)$ and $\theta(x)$ are real-valued functions.
with amplitude
\[\rho(x) := |f(x)| = \sqrt{f_0^2(x) + f_1^2(x) + \cdots + f_m^2(x)} \]
and orientation
\[u(x) := \frac{f_1(x)e_1 + f_2(x)e_2 + \cdots + f_m(x)e_m}{\sqrt{f_1^2(x) + f_2^2(x) + \cdots + f_m^2(x)}} \]
belongs to the unit sphere \(S^{m-1} := \{x \in \mathbb{R}^m \mid |x|^2 = 1\} \) of \(m \)-dimensional Euclidean space \(\mathbb{R}^m \). The phase angle is
\[\theta(x) := \arctan \frac{\sqrt{f_1^2(x) + f_2^2(x) + \cdots + f_m^2(x)}}{f_0(x)} \in [0, \pi] \]
and the phase vector is \(e^{i u(x) \theta(x)} \).

3. Fourier transform of hypercomplex signals
If \(f \in L^1(\mathbb{R}^m, Cl_{0,m}) \), the Fourier transform of \(f \) is defined by
\[F\{f\}(\xi) := \frac{1}{\sqrt{(2\pi)^m}} \int_{\mathbb{R}^m} e^{-i\langle x, \xi \rangle} f(x) dx \] (3.1)
where \(\langle x, \xi \rangle := x_1\xi_1 + \cdots + x_m\xi_m \) is the usual inner product in Euclidean space \(\mathbb{R}^m \) and the inverse Fourier transform by
\[f(x) = \frac{1}{\sqrt{(2\pi)^m}} \int_{\mathbb{R}^m} e^{i\langle x, \xi \rangle} F\{f\}(\xi) d\xi. \]

Note If \(f \in L^1(\mathbb{R}^m, \mathbb{R}^m) \), then \(F\{f\} \) is a complex para-vector valued.

Let \(f(x), g(x) \in L^2(\mathbb{R}^m, Cl_{0,m}) \), for
\[\langle f(x), g(x) \rangle = \text{Sc} \int_{\mathbb{R}^m} f(x)g(x) dx. \]
the well-known Plancherel Theorem holds
\[\text{Sc} \left[\int_{\mathbb{R}^m} f(x)\overline{g(x)} dx \right] = \text{Sc} \left[\int_{\mathbb{R}^m} F\{f\}(\xi)\overline{F\{g\}(\xi)} d\xi \right]. \]

In particular, for \(f = g \in L^2(\mathbb{R}^m, \mathbb{R}^m) \), the Parseval Theorem is obtained:
\[\int_{\mathbb{R}^m} |f(x)|^2 dx = \int_{\mathbb{R}^m} |F\{f\}(\xi)|^2 d\xi. \] (3.2)

Next, we prove the following partial derivative properties.

Lemma 3.1 Let \(f(x) \) be a real para-vector-valued signal. If \(f(x) \) and \(\frac{\partial f(x)}{\partial x_k} \in L^1(\mathbb{R}^m) \) for \(k = 1, \ldots, m \), then
\[F \left\{ \frac{\partial}{\partial x_k} f(x) \right\}(\xi) = i\xi_k F\{f\}(\xi). \] (3.3)
Proof Applying the integration by parts and complex value $-i u_k$ can be commutative with any para-vector-valued signals, we obtain
\[
F \left\{ \frac{\partial}{\partial x_k} f(x) \right\}(\xi) = \frac{1}{\sqrt{(2\pi)^m}} \int_{\mathbb{R}^m} \left[\frac{\partial}{\partial x_k} f(x) \right] e^{-i \langle x, \xi \rangle} dx
\]
\[
= \frac{1}{\sqrt{(2\pi)^m}} \int_{\mathbb{R}^m} (-i \xi_k) f(x) e^{-i \langle x, \xi \rangle} dx
\]
\[
= i \xi_k F\{f\}(\xi).
\]
\[\Box\]

Lemma 3.2 Let $f(x)$ be a real para-vector-valued signal. If $\frac{\partial f}{\partial x_k} \in L^2(\mathbb{R}^m)$ for $k = 1, \ldots, m$, then
\[
\int_{\mathbb{R}^m} \xi_k^2 |F\{f\}(\xi)|^2 d\xi = \int_{\mathbb{R}^m} \left| \frac{\partial}{\partial x_k} f(x) \right|^2 dx. \tag{3.4}
\]

Proof Applying (3.3) in Lemma 3.1 and Parseval Theorem of Fourier transform, we obtain
\[
\int_{\mathbb{R}^m} \xi_k^2 |F\{f\}(\xi)|^2 d\xi = \int_{\mathbb{R}^m} \left| \frac{\partial}{\partial x_k} f(x) \right|^2 dx
\]
\[
= \int_{\mathbb{R}^m} \left| F \left\{ \frac{\partial}{\partial x_k} f(x) \right\}(\xi) \right|^2 d\xi
\]
\[
= \int_{\mathbb{R}^m} \left| \frac{\partial}{\partial x_k} f(x) \right|^2 dx.
\]
\[\Box\]

4. Uncertainty principles

In the following, we explicitly prove and generalize the latest result about the stronger uncertainty principle with absolute covariance to real para-vector-valued signals. We also give sufficient and necessary conditions such that they minimize the uncertainty product.

Before this, we need the following propositions.

Proposition 4.1 For any real para-vector-valued signal $f(x) = A(f)(x)e^{u(x)\theta(x)}$, if $\frac{\partial}{\partial x_k} u(x)$ exists for $k = 1, 2, \ldots, m$, then
\[
\text{Sc} \left[\left(\frac{\partial}{\partial x_k} u(x) \right) u(x) \right] = 0. \tag{4.1}
\]

Proof For
\[
u(x) = \frac{f_1(x)e_1 + f_2(x)e_2 + \cdots + f_m(x)e_m}{\sqrt{f_1^2(x) + f_2^2(x) + \cdots + f_m^2(x)}},
\]
we have $u^2(x) = -1$. By calculation directly, we have

$$0 = \frac{\partial}{\partial x_k} u^2(x)$$

$$= \left(\frac{\partial}{\partial x_k} u(x) \right) u(x) + u(x) \left(\frac{\partial}{\partial x_k} u(x) \right)$$

$$= \left(\frac{\partial}{\partial x_k} u(x) \right) u(x) + \left(\frac{\partial}{\partial x_k} u(x) \right) u(x)$$

$$= 2 \text{Sc} \left(\left(\frac{\partial}{\partial x_k} u(x) \right) u(x) \right).$$

This completes the proof. □

Proposition 4.2 For any real para-vector-valued signal $f(x) = \rho(x) e^{u(x)\theta(x)}$, if $\frac{\partial}{\partial x_k} e^{u(x)\theta(x)}$ exists for $k = 1, 2, \ldots, m$, then

$$\text{Sc} \left[\left(\frac{\partial}{\partial x_k} e^{u(x)\theta(x)} \right) e^{-u(x)\theta(x)} \right] = 0. \quad (4.2)$$

Proof Applying the generalized Euler formula, we have

$$e^{u(x)\theta(x)} = \cos \theta(x) + u(x) \sin \theta(x).$$

By calculation directly, we have

$$\frac{\partial}{\partial x_k} e^{u(x)\theta(x)}$$

$$= - \sin \theta(x) \frac{\partial \theta(x)}{\partial x_k} + \frac{\partial u(x)}{\partial x_k} \sin \theta(x) + u(x) \cos \theta(x) \frac{\partial \theta(x)}{\partial x_k}.$$

Therefore,

$$\left(\frac{\partial}{\partial x_k} e^{u(x)\theta(x)} \right) e^{-u(x)\theta(x)}$$

$$= \left(- \sin \theta(x) \frac{\partial \theta(x)}{\partial x_k} + \frac{\partial u(x)}{\partial x_k} \sin \theta(x) + u(x) \cos \theta(x) \frac{\partial \theta(x)}{\partial x_k} \right) \left(\cos \theta(x) - u(x) \sin \theta(x) \right)$$

$$= \frac{\partial \theta(x)}{\partial x_k} u(x) + \frac{\partial u(x)}{\partial x_k} \sin \theta(x) \cos \theta(x) - \frac{\partial u(x)}{\partial x_k} u(x) \sin^2 \theta(x). \quad (4.3)$$

Clearly, the scalar part of the multiplication of $\left(\frac{\partial}{\partial x_k} e^{u(x)\theta(x)} \right)$ and $e^{-u(x)\theta(x)}$ is decided by the scalar part of

$$- \frac{\partial u(x)}{\partial x_k} u(x) \sin^2 \theta(x).$$

Due to Proposition 4.1, we have

$$\text{Sc} \left[\left(\frac{\partial}{\partial x_k} e^{u(x)\theta(x)} \right) e^{-u(x)\theta(x)} \right] = 0.$$

This completes the proof. □
Remark 4.1 In one-dimensional cases, for signal \(f(x) = \rho(x)e^{i\theta(x)} \), it is easy to see that
\[
\left(\frac{\partial}{\partial x} e^{i\theta(x)} \right) e^{-i\theta(x)} = i\theta'(x).
\]

Remark 4.2 From formulas (4.2) and (4.3), we find that the multiplication of \(\left(\frac{\partial}{\partial x_k} e^{u(x)\theta(x)} \right) \) and \(e^{-u(x)\theta(x)} \) has two parts: the vector part and the bi-vector part. Therefore, we have
\[
\left(\frac{\partial}{\partial x_k} e^{u(x)\theta(x)} \right) e^{-u(x)\theta(x)} + \left(\frac{\partial}{\partial x_k} e^{u(x)\theta(x)} \right) e^{-u(x)\theta(x)} = 0.
\]

Proposition 4.3 For any real para-vector-valued signal \(f(x) = \rho(x)e^{u(x)\theta(x)} \), if \(\frac{\partial}{\partial x_k} f(x) \) exists for \(k = 1, 2, \ldots, m \), then
\[
\left| \frac{\partial}{\partial x_k} f(x) \right|^2 = \left(\frac{\partial}{\partial x_k} \rho(x) \right)^2 + \rho^2(x) \left(\frac{\partial}{\partial x_k} e^{u(x)\theta(x)} \right) \left(e^{-u(x)\theta(x)} \right)^2.
\]

Proof For \(f(x) = \rho(x)e^{u(x)\theta(x)} \), we have
\[
\frac{\partial}{\partial x_k} f(x) = \frac{\partial}{\partial x_k} \left[\rho(x)e^{u(x)\theta(x)} \right] = \left(\frac{\partial}{\partial x_k} \rho(x) \right) e^{u(x)\theta(x)} + \rho(x) \frac{\partial}{\partial x_k} \left(e^{u(x)\theta(x)} \right).
\]

Therefore,
\[
\left| \frac{\partial}{\partial x_k} f(x) \right|^2 = \left(\frac{\partial}{\partial x_k} \rho(x) \right)^2 + \rho^2(x) \left(\frac{\partial}{\partial x_k} e^{u(x)\theta(x)} \right) \left(e^{-u(x)\theta(x)} \right)^2.
\]

By Remark 4.2, we have
\[
\frac{\partial}{\partial x_k} \left(e^{u(x)} \right) e^{-u(x)} + \frac{\partial}{\partial x_k} \left(e^{u(x)} \right) e^{-u(x)} = 0.
\]

While,
\[
\rho^2 \frac{\partial}{\partial x_k} \left(e^{u(x)} \right) \frac{\partial}{\partial x_k} \left(e^{u(x)} \right) = \rho^2 \frac{\partial}{\partial x_k} \left(e^{u(x)} \right) e^{-u(x)} \frac{\partial}{\partial x_k} \left(e^{u(x)} \right) e^{-u(x)}
\]
\[
= \rho^2 \left| \frac{\partial}{\partial x_k} \left(e^{u(x)} \right) e^{-u(x)} \right|^2.
\]

This completes the proof.

Clearly, using (3.4) and (4.4), we have
Applying formula (4.5), we have

\[
\int_{\mathbb{R}^m} \xi_k^2 |F\{f\}(\xi)|^2d\xi = \int_{\mathbb{R}^m} \left[\frac{\partial}{\partial x_k} \rho(x) \right]^2 dx + \int_{\mathbb{R}^m} \rho^2(x) \left[\frac{\partial}{\partial x_k} e^{u(x)\theta(x)} \right] \left(e^{-u(x)\theta(x)} \right) dx.
\]

Remark 4.3 (4.5) is an effective formula to compute \(\int_{\mathbb{R}^2} \xi_k^2 |F\{f\}(\xi)|^2d\xi \). Using this formula, we can avoid computing the Fourier transform of \(f(x) \).

Due to Remark 4.1, in classical cases, we have [13]:

\[
s_{\infty}^2 = \int_{-\infty}^\infty \rho^2(x)dx + \int_{-\infty}^\infty \rho^2(x)\theta^2(x)dx.
\]

Theorem 4.2 (Uncertainty Principle in spatial case) Let \(f(x) \) be a real para-vector-valued signal with \(\|f(x)\|_2 = 1 \). If \(x_k f \) and \(\frac{\partial f}{\partial x_k} \in L^2(\mathbb{R}^m) \) for \(k = 1, \ldots, m \), then

\[
\left(\int_{\mathbb{R}^m} x_k^2 |f(x)|^2 dx \right) \left(\int_{\mathbb{R}^m} \xi_k^2 |F\{f\}(\xi)|^2 d\xi \right) \geq 1 + \text{COV}_{x_k\xi_k}^2.
\]

where the absolute covariance of every variable is defined by

\[
\text{COV}_{x_k\xi_k} := \int_{\mathbb{R}^m} x_k \left(\frac{\partial}{\partial x_k} e^{u(x)\theta(x)} \right) e^{-u(x)\theta(x)} \left| \rho^2(x) \right| dx.
\]

The equality (4.6) holds if and only if

\[
f(x) = e^{-\frac{\alpha_1^2}{2} x_1^2 - \cdots - \frac{\alpha_m^2}{2} x_m^2} e^{u(x)\theta(x)}
\]

and

\[
\left| \left(\frac{\partial}{\partial x_k} e^{u(x)\theta(x)} \right) e^{-u(x)\theta(x)} \right| = \beta_k |x_k|.
\]

Here \(\alpha_k > 0 \) and \(\beta_k > 0 \) for \(k = 1, \ldots, m \).

Proof Applying formula (4.5), we have

\[
\begin{align*}
\left(\int_{\mathbb{R}^m} x_k^2 |f(x)|^2 dx \right) \left(\int_{\mathbb{R}^m} \xi_k^2 |F\{f\}(\xi)|^2 d\xi \right) \\
= \left(\int_{\mathbb{R}^m} x_k^2 \rho^2 dx \right) \left(\int_{\mathbb{R}^m} \left[\frac{\partial}{\partial x_k} \rho(x) \right]^2 dx + \int_{\mathbb{R}^m} \rho^2 \left(\frac{\partial}{\partial x_k} e^{u(x)\theta(x)} \right) \left(e^{-u(x)\theta(x)} \right) dx \right) \\
= \left(\int_{\mathbb{R}^m} x_k^2 \rho^2 dx \right) \left(\int_{\mathbb{R}^m} \left[\frac{\partial}{\partial x_k} \rho(x) \right]^2 dx \right) \\
+ \left(\int_{\mathbb{R}^m} x_k^2 \rho^2 dx \right) \left(\int_{\mathbb{R}^m} \rho^2(x) \left(\frac{\partial}{\partial x_k} e^{u(x)\theta(x)} \right) \left(e^{-u(x)\theta(x)} \right) dx \right)
\end{align*}
\]
Using Hölder inequality, we have

\[
\left(\int_{\mathbb{R}^m} x_k^2 \rho^2 \, dx \right) \left(\int_{\mathbb{R}^m} \left[\frac{\partial}{\partial x_k} \rho(x) \right]^2 \, dx \right) \geq \left(\int_{\mathbb{R}^m} x_k \rho \left[\frac{\partial}{\partial x_k} \rho(x) \right] \, dx \right)^2 \\
\geq \left(\int_{\mathbb{R}^m} \frac{1}{2} \frac{\partial}{\partial x_k} \left(\rho^2 x_k \right) \, dx - \int_{\mathbb{R}^2} \frac{1}{2} \rho^2 \, dx \right)^2 \\
= \frac{1}{4}.
\]

The first term of (4.8) is a perfect differential and integrates to zero. The second term gives one half since we assume the signal is unit energy.

Similarly, we have

\[
\left(\int_{\mathbb{R}^m} x_k^2 \rho^2 \, dx \right) \left(\int_{\mathbb{R}^m} \rho^2 \left(x \right) \left[\frac{\partial}{\partial x_k} e^{u(x)\theta(x)} \right] \left(e^{-u(x)\theta(x)} \right) \, dx \right) \geq \left(\int_{\mathbb{R}^m} x_k \rho \left[\frac{\partial}{\partial x_k} e^{u(x)\theta(x)} \right] \left(e^{-u(x)\theta(x)} \right) \rho^2 \, dx \right)^2 \\
= \text{COV}^2_{x_k\xi_k} .
\]

connecting (4.7)–(4.9), the inequality (4.6) holds.

Next, we deduce the conditions under which the equation holds in (4.6). The equation in (4.8) holds if and only if

\[
\frac{\partial}{\partial x_k} \rho(x) = \pm \alpha_k x_k \rho(x) , \quad \text{where} \quad \alpha_k > 0.
\]

That is \(\rho(x) = e^{\pm \frac{u_k}{2} x_k^2} \).

For \(f(x) \in L^2(\mathbb{R}^m) \), then we choose \(\rho(x) = e^{-\frac{u_k}{2} x_k^2} \).

Clearly, the equation holds in (4.9) if and only if

\[
\left| \left(\frac{\partial}{\partial x_k} e^{u(x)\theta(x)} \right) e^{-u(x)\theta(x)} \right| = \beta_k |x_k| , \quad \beta_k > 0.
\]

This completes the proof.

\[\square \]

Corollary 4.1 Let \(f(x) \) be a real para-vector-valued signal with \(\| f(x) \|_{L^2} = 1 \). If \(x_k f(x) \) and \(\frac{\partial}{\partial x_k} f(x) \in L^2(\mathbb{R}^m) \) for \(k = 1, \ldots, m \), then

\[
\left(\int_{\mathbb{R}^m} x_k^2 |f(x)|^2 \, dx \right) \left(\int_{\mathbb{R}^m} \xi_k^2 |F\{f\}(u)|^2 \, du \right) \geq \frac{1}{4} + \text{COV}^2_{x_k \xi_k} .
\]

where the covariance for every variable is defined by

\[
\text{COV}_{x_k \xi_k} := \int_{\mathbb{R}^m} x_k \left(\frac{\partial}{\partial x_k} e^{u(x)\theta(x)} \right) e^{-u(x)\theta(x)} \rho^2(x) \, dx .
\]

Theorem 4.3 (Uncertainty Principle in directional case) Let \(f(x) = |f(x)|e^{u(x)\theta(x)} \) be a real para-vector-valued signal with \(\| f \|_{L^2} = 1 \). If \(x_k f(x) \), \(\frac{\partial}{\partial x_k} f(x) \in L^2(\mathbb{R}^m) \), for
\[k = 1, 2, \ldots, m, \text{ then } \]
\[\left(\int_{\mathbb{R}^m} |x|^2 |f(x)|^2 \, dx \right) \left(\int_{\mathbb{R}^m} |\xi|^2 |F(f)\xi|^2 \, d\xi \right) \]
\[\geq \frac{m^2}{4} + \text{COV}^2 \frac{\xi}{2}, \quad (4.11) \]

where the absolute covariance in directional case is
\[\text{COV}_{\xi} := \sum_{k=1}^{m} \text{COV}_{x_k \xi_k}. \]

The equality (4.11) holds if and only if
\[f(x) = e^{-\frac{\|x\|^2}{2}} e^{\mu(x)\theta(x)} \]
and
\[\left| \left(\frac{\partial}{\partial x_k} e^{\mu(x)\theta(x)} \right) e^{-\mu(x)\theta(x)} \right| = \beta |x_k|. \]
Here \(\alpha > 0 \) and \(\beta > 0 \).

Proof

Applying (3.4) and (4.4), we have
\[\left(\int_{\mathbb{R}^m} |x|^2 |f(x)|^2 \, dx \right) \left(\int_{\mathbb{R}^m} |\xi|^2 |F(f)\xi|^2 \, d\xi \right) \]
\[= \left(\int_{\mathbb{R}^m} \sum_{k=1}^{m} |x_k|^2 \rho^2 \, dx \right) \left(\int_{\mathbb{R}^m} \sum_{k=1}^{m} |\xi_k|^2 |F(f)\xi_k|^2 \, d\xi \right) \]
\[= \left(\int_{\mathbb{R}^m} \sum_{k=1}^{m} |x_k|^2 \rho^2 \, dx \right) \left(\int_{\mathbb{R}^m} \sum_{k=1}^{m} \left| \frac{\partial}{\partial x_k} f(x) \right|^2 \, dx \right) \]
\[= \left(\int_{\mathbb{R}^m} \sum_{k=1}^{m} |x_k|^2 \rho^2 \, dx \right) \left(\int_{\mathbb{R}^m} \sum_{k=1}^{m} \left[\frac{\partial}{\partial x_k} \rho(x) \right]^2 \, dx \right) \]
\[\geq \left(\int_{\mathbb{R}^m} \sum_{k=1}^{m} \left[\frac{\partial}{\partial x_k} \rho(x) \right]^2 \, dx \right) \left(\frac{1}{2} \left(\sum_{k=1}^{m} \left[\frac{\partial}{\partial x_k} \rho(x) \right]^2 \right) \right)^2 \]
\[\geq m^2 \frac{2}{4} = \frac{m^2}{4}. \]
Complex Variables and Elliptic Equations

(4.8) is used in the last step. Similarly, we have
\[
\left(\int_{\mathbb{R}^m} x_k^2 \rho^2 \, dx \right) \left(\int_{\mathbb{R}^m} \sum_{k=1}^{m} \rho^2(x) \left| \frac{\partial}{\partial x_k} e^{u(x) \theta(x)} \right| e^{-u(x) \theta(x)} \right)^2 \, dx \\
\geq \left(\sum_{k=1}^{m} \int_{\mathbb{R}^m} x_k \left(\frac{\partial}{\partial x_k} e^{u \theta} \right) e^{-u \theta} \right)^2.
\]

Similarly, like Theorem 4.2, the equality (4.11) holds if and only if
\[
f(x) = e^{-\frac{u}{2} |x|^2} e^{u(x) \theta(x)} \quad \text{and} \quad \left| \left(\frac{\partial}{\partial x_k} e^{u(x) \theta(x)} \right) e^{-u(x) \theta(x)} \right| = \beta |x_k|.
\]
Here \(\alpha > 0 \) and \(\beta > 0 \). This completes the proof. \(\square \)

Corollary 4.2 Let \(f(x) = |f(x)| e^{u(x) \theta(x)} \) be a real para-vector-valued signal with \(\|f\|_{L^2} = 1 \). If \(x_k f(x), \frac{\partial}{\partial x_k} f(x) \in L^2(\mathbb{R}^m) \), for \(k = 1, 2, \ldots, m \) then
\[
\left(\int_{\mathbb{R}^m} |x|^2 |f(x)|^2 \, dx \right) \left(\int_{\mathbb{R}^m} |\xi|^2 |F\{f\}(\xi)|^2 \, d\xi \right) \\
\geq \frac{m^2}{4} + \left| \text{Cov}_{x,\xi} \right|^2,
\]
where the covariance in directional case is
\[
\text{Cov}_{x,\xi} := \sum_{k=1}^{m} \text{Cov}_{x_k,\xi_k}.
\]

5. Example

Example 5.1 Consider a real para-vector-valued signal of unit energy
\[
f(x) = \left(\frac{\alpha}{\pi} \right)^{-\frac{m}{2}} e^{-\frac{\alpha}{2} |x|^2} e^{u \frac{|x|^2}{2}},
\]
where \(\alpha \) is a positive real number and \(u \in S^m \) is a vector-valued constant.

Computing directly, we have
\[
\int_{\mathbb{R}^m} x_k^2 |f(x)|^2 \, dx = \left(\frac{\alpha}{\pi} \right)^{-\frac{m}{2}} \int_{\mathbb{R}^m} x_k^2 e^{-\alpha |x|^2} \, dx \\
= \frac{1}{2\alpha},
\]
and
\[
\int_{\mathbb{R}^m} \xi_k^2 |F\{f\}(\xi)|^2 \, d\xi = \int_{\mathbb{R}^m} \left(\frac{\partial}{\partial x_k} \rho \right)^2 \, dx + \int_{\mathbb{R}^2} \rho^2 \left| \left(\frac{\partial}{\partial x_k} e^{u \theta} \right) \right|^2 \, dx \\
= \left(\frac{\alpha}{\pi} \right)^{-\frac{m}{2}} \alpha^2 \int_{\mathbb{R}^m} x_k^2 e^{-\alpha |x|^2} \, dx + \left(\frac{\alpha}{\pi} \right)^{-\frac{m}{2}} \int_{\mathbb{R}^m} x_k^2 e^{-\alpha |x|^2} \, dx \\
= \frac{\alpha}{2} + \frac{1}{2\alpha}.
\]
It is easy to see that \(\text{Cov}_{x_k \xi_k} = \frac{u}{2\alpha} \), \(\text{COV}_{x_k \xi_k} = \frac{1}{2\alpha} \), \(k = 1, 2, \ldots, m \). Then
\[
\left(\int_{\mathbb{R}^m} x_k^2 |f(x)|^2 dx \right) \left(\int_{\mathbb{R}^m} \xi_k^2 |F\{f\}(\xi)|^2 d\xi \right) = \frac{1}{4} + \frac{1}{4\alpha^2}
\]
\[
= \frac{1}{4} + \left(\frac{1}{2\alpha} \right)^2 = \frac{1}{4} + \text{cov}_{x_1 \xi_1}
\]
\[
= \frac{1}{4} + \left| \frac{u}{2\alpha} \right|^2 = \frac{1}{4} + |\text{Cov}_{x_1 \xi_1}|^2
\]
and
\[
\left(\int_{\mathbb{R}^m} |x|^2 |f(x)|^2 dx \right) \left(\int_{\mathbb{R}^m} |\xi|^2 |F\{f\}(\xi)|^2 d\xi \right) = \frac{m^2}{4} + \frac{m^2}{4\alpha^2}
\]
\[
= \frac{m^2}{4} + \left(\frac{m}{2\alpha} \right)^2 = \frac{m^2}{4} + \text{COV}_{x \xi}
\]
\[
= \frac{m^2}{4} + \left| \frac{mu}{2\alpha} \right|^2 = \frac{m^2}{4} + \left| \text{Cov}_{x \xi} \right|^2.
\]

Note that, in this case, the stronger forms of uncertainty principle of Theorems 4.2 and 4.3 become equalities. In fact, \(|(\frac{\partial}{\partial x_k} u(x) \theta(x)) e^{-u(x) \theta(x)}| = |u_k| \), which satisfies the conditions as given in (4.6) and (4.11).

Example 5.2 Consider a real para-vector-valued signal of unit energy
\[
f(x) = \left(\frac{\alpha}{\pi} \right)^m e^{-\frac{|x|^2}{2}} e^{\beta_1 x_1 e_1},
\]
where \(\alpha \) is a positive real number and \(\beta_1 \in \mathbb{R} \).

By Example 5.1, we have
\[
\int_{\mathbb{R}^m} x_k^2 |f(x)|^2 dx = \left(\frac{\alpha}{\pi} \right)^m \int_{\mathbb{R}^m} x_k^2 e^{-\alpha|x|^2} dx
\]
\[
= \frac{1}{2\alpha}.
\]
(5.1)

By direct calculation, we have
\[
\int_{\mathbb{R}^m} \xi_k^2 |F\{f\}(\xi)|^2 d\xi = \int_{\mathbb{R}^m} \left(\frac{\partial}{\partial x_1} \rho \right)^2 dx + \int_{\mathbb{R}^m} \rho^2 \left| \left(\frac{\partial}{\partial x_1} e^{u_0} \right) e^{-u_0} \right|^2 dx
\]
\[
= \left(\frac{\alpha}{\pi} \right)^m \frac{\alpha^2}{2} \int_{\mathbb{R}^m} x_1^2 e^{-\alpha|x|^2} dx + \left(\frac{\alpha}{\pi} \right)^m \beta_1^2 \int_{\mathbb{R}^m} e^{-\alpha|x|^2} dx
\]
\[
= \frac{\alpha}{2} + \beta_1^2
\]
and for \(k = 2, \ldots, m \), we have
\[
\int_{\mathbb{R}^m} \xi_k^2 |F(f)(\xi)|^2 d\xi = \int_{\mathbb{R}^m} \left(\frac{\partial}{\partial x_k} \rho \right)^2 dx + \int_{\mathbb{R}^m} \rho^2 \left| \frac{\partial}{\partial x_k} e^{\alpha y} \right|^2 dx \\
= (\frac{\alpha}{\pi})^\frac{m}{2} \alpha^2 \int_{\mathbb{R}^m} \xi_k^2 e^{-\alpha |\xi|^2} dx \\
= \frac{\alpha}{2}. \tag{5.3}
\]

Clearly, we have Cov_{x_k \xi_k} = 0, for \(k = 1, 2, \ldots, m\), and COV_{x_1 \xi_1} = \frac{\beta_1}{\sqrt{\pi \alpha}}. \text{ COV}_{x_k \xi_k} = 0 \text{ for } k = 2, \ldots, m.

Therefore, we have
\[
\left(\int_{\mathbb{R}^m} |x|^2 |f(x)|^2 dx \right) \left(\int_{\mathbb{R}^m} \xi_1^2 |F(f)(\xi)|^2 d\xi \right) \\
= 1 + \frac{\beta_1^2}{2 \alpha} \\
> \frac{1}{4} + \frac{\beta_1^2}{\pi \alpha} = \frac{1}{4} + \text{COV}_{x_1 \xi_1}^2 \\
> \frac{1}{4} = \frac{1}{4} + |\text{Cov}_{x_1 \xi_1}|^2 \tag{5.4}
\]

and for \(k = 2, \ldots, m\)
\[
\left(\int_{\mathbb{R}^m} x_k^2 |f(x)|^2 dx \right) \left(\int_{\mathbb{R}^m} \xi_k^2 |F(f)(\xi)|^2 d\xi \right) \\
= \frac{1}{4} \\
= \frac{1}{4} + \text{COV}_{x_k \xi_k}^2 \\
= \frac{1}{4} + |\text{Cov}_{x_k \xi_k}|^2. \tag{5.5}
\]

Expressions (5.4) and (5.5) verify Theorem 4.2.

Applying (5.1)–(5.3), we have
\[
\int_{\mathbb{R}^m} |x|^2 |f(x)|^2 dx = \frac{m}{2 \alpha}, \\
\int_{\mathbb{R}^m} |\xi|^2 |F(f)(\xi)|^2 d\xi = \frac{m \alpha}{2} + \beta_1^2.
\]

Then
\[
\left(\int_{\mathbb{R}^m} |x|^2 |f(x)|^2 dx \right) \left(\int_{\mathbb{R}^m} |\xi|^2 |F(f)(\xi)|^2 d\xi \right) \\
= \frac{m^2}{4} + \frac{m}{2 \alpha} \beta_1^2 \\
> \frac{m^2}{4} + \frac{\beta_1^2}{\pi \alpha} = \frac{m^2}{4} + \text{COV}_{\xi \xi}^2 \\
> \frac{m^2}{4} = \frac{m^2}{4} + |\text{Cov}_{\xi \xi}|^2. \tag{5.6}
\]
Here $\text{Cov}_{\xi} x = 0$ and $\text{COV}_{\xi} x = \frac{|\beta_1|}{\sqrt{\pi \alpha}}$ (5.6) verifies Theorem 4.3.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by Macao Science and Technology Development Fund, MSAR. Ref. 018/2014/A1; Macao Government FDCT 098/2012/A3; and University of Macau Multi-Year Research [grant number (MYRG) MYRG116(Y1-L3)-FST13-QT].

References

