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SI. Pointwise and Weak—type Estimates

Denote M{R*), M[R* x R*) as the space of Lebesque measurable functions defined on R*, R
x R*, respectively. Let L:H — M{R* x R*) be a linear operator defined on H, which is a linear

subspace of M{R"). There exist the follwing conditions on L and H:
i) If U is a convex open set in R*, x, ye U and ae H, then y,-acH, and

Ua)(x y) = Lixya}ix. y),

where y; denotes the characteristic function of set U.
it} There exists an operator G: H — M(R*), such that for every open set ¥ < R,

Glxva) = xvGla).
iii) Denote Q as a cube in R, its sides are parallel to the axes, Al as the Hardy-Littlewood
maximal function of |f], re[l, ), and A (f) = |if]lw- Let 2Q be the double of , and

_ 1 -y B
Aa, z,y) = P ) L g AaNey) — Hajisg)lds
ya2Q

Bla, x, y}) = sup — 0] -[ i |L(a (x,y) — L{a)(y. t}|dt.

3x
ya2@

Then for a certain re(l,00], and every aeH, b= G(ﬂ),

ALa)(z () < CAABNE)  ac. (1.1
ALY () < CALAB)H)  ae. (1.2
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AfA(ax)(z) < CAAB)E)  ae. (1.3)

A(Bla,x, )x) < CA{A(B))lx)  ae. (1.4)

in which the constants C are independent of a.
Let function Ke C(R*\{0}), we shall refer to the following inequalities as the standard

estimates (on the kernel K):

iv) For every x # 0,

K(2)] < L K< (1.5)

Ein £

where ( are constans,

Denote

TepW = | Uae)Kix —b)

|x — ¥| > &

there exist the following conditions:
v) For a certain pair of p, E(]., ::t:r), ry E(l, o0 | such that q;l =p1_1 + rfl E(l, m), and for
every f€ L"I(R"), every aef, b = Gla), e€(0, ),

| Tdas g, < ClblL, - 1, (1.6)

where the constant C is independent of &.

vi) With the notation as in v), the limite

T(a, iz} = lim T a, =)

g—0

exists a.e., and
I T(@Alg, < ClIbl, 1,5 (L7)

( is a constant.
Our main theorem isﬂ_as follows.
Theorem 1. With the notation as above, there follow
1°. With the conditions i), i), (1.1}, (1.3), iv) and one of two conditions v) and vi) we have

M(a./)e) = supITas el < OATIa )+ Ary AaONRAL N 2

Where py, q,, 1y are as inv) T(a,f) isasinvi)orisa weak-star accomulation point of the bounded

family of continuous linear functionals {Tfa,f)}e>0 © [L"i)*.
2°, Suppose the extra conditions (1.2), (1.4) are satisfied besides all the conditions in 1°, then

for po:1=pg' + rrY, or s as in 1, fe LPo(R¥), we nave

1o, 115,
e

[{xe R*: M(a,/){x) > A}l < C

3°. With r. = 0 in 1°, then for g€ (1, q,). f& LAR¥), there exists | M(a.f)ll; < €101, TP

i e - N
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the constants Cin 1°,2° , 3° depend only on the dimension k and the constants appearing in iit)—
vi).

Proof. Since 1° implies the weak-type (p,, q,) of M(a,.) see [2], remark 1), then 3° follows
from 1°, 2° and Marcinkiewicz interpolation theorem. So we only need to prove 1° and 2°

Proof of 1°. Suppose that the condition v) is satisfied. If otherwise the condition vi) is

satisfied, the proof is even simpler. Fix x€ R*, § (0, o0), denote x5 = ¥s(x. 5 where S(x, 6} denotes
the ball of center x and radius &, then for EE(O, 5), we have

Tda.f — zaf) = Tsla.f — xaf). (1.8)

By Banach - Alaoglu theorem, there is a sequence &, such that lim &, = 0, and for all fe L* 1(RY),
T, (a./) converges weak-star to a T{a, fle LY(R*), and

| T(a, M, < CUl,, 1A,

Passing to the limit £ = &, — 0 in (1.8), we have

T({I,f— xdﬂ = T&(ﬂ‘!f_ xrlf):-

and therefore, for teS{x,8/2), a.e. x,

Ty(a, Y8 — T(a ) + Ta 20
j FO)La) () K(x — 3) — Lla)(es 9Kt — y)dy

| — y|>é
2
[ 7605, A hi
| — y| > &

-

, = Ha)(x, 7)(K(x — 3) — K(t — )\
A, = (Ha)(x.5) — Lia)e y)K(t — y).

Because for |[x — y| > 8, |t — x| < §/2 the condition iv) gives that

|KI:1: —;y) —K(t —y)i < Co|lx —y| 7%

1A,] < COILa)(x 3)llx — yI L.

where

we have

Together with

8y < 822 o) — 9) = Uae s — 517+

there follows

I Tifan A < 1T(@. X0 + 1T(a, zaf YN
ro [ W, [ SN AMae) L) ),

lx_ |t+1 |.‘I—' Ik+1 |-‘¥"“¢|
lx—yl > & fz — > d
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Integrating both sides of the last inequality in ¢ over iz, 6/2) and dividing by |Xx, §/2)I, we get

T, A < Ar(Tla ) @) + C(|S(x,1c5f2)| f | T(a, xa/)0)\d!
5W)L(ﬂ)(m’)| SlAy)i Ala, %,3)
+ -*J. 5 |x y|k+l I |-T— |k+1 )

= A(Tla, ) + € 3. 1
For I, we have, by using (1.1}

.§ [ ol

2o <|x -y

¢} e j F0)Ua)x iy
<C Z 9 ((2i+ 1 5)& '[ |/ ()’ |nd3" ) ((zf +11 5)1 Jl jL(ﬂ)(x, y )lr’ dy );1-
< CA, (MB)EALN < CA ANDAL N no 19

By the same method we can obtain the same estimate for I5. To see I,, from the condition 1},

V e€(0, ), we have

M= | Le)Ke—)/bk

e<it—yl<éd

j Lixasa)(t- KTt - 9)10)dy

= T(x26 2 Xaf )t)-
Passing to the limite, there follows
Tanto /) = Tzsm /M) for £eS(x,8/2)

By using Hélder inequality, we have

It — %] < 8/2 lt — x| < /2

5* v
xaa,

& Ca-”ql " Xzab "r1 " x&f"ql % CArl(b)(x)Aplm(x) a.€.

Thus the proof of 1° is concluded.




252 {han Tao Li Chun

Proof of 2°. We need the following lemma (for the proof see [2]).
Lemma 1. [f S is a sublinear operator of weak t_}fpﬁ (Pos Qo). a sufficient condition that S is

g M epet — Go Lpo>p=1,is that for every sequece of
patrwise disjoint cubes (;, which satisfies the Whithey decomposition condition:

d{Q;) < l:hst(t?ﬂ,(U(_)iL < 4d(Q;) for every i,
and for every function h in L?(R*) having support in UQ; such that

also of weak-type (p, q), where p

Ih(x)dx =0  for every i,
Q;
the following estimate holds
[{xe R*: Qi S(h)(x) > A} < C(il 2],/ A)%, (1.10)

where (F = 2(Q),.
By applying Lemma 1 to the sublinear operator Ma, /), which is known to be of weak-type

(P1-q:), g1 > 1, g1 —p7t =", we need to show that the condition (1.10) 1s satisfied.

Let {0}, kELPﬂ(RJ‘) be as in Lemma 1, fix xER’“\{O} and £ > 0 , denote

I(x,€) = {i: 0, () S(x, &) = 0,
Jwoe) = {i: Qi) Sz 8) # 9, Q\Sx.¢) # ¢},

then

Tz(ﬂ=h)(x)=ii J‘ edy =y I---dy+ 3 f e dy,

iel{x, ) ief(x,e)

Qi\Slx. o) 2 QN . )
where each of the integrands is L{a)(x, y) K{x — y)A(y). By the property of Whitney decomposition
there are constants a, f > 0 such that for every ie Jx, £}, we have

c{y:ae < |y — a| < Be},

so that

3 j 1{a)(x.y) K(x. y)Hr)

ieJ(x.z)
{5 N, £}
anx,
< J Ha) {)1 hly)ldy
lx — ¥

e <ix ~ 3| < Be
1 1 ; 1
; Fp Pa

<C ( 2 f | L{a)(x, )| dy) (E—,; J Ih(y)l"“dy)
lx — v] = s | — ¥l = Be

< CA, (A, (B)}(2) A, (R)) (.11)
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where we have used r; = p,.

For 1 Ef(x, E) we will show that

J. dy| = A{x) € C9; llf[i)S;{)J |Aly)ldy + C9; J.lf(j,;i)l |h{y)ldy (1.12)
¢; Q; Q;

where d; = d({),). Let te(;, since j h(y} dy = 0, we have
0;

[ Holr)ts = 201 = |t ) ls — ) — el )KL~ o)
Q;

Q;

- J.h('y) é:l Afa,x,y, t)dy (1.13)
Q;

where

A, = HYa)(x y)(K(x — 5) — Kz — 4},

As = (HoMe,y) — Ua)e )K(x — 0
Integrating in ¢ over (J; both sides of (1.13), dividing by |(;|, as we did in the proof of 1° we get

(1.12).
From (1.11), (1.12), there follows

Mia, B(z) < CA, (AENDA(B)E) + 3. Adx)

The condition (1.10) will be satisfied if we show that

e R: A, (A BN, 1)) > 1)1 < 1A 2o (1.14)
and
[{xe R*\ | Q¥ i Afx) > A} € C ||b||"JhI'P”. (1.15)

For (1.14) see [2] Remark 1, it remains to show (1.15) only. In fact we have

18

1

]

f Afx) dx < ii '[ A{x)dx.

R )G RMQY

There exists a constant y, which depends only on the dimension %, such that if x e Q¥ ve,

then |x — y| > 76;. Thus, according to (1.2), (1.4), usin the same method in proving (1.9) we have
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[ abasc|( [ AN i) ngyay
Q;

RMQY i lx—yl >y

vel( ] Eseduons

Qi Iz — ¥ > yd,

<c j A(A B dy.

2;

Therefore,

D

E; J‘ Afx)dx < C jM(M(M)UﬂW}Idy < Clibdll,, Al

R Rk

The proof is thus finished.
Theorem 1 has the following extension:
Theorem 2. Suppose H;, L;, G;, and K are as in Th. 1, where t = 1, -+, n. Denoting a

= (a;, . a,), b=(Gy(ay), -, G){a,)) and
Ua)(x.y) = [T Lia)e.)
I, = IT Il,

A(AE)=) = TT A, (AL(B))),

r= (rl, f--,r,),

where r; s satisfy one of the following conditions:
1°. ¥ &, rie(l, m),

2ﬂ. V I., r,;= 0.

Ifforg:q” ' =p Z 1, for every i the conditions i) - iv) and one of v) and vi), which is

with respect to p; €(1, o), are satisfied, then the conclusions of Th. 1 kold in the case of p = p,,
ge(1, o) for the conclusion 1°, g =1 for the conclusion 2° and qe(l,q,), r;= 00 for the
conclusion 3°, respectively.

The proof of Th. 2 is similar to the proof of Th. 1. We only pnlnt out following medification.

. To deal with the difference

La)(x,y) — La)(t, )

we use the following formular:
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ilj:bi“iliai=j;(jj:ai)(bj_ﬂj)(,c=lf!,1b") with f[l“f= [l &=1.

= k=n+1

2°. Instead of using Holder inequality to two factors we use Holder inquality to n + 1 factors
each time, | |

Q)

I

where {2: R"{G} — & satisfies the conditions: Q is homogeneous of degree 0, bounded, and

Remark 1. The condition iv) can be substituted by the following condition: K{x)

0

|2 — ¥

, for |x — y| > 20.

1
|S(x, 6)|‘ J. |z — ) — Qe —y)lde < C

Six, &)

§II. Application, Higher Commutators

Theorem 3. with the notation as in Th. 2, let H; be the Space of the functions whose all

derivatives of order m; belong to L'{RF), G{a;) = Y. 18%a)], Lia)(x,y) = F;m‘(ﬂi’Tﬂf), where
1B) = m e

, . B
Pmi(ai,x, y) = afx) — )3 19 ;1)('7) (x — ¥ for mye Z, which is the set of positive integers, and
1Bl < m :

Pola;, x, ¥) = afx). Here K(x) = () (Y x) satisfies the conditions mentioned in Remark 1, and

Edo

satisfies 1°. Y — x) = (— 1™ *'QYx), |m| = Y my, or 2°. '[ Qx)x*do(x} = forV o such that
|| << Im|. Then the conclusions of Th. 2 hold.

Proof of Theorem 3. It is easy to see that for all i, conclusions 1), ii) are satisfied. vi) follows
from the main results of [4]. In order to use Th. 2 (exactly, Remark 1), we only need to examine

iil). The following lemma is needed.

Lemma 2. lT"(ﬂ’x’i:)i‘ < AAL({V™al)(x) + A ({V™al)y)), where me Z, and all the partial
r—X¥

derivatives of order m of ac M(R*) are locally integrable.
Proof. The argument is gimilar to [5], Lemma 5. In fact, there we obtain that

|Pafa x,:) | <I, +1,,
|x — i

where

1 [ |V™aly — ¢
Il ﬂ CE | It;?kf-l )l d&:

14t & 3e

1
I, € Cs_"' '[ lul™ " *|V"a(x — u)|du.

I§l € 2¢
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Using the method in proving (1.9), we obtain that
I, < CA((iV™al)y), I, < CA{(IV™al)(=).

By using the lemma, it is easy to prove (1.1), (1.2), so we only need to prove (1.3) and (1.4).

Proof of (1.3). For x,t€0, y€2Q, we have

]. |:l: — yl Pm(ﬂ'!x!y) Pm(a'! E’y) d

!
1Ol ) lx—tl | |2 — ¥[™ jti— ™
Q

1 [|x— ¥l 1 1
% = =~
10| ] Ix — ¢ [lx—y™ [t — 3|
Q

|\P{a,x,y)|dt

1 — 1
") lx — ¥l »
Q1 J2lx — ¢ |t — ¥l

|P{a, x,v) — Pufa.t,y)ld!

=1, + I,
where
I, < GAL(I9al)) + AL(IVal) o))

To see I,, using the formular

1
Pa,x,y) — Pula,t,y) = J. V. P.(a,x — s(x — t), y) (x — t)ds
0
and
vme(ﬂ, x, y) = P _1(?{1., x,y),

which is a vector valued equality, we have

W 4 g i
0 IQ:,;' Qr.s lz‘ P yl

where Q. =x — s(x — Q), xe Q...
Therefore

1 : m
I, < de.s O J (A (IV™al)(z) + Ay (|V™a|fy))dz

0 Qy.s

< QA (A (V™al))(z) + A, (IV™al)y))

and so A(a,x,y) have the same estimate. Hence for all Q; and each x€};, we conclude

1

(I_al_l I Ala, z, y)ﬂd;y)}l? < CAP(AI(I?'"EI)) (%)

2,
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Proof of (1.4). Now we use the vector valued inequality

Y, Pofa.x) = (m_l)(_\;( 5= g7 )mvﬂ(g),

there follows

Pa,y,x)— Pfa.y.t) = '[ — (i(m —éj)é-‘?:—j)m_l?a(é) (x — t)ds

F=x—s5{x—1I)

Therefore

I, € Cj ds ol '[l(V“a)(x — s{x — ())idt

< Cj;ds 1 Qisl f (V™a)(z)ldz

QJZ o ¥

< CA(IV™al)x).

The proof is thus finished.

Remark 2. Invirtue of condition v), in Th. 3, the extra condition 1° or 2° upon K(x) can be

substituted by some weaker conditions. For example, when z = 1, neither of the two conditions are
necessary (see [3]). -0

We turn to the higher commutators of multipher operators.

Let m = (my, -, my)€(Z|J{O})", & ={oy, - -, ) €(RYY,

R{™, = R, - R™

—u;g(é) g — o) — > ﬁﬂg{é)( A

| Bl < my ﬂ!

R?, &) = &lf — ), V i
Denote

M = {we Cm{R"\{ﬂ}]: V §,3 €; such that Iaﬁm(f“)l < Cﬂlﬁlf”'m},
and for a = (ul,---,ﬂ,), aEES(R"), define

Tmole W) = | & R, QGAAE — [ dade

{Rtl.nrl

where {i‘(m) = l_[ &;(czi], [a] = Z o;, doo = dat, --- da,, and denote m + 1 = (my + 1, oy, + 1),
i=1 i=1

we have

Theorem 4. If weM, | =im| = Z m;, then
i=1
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% [ Taim wgla. il < CH |V™ia,fl, - A1,
where g~ l—p_l+Zri ,p,q,rE( ) Y i

2°. fix |TR‘"'} m(.:j(ﬂ f)(x)| > A} < C n | V™ia; “ 1A

E=1

where 1 =p7 ' + n it ponie(l, ), Vi,
=1

3. 1 Tam o@la. N, < ‘Cﬂl:l1 | V™ia ) amo /1 s

where pe(l, ), and in every case C is a constant independent of a, f.
Proof. 1° is a known result ([6], Th. 1). To prove 2° choose ¢ € CJ{R*) such that supp ¢

= {1/2 <€ <2}, 2 @(271¢) = 1for & # 0. Let wy(¢) = %qc)qz-Ig), Ky = (wy)" , which

denotes the inverse Fourier transformation of wy. By a standard argument we get

C C
Kz}l < %+ IVE M=)l < T (2.1)

where C are independent of N,

Denote

TV(2.f) = T, ovo(a-f)
by a known result ([7]], Th. 1)

o) = | [ 2222 ke p)in - 5if0) o

From conclusion 1° of the theorem (1.7) holds for T3 and
T (a, f){x) = lim (T{")(a,/)(z), x€R", (2.2)
=0

so the condition vi) is satisfied. By using Th. 3 we obtain

c; IT1v™ai, 171, 23)

:_h-z-ib—l

{z: 1742, )(x)]| > A} <

where the constant C is independent of V.

From (2.2), we have

{2 | Ty ,an[f:}(ﬂ' N > 4} = U () {= 1T (a.f) =)l > 4},

i=1l N3

and thus the conclusion 2° holds.
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To prove 3°, first, we have

Rim3 P w(&) = 3 Cap R(Z5 P of)(— ') + R{Z, <),

= (my +1m 1)
<L g5 <n

(B = E mo(-a¥= ] (-2
S Y I#Ir
B=(8.-- ) J #i

- (2.4)
and then by using the induction on n we conclude that (1.7) holds for 7" ™) Sn, from Th, 3 we get
the weak-type estimate for the maximal operator of T§"* ", together with the property (2.1) of
kernel K{x). By using the same methed as in [5], 3° holds for T§" " ') with a constant independent
of N, then by Fatou' s lemma we conclude 3° for TRi™;,"Ya, /). [

A partial extension of Th. 4 is as follows.

Theorem 5. For we M and y,e(Z| ) {0}, i=1,2, such that I+ |y,| + |y;| = |ml,

Y1 € min {m,}, then exist
l€ign

1°.  ||é" TR‘{:E]ﬂm{.:j(ﬂ!a?Zf)"q £ C 11 IV™ia;l, - [1fll,» where p, ge(l, ), V i, r;e(l, o) or

Vi, n=0m0,q¢'=pty4 Z =t

f=1

. 1 . .
2°. W@ 1TR{MI= o@l@82f)(x)| > A} < }: 1__[ IV™iall,, Il where pell, o), Vi,

rie(l,o0)orV i,r,= 00,1 =p~ 1! 4 Z r; '. And in every case the constant C ts independent of a,
f B -
Proof. In the case of r;€(1, ), V ¢, the inequality in 1° is a known result {[6], Th. 2). For
the rest part of 1°, according to 3° of Th. 4 and equation (2.4), we have the inequality in y; = y,
= 0. By means of an induction on (y,, y,) (see [6], Th. 2) we obiain the inequality in general case.
To prove 2°, as before, we use the induction for the first case of r; with the starting inequality
iny; = ¥, = 0, which comes from 2° of Th. 4. For the second case of r;, when y; = 9, = 0, using 1°
to T{(a..), together with (2.1), we conclude that T4(a,.) is a Calderén-Zygmund operator, so the
weak-type inequality holds with a constant C independent of N. Passing to the limite N — oo, we

get the conclusion. For the general case we use the induction too.
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