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ABSTRACT. Vahlen matrices are used to study the conformal covariance of
various types of Hardy spaces over surfaces in euclidean space. These are
Hilbert spaces associated to monogenic function spaces. Particular emphesis
is made for the cases where the surfaces bound unbounded domains, partic-
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INTRODUCTION

Clifford analysis has its roots in various attempts to generalize one variable com-
plex analysis. This can be seen in the early work of Dixon ([10]), the later inde-
pendant works of Fueter ([11]), Moisil and Teodorescu ([22]), and others. Many of
the basic results can be found in the text of Brackx, Delanghe and Sommen ([5]).

More recently strong, and unexpected links have been discovered between
this subject, classical harmonic analysis and several complex variables; see for in-
stance [3), [9], [12], [17], (18], [20], [21], 22], [30], [35]. Also, quite considerable work
has been done recently on the links between Clifford analysis and the conformal
group, see for instance 4], [8], {16], (23], [28], {29]. This arose from the rediscov-
ery and development by Ahlfors ([1]) in the 1980’s of long forgotten work from
the turn of the century by Vahlen ([36]). In that work it is shown that arbitrary
Moebius transformations over Euclidean space can be expressed in much the same
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form as Moebius transformations in the complex plane, now using matrices of 2 x 2
matrices with Clifford algebra valued coefficents, satisfying some constraints.

This paper will build on the general theme developed in [8], [23], [28], [29].
The main thrust will be to show that some of the hard worked for results ob-
tained over Lipschitz graphs and domains in {17, [18] may be easily and elagantly
transformed via Vahlen matrices to conformally equivalent surfaces and domains.
A particular transformation to bear in mind here is the case where the Moebius
transformation is the Cayley transformation. In this case Lipschitz graphs are
transformed to perturbations of the sphere. It should be noted that the type of
monogenic functions defined on sector domains, and used in [17], [18] satisfy a ba-
sic inequality which makes them particularly suitable for study under conformal
transformations.

To set the stage we begin by looking at the interplay between Vahlen ma-
trices, and kernels acting over the L? spaces of sufficently smooth surfaces. We
briefly illustrate how most basic properties of these Hilbert spaces carry over iso-
metrically from one surface to any other surface which is conformally equivalent
to that surface. In particular we are able to construct an orthonormal basis of
functions on R"~' which extend to monogenic functions on upper and lower half
space in R". This gives rise to an alternative proof of the L? boundedness of
the singular Cauchy transform over R®~! which bypasses the use of the Fourier
transform. It also allows us to give an alternative description to that given in [20)
of the orthogonal decomposition of L?(R®~1) into appropriate Hardy spaces. In
the last section of the paper we turn to a slightly different topic, and show the
conformal invariance of special of manifolds lying in C". These real n-dimensional
manifolds are described in [29], and references therein. In [29] we show that these
manifolds are invariant under certain types of conformal transformations. There
we were forced to introduce certain artifical constraints. We present here a simple
argument to overcome this problem.

1. PRELIMINARIES

In this section we shall introduce some neccessary background material on Clifford
algebras and the conformal group. We shall consider the real 2" dimensional
Clifford algebra A, generated from R" equipped with a negative definite inner
product. We shall assume that R® C A,,. So that for each vector z € R” we have
that 22 = ~||2||2. Consequently, ife;,...,e, is an orthonormal basis for R®, then
we have the anti-commutation relationship e;e; + eje; = —28;;,where 6;; is the
Kroneker delta function. An extremely important point here for Clifford analysis
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is that each non-zero vector z € R™ is invertible in the algebra, with inverse z~!

given by —“f"-;. Up to the minus sign this corresponds to the Kelvin inverse of a
vector in euclidean space.

The reason for choosing the Clifford algebra with a negative definite inner
product rather than the Clifford algebra with a positive definite inner product is
so that we can facilitate the introduction of the covering group, Pin(n), of the
orthogonal group O(n). It may be observed that the algebra A, has as basis
elements the vectors 1,€1,...,€n,...,€j; ---€j.,.--,€1...€n, Where j1 < - < jp
and 1 € r € n. Consequently, A; = C, the complex field and A; = H, the
quaternionic division algebra. When n = 3 we have that Ey = 1(1 + ejezes)
and E_ = (1 - ejeze3) € As. Moreover, ELE_ = E_Ey = 0. Soforn 2 3
the algebra A, is no longer a division algebra. Many basic properties of Clifford
algebras may be found in the paper of Atiyah, Bott and Shapiro ([2]), the books
of Harvey and Porteous ([13], [25]), and other basic references.

Suppose now that y € $"~! C R”, then the action yR"y describes a reflection
on euclidean n-space in the direction of y. Inductively, for y1,...,yp € Ss—1 and
each p € N we have that aR™@ describes an orthogonal transformation over R™,
where @ = y1---yp and @ = yp---y1. In fact this gives rise to the Lie group
Pin(n) ={a € A, :a =y yp,p ENand y1,...,49 € $"7'}. It can be fairly
easily deduced that Pin(n) is a double covering of the orthogonal group O(n},
see for instance ([2]). When Pin(n) is restricted to the even subalgebra of A, we
obtain the spin group Spin(n), which in turn is a double covering of the special
orthogonal group SO(n). It should be noted that in describing the reflection of
euclidean space in the direction of the vector y, that it was here that we specifically
used the negative definite inner product on euclidean space.

The transformation ~ on Pin(n) extends to an anti-automorphism ~: Ap, —
A, e ---€, —ej --ej. For an element A € A, we shall write A instead of
~ (4).

Also, we have the anti-automorphism

»

— 1 An — An e, e, = (—1)ej, ey

Again we write A for —(A). This antiautomorphism is a generalization of
complex conjugation. In fact the real part of AA gives [|A||> = @ + --- + o} ,,,
where A=ag+ -+ a1 _ne1 - en, with ao,...,a1..n ER.

We now turn to introduce Vahlen matrices. These matrices can be used to fa-
cilitate the study of Moebius transformations over the one point compactification

of euclidean space. Moebius transformations are the transformations belonging
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to the group of diffeomorphisms over R® U {co} generated by orthogonal trans-
formations, dilations, and translations over R® and Kelvin inversion. Any such
transformation can be expressed as (az + b)(cz + d)~!, where a,b,¢c,d € A, and
satisfy the following constraints:
(i) a,b, ¢, d are all products of vectors;
(ii) ac, ¢d,db and da € R™;
(iii) ad — b¢ = +1.
d
and satisfying (i)-(iil) is refered to as a Vahlen matrix. They were introduced

b .
Each 2 x 2 matrix (: ) with coefficents a,b, ¢, and d belonging to A,

by Vahlen in [36], reintroduced by Maass in [19] and consequently rediscovered by
Ahlofors ([1]) in the 1980’s. Since that time they have been used by many authors,
see for instance references given in the introduction.

The set of Vahlen matrices, V(n), forms a group under matrix multiplica-
tion. This group is a covering group of the group of Moebius transformations

over the one point compactification of euclidean space. Examples of Vahlen ma-
trices include (2 :)1), (g 691 ), where a € Pin(n), ((1] 11)), where v € R",

A0 .
and ( 0 A=l where A € RY. These matrices are generators of the group
V(n). They correspond respectively to Kelvin inversion, orthogonal transforma-

tions, translation and dilation.

2. HILBERT SPACES ON SURFACES

DEFINITION 2.1. A topological manifold is said to be locally Lipschitz if it

has an atlas consisting of Lipschitz continuous charts.

It should be noted that each C!, C", C*® or C¥ manifold is an example of

such a manifold,where here 1 < r < 0.

DEFINITION 2.2. We shall assume here that a surface is a real (n — 1) di-
mensional, locally Lipschitz, orientable manifold locally embedded, but possibly
globally immersed, in §" = R" U {oo}.

This definition is slightly more general than the usal definition of a surface.
For instance, it allows self intersections. We now state what is meant for surfaces

to be conformally equivalent.
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DEerFINITION 2.3. Two surfaces S) and Sy are said to be conformally equiv-
alent if there is a Moebius transformation ¢ over §" such that ¢(5;) = Ss.

Although we have defined surfaces and the conformal equivalence of surfaces
over §", we shall be working with these structures primarily within R™,

Given a surface S lying in R™ we shall denote the space of square integrable
functions f : S — A, by L*(S, Ay). For each f,9 € L%(S, A,) we have that
the integral [ f(z)g(z)do(z) is well defined, where o denotes the usual Lebesgue
measure on S'g . The real part of this integral gives the inner product of f and g over

S. By decomposing the Moebius transformation y = p(z) = (az + b)(cz + d)™*
into its generators we may, following [8], obtain:

LeMMaA 2.4. Suppose that ©(S1) = Sz then for each f,g € L?(Sy, An) we
have that

[Fwot)dot) =+ [FoteNatot@) Il e + -+ doa).
Sa 51

The minus sign in the previous formula arises when the diffeomorphism ¢ is
orientation reversing, for instance, when ¢ is a reflection.
It is straightforward to see that [lcz + d||72"*? = J(p,2)J(p,z), where

J(go,z:):ﬁ_%ﬁ?. It follows that if f(y) € L%(S, An), then J(p,z)f(p(z)) €
L%(S1, An). It is now a simple matter to deduce

PropPoSITION 2.5. The map

@ : L*(Sa, An) — L*(S1, An); 9(f) = J(p, ) f(p(x))

15 an tsommelry.
From this isomorphism we also obtain:

PROPOSITION 2.6. If H(S2) is a Hilbert subspace of L%(S3,An), then
©(H(S2)) is a Hilbert subspace of L2(S1, Ay).

We shall use H(S;) to denote the space ¢(H(S2)). Suppose now that 7}
and T3 are surfaces. Moreover, @(77) = T3. Then it may be observed that for
each linear operator P : H(S;) — H(T3) there corresponds a linear operator
Q : H(S1) — H(T1) such that Q(J(p,z)f(¢(z))) = J(p, z)g(w(z)) whenever
P(f(y)) = 9(y)- Here H(T}) and H(T3) are Hilbert subspaces of L?(T1, A,) and
LZ(TZ,A,,) respectively. It may be observed that if P is bounded then so is Q.
Also, if P is compact then so is @, and if P is a Fredholm operator then again
so is . In this last case it can be seen that the dimension of the kernel of P is



354 Tao QiaN aND JOHN Ryan

the same as the dimension of the kernel of Q. In fact for each linear operator P
we have that f(y) € ker(P) if and only if J(ip,z)f(¢(z)) € ker(Q). All of these
observations follow straightférwardly from Proposition 2.5. Moreover, it easily
follows from our constructions that if P can be represented by a kernel K(y,u)
then Q is represented by the kernel J(p, z)K ((z), ¢(v))J (g, v), where p(v) = u
withueTyandv € T).

So far we have shown how Clifford algebras can be used to easily describe
relationships between Hilbert spaces over conformally equivalent surfaces. It can
be argued that instead of using the function J(p,z) one could avoid the use of
Clifford algebras and simply use the function ||z + d||~"*?. However, this does
not permit one to access the important link with spaces of monogenic functions,
and particular classes of H? spaces.

DEFINITION 2.7. Given a domain U lying in R®, then a differentiable func-
tion f : U — A, is called lefi monogenic if it satisfies the equation Df = 0, where
n

D is the Dirac operator i; €y

A similar definition can be given for right monogenic functions. Collectively
such functions are refered to as monogenic functions, though also the terms left
or right regular functions, or Clifford holomorphic functions are used to refer to
the same class of functions. The study of the properties and applications of these
functions and related functions is refered to as Clifford analysis. This analysis
‘has been pursued by a number of authors, see for instance some of the references
referred to in the introduction, and in other parts of the text. In particular, we
have the following version of Cauchy theorem and Cauchy integral formula:

THEOREM 2.8, Suppose that f,g : U — A, are respeciively left and right
monogenic functions, and S C U is a compaci surface bounding a domain in U.
Then [ g(2)n(z)f(z)do(z) = 0, where n(z) is the outward pointing normal vector

S

o S atzx.

THEOREM 2.9. Suppose now thal f is as in Theorem 2.8 and u belongs
to the domain bounded by S. Then f(u) = [G(z — u)n(z)f(z)do(z), where
5

Glz) = alﬂrzn%_—r, and wy, is the surface area of the unit sphere in R™.

The previous two theorems are basic to Clifford analysis, and can be found in
many places in the literature. The function G(x) is both left and right monogenic,
and is often refered to as the Cauchy-Clifford kernel.

We now begin to explore the relationship between function spaces defined on
surfaces, and special classes of monogenic functions. The results presented here
follow similar lines to analogous arguments in the complex plane. We begin with:
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DeFINITION 2.10. Suppose S is a surface which bounds a domain /. A
homotopy H : S x [0,1] = U U S is called a homotopy of Hardy type if:
(i) H(S,1) is a surface for each ¢ € [0, 1];
(il) H(S,0) = S;
(iii) for each ¢ € (0, 1] the set H(S,1) N §, regarded as a subset of S, is a set
of measure zero;
(iv) the function H is Lipschitz continuous.

We shall denote the space of A, valued LP functions on S by LP(S, A,),
where 1 € p € oco. Using Theorems 2.8 and 2.9 and the previous definition we
may deduce:

THEOREM 2.11. Suppose S is a compact surface bounding a bounded domain
U,and f: UUS — A, is such thaet:
(1) fIU ts left mongenic;
(i) fIS € L¥(S, An);
(iii) the function F : [0,1] — LP(S,An) : F(t) = f(H(,t)) is continuous.
Then for each u € U we have [ G(z — u)n(z)f(z)do(z) = f(u).
S

Proof (Outline). For each u € U there exists T(u) € (0, 1] such that for each
t € [0,T(u)] the vector u does not lie in H(S,[0,T(u)]). Consequently, for each

t € (0,T(u)] we have that f(u) = [ G(z~ u)n(z)f(z)do(z). The result now
H(S,1)
follows from the completeness of the normed space L%(S, Ay), and the continuity

of . 1
From the completeness of the normed space L2(S, An) we get:

PROPOSITION 2.12. Suppose the compact surface S bounds the bounded do-
main U, and we have a homotopy, H, of Hardy type. Then space of all functions,
f, satisfying conditions (i)—(iil) in the previous theorem is a complete right A,
module.

A good example to consider is the case where S = §”~! and H(S,t) =
§7~1(1 1), where $"~1(1—1t) is the sphere in R", centred at 0 and of radius 1 —t.
In this case we obtain the Hardy spaces considered in {7].

Given a bounded surface S, bounding a domain U, and any pair of homo-
topies H; and Hy from Sx [0, 1] to UUS it can be deduced that there is a Lipschitz
continuous homotopy Hy 2 : S % [0,1]2 — U U S such that

(1) H1,2(S, t, 0) = H1(S, t)
(ll) H1’2(S, t, 1) = H2(S, t); and
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(i) Hy9 : S x[0,1] x {s} - U US is a homotopy of Hardy type for each
s €0,1}.

It follows that if the surface S bounds a bounded domain U, and f: UUS —
Ay satisfies conditions (i)-(iii) from Theorem 2.11 for a homotopy H; of Hardy
type, then the function F : [0,1] — LP(S, A,) introduced in Theorem 2.11 extends
to a continuous function, Fy 3 from (0, 1] x [0,1] to L*(S, A,), for each homo-
topy H; ; described in the previous paragraph. Moreover, as F is continnous
on [0,1] it follows that F; » extends continuously to [0,1] x {0,1]. Furthermore,
F1,5(0,5) = f|S for each s € [0,1]. Consequently, the integral given in Theo-
rem 2.11 is independent of the particular choice of homotopy of Hardy type, and
also the completeness result given in the previous proposition is also independent
of the choice of homotopy of Hardy type. This prompts us to make the following
definition.

DerFmiTION 2.13. Suppose S is a surface bounding a bounded domain U,
then the right A, module of functions f : U xS — A, satisfying conditions (i)—(iii)
from Theorem 2.11 for some homotopy of Hardy type, and for some p € [0, 00}, is
called a Hardy space for the domain U, and it is denoted by H?(U).

The space HP(U/) corresponds to the complete space described in Proposi-
tion 2.12.

We shall now turn to look more closely at the special case p = 2. First we
need the following two results from [29].

PROPOSITION 2.14. Suppose f,g € L?(Sy, Ay), then
/ Fw)n(w)o(v) do(y) = ] 1e(2) T (0, 2)n(2) (9, 2)a(9(z)) do(z).
Ss Sy

THEOREM 2.15. Suppose that U and V are domains and o(U) = V. Then
the function f(y) is left monogenic on the domain V if and only if the function
J{p, z) f(p(z)) is left monogenic on the domain U.

The previous theorem was first proved in the quaternionic case by Sudbery,
[34]. The theorem is proved via Cauchy theorem and breaking the Moebius trans-
formation ¢(z) = (az+b)(cz+d)~! into its generators, and establishing the result
for each generator. _

Using a combination of translation and Kelvin inversion, or the Cayley trans-
form, it may be seen that each unbounded domain whose complement contains a
non empty open set can be conformally transformed to a bounded domain. Also,
following [23] we have that

(2.1) Gle(z) — o(w) = J(p,2) " G(u — )T (, u)~ 1.
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This formula is again obtained by splitting ¢ up into a composition of generators,

and noting by that 27! —u~! = u~l(u - z)z~ L.
Combining equation (2.1), Proposition 2.14 and Theorem 2.15 it now follows
that we may obtain, for the case p = 2, the following generalizations of Theo-

rem 2.11 and Proposition 2.12.

THEOREM 2.16. Suppose that S is a4 surface which bounds a domain U,
suppose also that f : UUS — A,, and for the special case p = 2, f satisfies
(1)-(iii} from Theorem 2.11. Then for each u € U we have that f(u) = [ G(z —

5

u)n(z) f(z) do(z).

Using a conformal transformation of S to a bounded surface bounding a
bounded domain, and the arguments following Theorem 2.11, it may be deduced
that the integral formula given in Theorem 2.15 is independent of the choice of
homotopy of Hardy type. Consequently, we may introduce the following space.

DerFINITION 2.17. For S a surface which bounds a domain, the class of
functions f :— U U S satisfying the conditions layed out in Theorem 2.15 is called
the Hardy 2 space of U, and it is denoted by H?*(U).

By the same arguments to those used to deduce Proposition 2.12 we can
automatically deduce:

PROPOSITION 2.18. The right A, module H*(U) is complete.

For the moment we shall just work with the space H?(U). Of particular
interest here is the case where U is a Lipschitz domain.

DEFINITION 2.19. Suppose that R*~! = {zqes + -+ + Znen : Z2,...,2n €
R} and 5 : R*~! — R is a Lipschitz continuous function. Then the graph of
n = {n(z)ey +z : = € R*"!} is called a Lipschitz graph. We denote it by .
Moreover, the domains £t = {z1e; + 2 : 2; > n(z) and ¢ € R*"?} and &~ =
{z1e1 + 2 : 21 < n(z) and z € R*~1} are called Lipschitz domains.

The study of Hardy spaces over Lipschitz domains has been the focus of
considerable attention in recent years, see for instance 3], [17], [18], [20], [21], [12].
Theorem 2.15 gives a Cauchy integral formula for each f € H*(X*) and with the
integral taken over the surface X.

From the Cauchy integral formula given in Theorem 2.15 we immediately
obtain the following decomposition theorem.
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THEOREM 2.20. Suppose that S is a surface bounding a domain U and f €
H*(U). Suppose also that § = $1U- - -USk, where each S; is a surface, and S$;NS;,
seen as a subsetl of either S; or S; is a set of measure zero. Then f = f1+-- -+ fk,
where f; € HX(U;) for 1 € j € K and U; is the mazimal domain in R" bounded
by S; and containing U.

A special case of this theorem is used in [?] to set up three line theorems on
the infinite strip {zie; + ze2 + - -+ zpen : 0€ 23 € 1, and z3,...,2, ER}. A
different proof of this theorem is given in [7].

It follows from Propositions 2.5 and 2.6 and arguments presented after the
statement of Proposition 2.6 that if 5) and S, are conformally equivalent surfaces
bounding domains U; and U respectively, then the Hardy spaces H?(U;) and
H?(U,) are isometric Hilbert spaces. It follows from Propositions 2.5 and 2.6 and
the arguments following Proposition 2.6 that one can relate canonically operators
acting over H%(U;) to operators acting over H2?(Us). In particular in [8] it is shown
that the reproducing kernels, or Szego kernels, for these spaces are canonically
related. This argument is used to explicitly produce a Szego kernel, Spa,+(z, ), for
the upper half space, R™* = {r,e;+ 7262+ - +Tpe, 21 >0,and 22,...,2, € R}
and then taking 'a—g?Snnd- (z,u) to obtain the Bergman kernel for the space of
square integrable left mongenic functions, with suitable decay at infinity, on upper
half space.

Similarly 2Bga(z, u) = 5%52*(31 u), where Byz(z,u) is the Bergman ker-
nel for square integrable left monogenic functions with suitable decay at infinity,
on the Lipschitz domain £%, and Sgs(z, u) is the Szego kernel for HZ(T¥).

So far we have only dealt with L? and H? spaces associated to unbounded
domains via conformal transformations from bounded domains. The story for
other choices of p is less successful. In these cases the LP spaces conformally
transform to proper subspaces of the corresponding LP spaces. This is easy to see
for the surfaces $"~! and R™~!, which are conformally equivalent via the Cayley

transform.
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3. THE CAYLEY TRANSFORM

The Cayley transform is given by (e;z + 1)(eyz + 1)~!. It transforms upper half

space, R™*, to the unit disc, B(0,1) = {# € R : ||z|]| < 1}. It is generally well
00

known that each f € L%(S"~1, A,) can be expressed as a sequence Y. h; where

+=0
each h; is the restriction to h; of a harmonic polynomial homogeneous of degree .

Now it is known that for each such h; we have hi(z) = p;(z) + zpi—1(z) for i > 0,
where p; and p;_; are left monogenic polynomials homogeneous of degree 7 and i—1
respectively. The calculation of this fact is quite simple. Restricting to the sphere
$"~% we have, using Kelvin inversion, that zp;_1(z) = G(~&)pi—1(—z~1). The
function on the right side of this expression extends to a left monogenic function,
homogeneous of degree —n — i + 2 on R" \ {0}. This decomposition was first
introduced in the quaternionic case by Sudbery ({34]), and later independently
introduced in euclidean space by Sommen ({32]). Using this decompossition the
following result antomatically follows.

ProposiTION 3.1. L%(§"1, A,) = H*(D)® H2(R*\ (DU S™1)).

It follows from Cauchy theorem and the construction of this decomposition
that the decomposition is orthogonal. This proposition is essentially contained in
[32]. The construction of orthonormal bases for H?(D) in terms of left monogenic,
homogeneous polynomials is given in [15], see also [26]. From the construction of
the decomposition given in Proposition 3.7 we also may deduce:

LEMMA 3.2. Suppose that {p; m)(y) : 0 € i < oo, and 0 < m(i) < M(3),
where M (3} is the order of the collection of monomials in n — 1 variables of degree
i} is an orthonormal basis for H*(D), comprising of lefi monogenic polynomials
homogeneous of degree i, with 0 < i € co. Then {G(—y)@im)(—¥™1): 0 i<
and 0 < m(i) < M(4)} is an orthonormal basis for H(R™\ (DUS™~1)).

We automatically obtain from the previous proposition, the previous lemma,
and the inverse of the Cayley transformation, ¢:

THEOREM 3.3. LZ(R"~1 A,) = H}R*H@H2(R™™), where R~ = {z1e;+
zoey + -+ Tpep 1 21 < 0 and zo,...,z, € R}, is lower half space. This decom-
position is an orthogonal decomposition. Moreover, {J(p, )i mi)((z)) : 0 <
i € oo, and 0 < m(i) € M(3)} is an orthonormal basis for H2(R™™), while
{J(p, 2)G(—p(x))pim@y(e(2)™') : 0 € i < 00 and 1 < m(i) < M(3)} s an
orthonormal basis for H*(R™ ™).

This orthogonal decomposition for L?(R"~1, A,) was first obtained using a
mixture of Clifford analysis and Fourier analysis by McIntosh in [20].
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Suppose that X : [0,1] — D US"! is a piecewise C! function satisfying:
(i) A(0,1]) € D;
(1) A1) =uesr;
(iii) X has a right derivative at 1 which is not tangental to $"~1,
Then from simple continuity and Cauchy integral formula we have

lim [ Gy = XOIn(w)01.m0 () 40 (3) = i)
§n—1

for each basis function ®i,m(i)(¥) appearing in the basis given in Lemma 3.2. As
§"-1 is sufficently smooth, and as ¥i,m(i)(y) is a real analytic function it follows
from the Plemelj formulae given in [14] that

lim / Gy — M(E)n(¥)esmay () do ()
Sn—l
1
= 5@im)(u) +P.V. / Gy — w)n(¥)p: m(i)(y) do(y).
§n—-1
Consequently, P.V. [ G(y — )n(y)¢ime)(v) do(y) = 39i.me)(u).

§n~1
By similar arguments, and also by being slightly more careful with the ori-

entation of $"~! we may deduce that
P.V. / Gy — n(¥)G(—v)pima)(—y~ ") do(y) = —%G(*U)we.m(a)(—u")-
sn-1
Consequently, we have:
THEOREM 3.4. The singular integral operator
Ts : L*(S™71, An) — L*(S"7!, 4,), To(f) =P.V. / Gy — wn(y)f(y) do(y)
§n-1

is well defined and has the speciral decompositions
T : H(D) — H(D), Ta(f) = +f
and
To : HYR\ (DUS"™1) — H*R*\ D US"™)); To(f) = —3 .

The L? boundedness of the operator Tg over the sphere has previously been
described in [31]. As shown in [29] the singular integral T conformally transforms
to itself, so we immediately obtain via the Cayley transform and our previous
results:
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THEOREM 3.5. The singular inlegral operator
To : L*(R"1, A,) — LP(R™1, A,)

Te(f) =P.V. / G(z — v)er f(z) dz"~?
Rn—1

s well defined and has the spectral decomposiiions
Te :HZ(R"'+) — H2(Rn,+), TG(f) - %f

and )
Te : HR™™) = HPR™), To(f) = —5 .

The fact that the operator Tg is L? bounded on R"~! is well known; see
for instance [20]. What is different here is the use of the Cayley transform and
the Hardy space decomposition of L%($,,1, Apn) to obtain this result. Usually one

n—1
notes that T |R*~! = " Rje;, where R; is the i th Riesz potential on R"~1,
=1

Then one uses Fourier transform techniques as layed out in [33).

One also readily has from Theorems 3.4 and 3.5 that 472 = Id, the identity
map. Here, of course, T is seen as acting over L2(S"~1, A,) or LA(R"™1, A,).

In [17] it is established that for each Lipschitz surface & we have that
LT, Ap) = H3(S*) ® H*(Z). Using the Cayley transformation ¢! the Lips-
chitz surface X is transformed to a surface () = I, while the domain Tt is
transformed to a bounded domain II* and the domain £~ is transformed to an
unbounded domain II~. Consequently:

THEOREM 3.6. L2(I, A.) = HY(IIH) @ H*(II™).
In [18) and [17] the following sector domains are introduced:

. 7l'
Sy = {1/161 +y2ea4- -+ ynen Y1 < tanpflyzes+- - +ynenl|, with 0 < p < 5}'

Also, right monogenic functions f : S, — A, are considered. These functions
satisfy the inequality

(3.1) LF I < Colll ™™+
and
(3.2) sup 6(r) < C

rel®+
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for some C, and C € R*, for 0 < v < u, and where

6(R) — 0(r) = / f(z)er =1,
A(r,R)ARn-1

with A{r, R) the annulus, or spherical shell, in R” of radii r and R, with 0 < r < R.
As observed in [18] and [17] the function # is uniquely determined up to a constant
by the right monogenic function f. One reason for introducing the function 6 is in
order to introduce generalizations of the Plemelj formulae on Lipschitz surfaces.
This is pointed out in [17]. The existence of a reasonably wide class of such
functions, f, is established in [17] using a combination of Fourier analysis and
several complex variables techniques.

For a general Moebius transformation y = ¢(z) = (az +b)(cz +d)~! we have
for such a function

f(p(2))J (e, 2)| < Crvllaz + b+

When ¢(z) = z~! then »~}(S,) = S,, and the left A, module of right
monogenic functions introduced in the previous paragraph is transformed to a left
A, module of right monogenic functions which are defined on the sector domain
S, and bounded on each sector domain S,, where 0 < ¥ < p.

When y = ¢(z) = (exz + 1)(esz + 1)7? is the Cayley transformation, then
the sector domain is transformed to a bounded subdomain ¢(S,) of the disc D.
This domain is bounded by the surfaces T; and Y5, where

(1 — tan pljz]])® + ||z|?

—_ n . 2 . n—1
T ={e1}U {y ER" :[ly||* = (=1 —tanpzZ + z)F - z€eR }
and
_ ooz (L4 tan gllz]))® + [lel® n—1
Ty ={e}U{yeR: Jyl* = Lt ol TP € R }

It may be noted that Ty N Ty = {e;, —e1}.

It follows that each right monogenic function f{y) defined on a sector domain
S, and satisfying (3.1} and (3.2) on each sub-sector domain S, is transformed
via the Cayley map to a right monogenic function f(w(x))J{(p, z) defined on the
domain ¢(S,) and satisfying

1f(p(2))J (@, )] < Capllz — ea] ™"+

on each subdomain (S, ).
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Also, each left monogenic function, f, on S, which is bounded on each sec-
tor subdomain S, is transformed via the Cayley transform to a right monogenic
function f(@(z))J(p,z) on ¢(S,) which satisfies (3.1) and (3.2) on each domain
e(S,)-

In [18] it is shown that each right monogenic function, f, defined on the sector
domain S, and satisfying the inequalities (3.1) and (3.2) on each sector subdomain
S, can be expressed as f = f; + fo where fi : S5F — An and f, 1 S — Aa
are right monogenic functions and S} = §, UR*~1* and S; = S, UR*™1~.
Moreover, [18], on each subdomain S} the function f(y) satisfies the inequality
AW € Collyll~"*!, and on each subdomain S, the function fa{y) satisfies the
inequality [|f(y)l| € Cullyll="*!, see also [17].

This extension conformally transforms to give us the following three propo-
sitions.

ProrosITION 3.7. Suppose that f : S, — A, is a right monogenic function
which ts bounded on each sector subdomain S,, and

ml [ swowar]<c
R»=1\B(0,R)

Then f = fi + f2, where fi 1is right monogenic on S’f and fy is right monogenic
on S, . Moreover, fi is bounded on each subdomain S} and fy is bounded on each
subdomain S .

PRoPOSITION 3.8. Suppose that ¢ is the Cayley transformation, and that
f:9(Su) = A, is a right monogenic function satisfying ||f(z)|| € Cy|lz+e1||>+!
for each z € Y(S,) with 0 < v < p. Suppose also that

Rseu'a ” / f(z)n(z)G(z + e1) da(:c)“ <C,
$»~1nB(e1,R)

for some C € RY. Then f = fi + fo, where f; : A; — A, is a right monogenic
function for i =1,2. Moreover, A; is the bounded domain bounded by the surface
Y, and A, is the unbounded domain bounded by the surface To. Also, ||fi(z)]}| <
Cullr + eaf|™™! fori =1 and z € ¥(S}) and for i = 2 and z € P(S;), where
O<v<p.

PROPOSITION 3.9. Suppose that f : $(S,) — An is a right monogenic func-
tion satisfying ||f(z)|| € Cullz — e1]|™"*! for each = € ¥(S,) with 0 < v < p.
Suppose also that

sup. I j HEn(@)G(E + e do(@)] < €,
§n-1nB(~e;,R)
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for some C € RY. Then f = fi + fo, where fi : A; — A 15 a right monogenic
function for i = 1,2. Moreover, ||fi(z)]] € Cullz — e1]|™"*! fori=1and z €
Y(S}) and fori =2 and z € Y(S; ), where 0 < v < p.

The open cone T, = {y € R” : y; > ||lyaez + - -+ + ynenl| cot u} is intro-
duced in [18] and {17]. This domain conformally transforms itself via the Cayley
transformation, ¢, to the domain bounded by the surface

(1 + cot pljwl|®) + |Jwlf?
(=1 = cot pljwl[®) + [Jewl*’

{zeR |z =

where w = yses + -+ - + Ynen, and p(z) = y}.

We shall denote this domain by A,. This domain contains the line interval {z;e; :
—1 < z; < 1}, as do the bounded domains bounded by Y; and Y. All three of
these domains are symmetric with respect to this line interval and any plane in
R™ which contains this line interval. Also, all three domains are invariant with
respect to any orthogonal transformation over the space spanned by es,..., e,.

Suppose now that £ = {(p(z)e1 + z)} is a Lipschitz surface, then the Lip-
schitz constant of this surface is defined to be inf{c € R* : ||lo(y) — o(v)|| €
c|ly — u||}. Suppose now that C is the Lipschitz constant for the Lipschitz surface
%, and C < tanpg. Then in {18}, [17] and [20] it is shown that for almost all y € T
the outward pointing normal vector n{y), to £ at y, lies in the open cone T,.
Moreover, for each ¢ € Rt the vector en(y) € T,. As Moebius transformations
preserve angles it follows that for almost all z € ¢(X), and for ¢ sufficently small,
the vector en(z) lies in the domain A,.

Following [18], [17], [20] and [35] we introduce for each monogenic function
f 8, — An, satisfying the inequalities (3.1) and (3.2), the function 8 : T, — A,.
This function satisfies

(3.3) 6(p) — 6(q) = j n(9)f(y) do(y)

5(p,9)

where S(p, ¢) is a smooth, orientable surface lying in T),, and with boundary. The
boundary of S(p, ¢) consists of two spheres of dimension (n —2). Both spheres are
centred at the origin. The first sphere has radius |jp|], and is orthogonal to p. The
second sphere has radius |jg|| and it is orthogonal to the vector ¢. From Cauchy
theorem it follows that the integral appearing in equation (3.3) is independant of
the choice of surface S(p,q). It also follows from (3.3) that the function # is well
defined up to a constant. All of these points are observed in [18], {17] and [20].
This function is a continuation of the function @ defined on R* introduced earlier.
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Suppose now that ¢ is a Moebius transformation then the function 6 is
conformally transformed to a function 8, : ¢=*(T,) — A, such that

o) ~0)= [ Tl on()I(e ) (p(x) doe)
»=1(5(p,9))

where ©(s) = p and ¢(t) = ¢. It follows from (3.3) that the function 8, is well
defined up to a constant.
The following theorem is proved in [18], and also in [35]:

THEOREM 3.10. Suppose that f : S, — An is a right monogenic function
which salisfies the inequalities (3.1) and (3.2); then for cach Lipschitz surface
with Lipschilz constant C < tanp, the operator

Tf}g . LP(Z,A,—,) — L‘D(Z,An)
defined by
tim ([ = wn()h) de(w) +0(en(w)Aw)),
T\B(y.e)

is well defined and LP bounded, where B(y,€) is the open ball centred at y and of
radius €, and h € L?(E, An) for 1 < p < oo.

The Lipschitz constant C of the surface L is chosen so that for each y € &
the surface £\ {y} lies in the sector S, +y. For the special case p = 2 the previous
theorem conformally transforms as follows:

THEOREM 3.11. Suppose that S,, ¥ and f are as in the previous theorem.
Suppose also that ¢ is a Moebius transformation. Then the operator

Tronsb. - L7 (E), An) — L2 (971 (), An)

defined by

e—0
P~ HEN\B(z¢)

im [ T 0@ - e) T n()e() do(2) + 8 (en()o(0)

for g € L? (¢~ (L), An), is a well defined L? bounded operator.

In [18] and [17] it is shown via the Plemelj formulae that when f is both left
and right monogenic then the decomposition of the function f into fi and fa gives
rise to a decomposition of the operator T} ¢ into

Ty(£,0) : HP(Z4) — HP(S4)
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and
Ty(f,6) : HP(f,5.) — HP(E_).

Qur arguments show that the operator Ty(y,)1.8, similarly decomposes into op-
erators T1(J(p, }f,0, and T3(J(p,)f, 8, acting over the respective H? spaces. It
would be interesting to see if the H,, functional calculus described in [17] for the
opetators acting over the Lipschitz surfaces carries over to a suitable analogue via
Moebius transformations to the analogous type of operators introduced here.

When the left monogenic function f is also right monogenic it should be noted
that the function J{p, v)f(p(z) — ¢(v))J (e, z) is left monogenic with respect to
the variable v and right monogenic with respect to the variable z. Basic properties
of functions with this property are studied in some papers of Brackx and Pincket,
see for instance [6].

4. THE SEVERAL COMPLEX VARIABLE CASE

We begin this section by complexifying the algebra A, to obtain the complex
Clifford algebra A,(C). It should be noted that the anti-automorphisms ~ and
— automatically extend from the real algebra A, to be anti-automorphisms on
the complex algebra An(C). We shall use the same notation to denote these
anti-automorphisms. Lying in this algebra is the complexification of R”, namely

€™. Under Clifford multiplication each vector z = z1eq + -- - + zpe, gives z2 =
—22 — ... — z2. Consequently, not all non-zero vectors in C" are invertible in

An(C). However, it is possible to introduce Vahlen matrices which act over the
conformal closure of C".

DEFINITION 4.1. A 2 x 2 matrix (:

(i) a,b,c and d € A,(C);

(ii) @, b, ¢ and d are all products of vectors in C?;
(iii) a%, cd, db and bd € C™;
(iv) ad — b€ = =1, is called a complez Vahlen mairiz.

3) which satisfies:

We shall denote the set of all such matrices by Vie(n). The basic properties
of these matrices are described in [8] and [28]. In particular it is known that
Ve(n) is a group under matrix multiplication. The group is generated by the

01 . .
matrices (1 O)’ (g ,,‘_J_l) where ¢ is a product of invertible vectors in C®,
a

1 u "
and (0 1),whereuEC .
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This group has the lower triangular subgroup

Ve,a(n) = { (‘c' 3) € Ve(m)}.

In [?] we show that the quotient space Ve(n) \ Ve a(n) is a complex homoge-
neous manifold of complex dimension n. Furthermore, this manifold contains C™
as an open, dense subset. Also the group Vig(n) acts transitively over this homo-
geneous manifold. We can consequently regard this homogeneous manifold to he
the conformal closure of C*. We shall use the symbol C™# to denote the conformal
closure of C". We shall regard the action of an element of the Lie group Ve(n)
on €™ as a Moebius transformation over this space. We shall call such a trans-
formation a complex Moebius transformation. On an open, dense subset of C"
such a transformation can be expressed as w = @(z) = (az + b)(cz + d)~!, where

(j Z) € Ve(n).

A real, (n—1) dimensional, locally Lipschitz continuous, orientable manifold,
S, locally embedded but possibly globally immersed in C™¥ is called a surface in
C". We shall be interested primarily in the case where the surface bounds a
particular type of manifold. In {27] and elsewhere we introduce the following type
of manifolds:

DEFINITION 4.2, A connected smooth, real, n-dimensional manifold, M,
lying in €" is called a domain manifold if for each 2 € M we have that TM, U
N(z2) = {2} and M UN(z) = {2}, where TM, is the tangent space of M at z, and
N(z) is the null cone {w € C" : (z — w)? = 0}.

Such a manifold may or may not have a boundary. If it does have a bound-
ary we shall impose the further restriction that the boundary is locally Lipschitz
continuous. When M is a subset of R?, C C”", then M is simply a domain in R".

In [29] it is shown that given a domain manifold M, then = 1(M) is also
a domain manifold for ¢ belonging to a wide class of Moebius transformations.
A technical problem prevented us from showing that domain manifolds remain
invariant under general complex Moebius transformations. A case to consider is
when M = B(0,1), and the Moebius transformation is Kelvin inversion. In this
case the domain manifold is the image of the domain manifold R™\ (8"~ 1UB(0, 1)).
However, if we homotopically deform B(0, 1) within C™ keeping the boundary of
B(0,1) fixed, and such that at each point in time the homotopy deformation of
the domain manifold is again a domain manifold, then in general it is not clear
that the inverse images under Kelvin inversion is again a domain manifold.
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It is clear, looking at the generators of Vic(n), that the only generator that
). Now C*

can cause a problem is Kelvin inversion, or rather the matrix (

10
can be re-expressed as { ((1] ; (Z € C“}. Following [28] this set can be seen as

an open dense subset of C™}. Now 01 Lz = (0 l). It follows that
10 01 1 =

1
under Kelvin inversion the set { ( 0 i) Tz E C"} < €™ is transformed to the

1
set { ((]) z) Tz E C"} C C™}. It follows that Kelvin inversion transforms any

domain manifold lying in C" to a domain manifold lying in C™I.

The previous argument is a special case of the argument where one takes a
general matrix from Ve (n) and let this matrix act on a quotient space representa-
tive for C* within C™!. It is a straightforward calculation to see that in each case
we obtain another quotient space representative of C® within C™!. Consequently,
in this way it may be seen that domain manifolds are preserved under complex
conformal transformations.

Suppose that S is a surface, then for any measurable function f : § — A4, (C)
the following inequality is satisfied:

| [ 16)7@ a0 < 0tm) [ S a @I dbota),
5 5 A

where do(2) is the complex Borel measure on S, C(n) is a dimensional constant,

dlo(z)| is the real measure resulting from taking the modulus of the measure do(z),

and A is an index for the basis of An,s0 f = 5 faea. We shall be interested in the
A

case where the right hand side of the previous inequality is finite. We shall denote

the space of such functions by L?(S, A,(C)). For each f,g € L?(S5, Ax(C)) it can

be seen that the integral [ f(2)g(z) do(2) is bounded. The space L%(S, A,(C)) is a
5

Banach space. We may also consider the Banach space L?(S; A,(C)), consisting of
An(C) valued functions defined on S and L” integrable with respect to the measure
d|o(2)|. Here 1 € p < o0.

Suppose now that 5 and S, are surfaces in C”, and ¢ is a complex Moebius
transformation. Moreover, ¢(S;) = S». Suppose also that f,g € L%(S,, An(C)).
Then by similar arguments to those given in the real case earlier in this paper we
can deduce that

[ w)iw)dow) = [ s ENateEN (e + d(eEF D) do(a)
Sz 8
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When n is even ((cz + d)(cz + d))""*+! = J(p, 2) T (i, %), where
J(p,2) = (cz + d)((cz + d)(cz + d))~ %
It follows that we have the following result:

PROPOSITION 4.3. Suppose that S) and Sy are surfaces lying in C*, with n
even, and that ¢ is a complezr Moebius transformation, with ¢(S;) = Sy. Then
there is a canonical isomeiry

¢ 1 L¥(S2, An(C)) ~ L2(81, An(C€)) : f(w) — J (1, 2)f(e(2)).
Similar results to those described for the real case earlier in the paper now

automatically extend to complex even dimensions. Again the most interesting
results occur when combined with the theory of monogenic functions.

DEFINITION 4.4. Suppose Q is a domain lying in C", and f : @ — A, (C) is
a holomorphic function. Then f is called a complez left monogenic function if f
n

satifies the equation - e; 22-(2) = D¢ f(2) = 0.
i=1 4

A similar definition can be given for complex right monogenic functions.
The following holomorphic continuation result is given in [27] and elsewhere.

THEOREM 4.5. Suppose that n is even, and that f : Q — A, is a complez
left monogenic function. Suppose also that M C Q is a bounded domain manifold
with boundary a surface S C Q. The f holomorphically extends to the component

H(S) of C*\ | N(z) which contains the interior of M. Moreover, for each w in
Z€S
H(S) the holomorphic continuation of f is given by J G(z — w)Dzf(z), where G

5
is the holomorphic continuation to C*\ N(0) of the Clifford-Cauchy kernel used in

n o
the euclidean setting, and Dz is the differential form Yo(—1Yejdzi A Adzjoq A
i=1
d2j+1 A A dzn.
It can be seen from the integral appearing in the previous theorem that the
holomorphic continuation of f to H(M) is also complex left monogenic.

DEFINITION 4.6. Suppose that the surface S is the boundary of a domain
manifold M. Then a homotopy H : S x [0,1) — M U S is called a homotopy of
Hardy type if:

(i) H(z,0) = z for each z € S

(ii) H is Lipschitz continuous;

(iii) H(S,t) is a surface for each ¢ € [0, 1];

(iv) for each t € (0, 1] the set SN H(S,t) seen as a subset of S is a set of
measure zero with respect to the Borel measure do(z).

Using the previous definition and theorem we have:



370 Tao Q1aN AND JOHN Ryan

THEOREM 4.7. Suppose that M is a bounded domain manifold, with bound-

ary S. Suppose also thal n is even, and f: M US — A,(C) is such that:
(1) fIM is the restriction lo M of a complez left monogenic funclion on

H(M);

(i1) f|S € L?(S, An(C)) for some p € [0, 0];

(iti) there is a homotopy of Hardy fype, H : S x [0,1] — M US and a
continuous function F : [0,1] — LP(S, A, (C)) : F(t) = flH(S,1).
Then for each ¢ € H(S5) we have that

) = / G(z - ()Dzf(2).
S

By the same arguments given earlier in the paper for the euclidean case
it may be observed that the integral formula given in the previous theorem is
independent of the choice of homotopy of Hardy type within M U S. Similarly, if
H:M x 0,1} — H(S) is such that:

(i) H{z,0) = z for each z € M,

(i) H(M,t)} is a domain manifold for each t € [0,1]; and

(iii) each domain manifold H(M,t) has the surface S as its boundary,
then it can be deduced by simple continuity-arguments that the integral formula
given in Theorem 4.7 is independent of the choice of M, but only depends on the
domain H(M). For this reason we shall denote the right A,,(C) module of functions
satisfying the conditions described in Theorem 4.7 by H?(H(S), An(C)). We call
this space the Hardy p-space of the domain H(S). Using Theorem 4.7 it may be
observed that this space is a complete subspace of L?(S, An(C)), where S is the
boundary of M.

In conclusion we now point out that it is a relatively simple exercise to
to adapt the arguments developed earlier in this paper and set up the module
H2(H(S), An(C)) for the cases where n is even, and S now bounds an unbounded
domain manifold. In fact we obtain:

THEOREM 4.8. Suppose that S; and Sy are surfaces in C*, with n even.
Suppose also that S; bounds a domain manifold My and So bounds a domain
manifold Ma, and ¢ is a conformal transformation such that p(M,) = My. Then

¢+ HA(H(S2, An(C)) — H*(S1, 4n(C)) : f(w) = J(p, 2)f(p(2))

s an tsomorphism.
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