Medical image encryption using high-speed scrambling and pixel adaptive diffusion

By: Hua, ZY [Hua, ZHONGYUN1]; Yi, S (YI, SHUANG2); Zhou, YC (Zhou, Yong2)

SIGNAL PROCESSING
Volume: 144 Pages: 134-144
DOI: 10.1016/j.sigpro.2017.10.004
Published: MAR 2018
Document Type: Article
View Journal Impact

Abstract
This paper presents a new encryption scheme of protecting medical images. It has high efficiency and shows robustness of defending some impulse noise and data loss. First, some random data are inserted into surroundings of the image. Then, two rounds of high-speed scrambling and pixel adaptive diffusion are performed to randomly shuffle neighboring pixels and spread these inserted random data over the entire image. The proposed encryption scheme can be directly applied to medical images with any representation format. We provide two kinds of operations to implement the pixel adaptive diffusion: bitwise XOR and modulo arithmetic. The former has high efficiency in hardware platforms while the latter can achieve fast speed in software platforms. Simulations and evaluations show that both encryption schemes using bitwise XOR and modulo arithmetic have high security levels, can achieve much faster speeds, and can better adapt to impulse noise and data loss interference than several typical and state-of-the-art encryption schemes. (C) 2017 Elsevier B.V. All rights reserved.

Keywords
Author Keywords: Cryptosystem; Image encryption; Medical images; High-speed scrambling; Pixel adaptive diffusion
Keywords Plus: FRACTIONAL FOURIER TRANSFORM; DNA-SEQUENCE OPERATIONS; CHAOTIC SYSTEM; SCHEME; ALGORITHM; PERMUTATION; MAP; DESIGN; SECURE

Author Information
Reprint Address:
University of Macau Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China.
Corresponding Address: Zhou, YC (corresponding author)
Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China.

Addresses:
1] Harbin Inst Technol, Shenzhen Grad Sch, Sch Comp Sci & Technol, Shenzhen 518055, Peoples R China
2] Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China

E-mail Addresses: huahongyun@hit.edu.cn; yiongzhou@umac.mo

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Show details</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Natural Science Foundation of China (NSFC)</td>
<td></td>
<td>61.701.137</td>
</tr>
<tr>
<td>Shenzhen Science and Technology Innovation Council</td>
<td></td>
<td>JCYJ2017030715970051</td>
</tr>
<tr>
<td>Macau Science and Technology Development Fund</td>
<td></td>
<td>FDC/16/2/015/1K1</td>
</tr>
<tr>
<td>Research Committee at University of Macau</td>
<td></td>
<td>MYRG2014-00030:FST</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MYRG2016-00123:FST</td>
</tr>
</tbody>
</table>

Publisher
ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Journal Information
Performance Trends: Essential Science Indicators
Impact Factor: Journal Citation Reports

Categories / Classification