Hypergraph p-Laplacian Regularization for Remotely Sensed Image Recognition

By: Ma, QX (Ma, Xiqiao) [1]; Liu, WF (Liu, Weifeng) [1]; Li, SY (Li, Shuying) [2]; Tao, DP (Tao, Dapeng) [3]; Zhou, YC (Zhou, Yicong) [4]

Abstract
Graph-based and manifold-regularization (MR)-based semisupervised learning, including Laplacian regularization (LapR) and hypergraph LapR (Hlpr), have achieved prominent performance in preserving locality and similarity information. However, it is still a great challenge to exactly explore and exploit the local structure of the data distribution. In this paper, we present an effective approximation algorithm of hypergraph p-Laplacian and propose hypergraph p-Laplacian (Hlpr) to preserve the geometry of the probability distribution. In particular, hypergraph is a generalization of a standard graph while hypergraph p-Laplacian is a nonlinear generalization of the standard graph Laplacian. The proposed Hlpr shows great potential to exploit the local structures. We integrate Hlpr with logistic regression for remote sensing image recognition. Experiments on UC-Merced data set demonstrate that the proposed Hlpr has superior performance compared with several popular MR methods including LapR and Hlpr.

Keywords
Author Keywords: Hypergraph; manifold learning; remote sensing; semisupervised learning (SSL); p-Laplacian

Cited References
43 Times Cited

Article
IEEE Transactions on Geoscience and Remote Sensing
Volume: 57 Issue: 3 Pages: 1565-1595
DOI: 10.1109/TGRS.2018.2867570
Published: MAR 2019
Document Type: Article

View Journal Impact

Corresponding Address: China University of Petroleum, Beijing, Peoples R China

Author Information

Address:

China University of Petroleum, Beijing, Peoples R China

Address:

University of Macau, Fac Sci & Technol, Macau 999078, Peoples R China.

Address:

China Univ Petr, Coll Informat & Control Eng, Qingdao 266580, Peoples R China

Address:

Corresponding Address: Liu, WF (corresponding author)

Address:

Corresponding Address: Zhou, YC (corresponding author)

Address:

Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China.

Address:

1. China Univ Petr, Coll Informat & Control Eng, Qingdao 266580, Peoples R China

Address:

2. Xian Univ Posts & Telecommun, Sch Automat, Xian 710121, Shaanxi, Peoples R China

Address:

3. Yunnan Univ, Sch Informat Sci & Engn, Kunming 650091, Yunnan, Peoples R China

Address:

4. Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China

Organization-Enhanced Name(s)

University of Macau

E-mail Addresses: liuwf@upc.edu.cn; angle_lisy@163.com; dapeng.tao@gmail.com; yicongzhou@umac.mo

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Show details</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Natural Science Foundation of China (NSFC)</td>
<td></td>
<td>61671480</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61772455</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U17133213</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61701387</td>
</tr>
<tr>
<td>Natural Science Foundation of Shandong Province</td>
<td></td>
<td>ZR2018MF017</td>
</tr>
</tbody>
</table>

You may also like...

- Dynamic MRI Using Smoothness Regularization on Manifolds for Brain MR Imaging (2016)
- Achieving location error tolerant barrier coverage for wireless sensor networks (2017)
- Semi-supervised image classification with Laplacian support vector machines (2008)
- Semi-supervised Multitask Learning With Gaussian Processes (2013)
- Multiview Hessian discriminative sparse coding for image annotation (2014)