Cosine-transform-based chaotic system for image encryption

By: Hua, ZY (Hua, Zhongyun) 2; Zhou, YC (Zhou, Yicong) 2; Huang, HJ (Huang, Hejiao) 1

Abstract
Chaos is known as a natural candidate for cryptography applications owing to its properties such as unpredictability and initial state sensitivity. However, certain chaos-based cryptosystems have been proven to exhibit various security defects because their used chaotic maps do not have complex dynamical behaviors. To address this problem, this paper introduces a cosine-transform-based chaotic system (CTBCS). Using two chaotic maps as seed maps, the CTBCS can produce chaotic maps with complex dynamical behaviors. For illustration, we produce three chaotic maps using the CTBCS and analyze their chaos complexity. Using one of the generated chaotic maps, we further propose an image encryption scheme. The encryption scheme uses high-efficiency scrambling to separate adjacent pixels and employs random order substitution to spread a small change in the plain-image to all pixels of the cipher-image. The performance evaluation demonstrates that the chaotic maps generated by the CTBCS exhibit substantially more complicated chaotic behaviors than the existing ones. The simulation results indicate the reliability of the proposed image encryption scheme. Moreover, the security analysis demonstrates that the proposed image encryption scheme provides a higher level of security than several advanced image encryption schemes. (C) 2018 The Authors. Published by Elsevier Inc.

Keywords
Author Keywords: Chaotic system; Chaos-based encryption; Cryptography; Image privacy; Image encryption; Security analysis

INFORMATION SCIENCES
Published: APR 2019 Document Type: Article

Citation Network
In All Databases
189

You may also like...

Mobayen, S; Volos, CK; Cavusoglu, U; et al.
New class of chaotic systems with equilibrium points like a three-leaved clover
NONLINEAR DYNAMICS

Liu, LD; Lei, YH; Wang, D;
A Fast Chaotic Image Encryption Scheme With Simultaneous Permutation-Diffusion Operation
IEEE ACCESS

Yang, CH; Huang, SJ;
Secure color image encryption algorithm based on chaotic signals and its FPGA realization
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS

Zhu, SQ; Zhu, CX;
Image encryption algorithm with an avalanche effect based on a six-dimensional discrete chaotic system
MULTIMEDIA TOOLS AND APPLICATIONS

See all

Most Recently Cited by
Pankaj, S; Dua, M;
A novel ToCC map and two-level scrambling-based medical image encryption technique
NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS

Gao, XH;
Image encryption algorithm based on 2D hyperchaotic map
OPTICS AND LASER TECHNOLOGY

See all