Abstract

The explosive growth of multimedia data on the Internet makes it essential to develop innovative machine learning algorithms for practical applications especially where only a small number of labeled samples are available. Manifold regularized semi-supervised learning (MRSSL) thus received intensive attention recently because it successfully exploits the local structure of data distribution including both labeled and unlabeled samples to leverage the generalization ability of a learning model. Although there are many representative works in MRSSL, including Laplacian regularization (LapR) and Hessian regularization, how to explore and exploit the local geometry of data manifold is still a challenging problem. In this paper, we introduce a fully efficient approximation algorithm of graph p-Laplacian, which significantly saving the computing cost. And then we propose p-LapR (pLapR) to preserve the local geometry. Specifically, p-Laplacian is a natural generalization of the standard graph Laplacian and provides convincing theoretical evidence to better preserve the local structure. We apply pLapR to support vector machines and kernel least squares and conduct the implementations for scene recognition. Extensive experiments on the Scene 67 dataset, Scene 15 dataset, and UC-Merced dataset validate the effectiveness of pLapR in comparison to the conventional manifold regularization methods.

Keywords

Laplacian regularization (LapR); manifold learning; p-Laplacian; scene recognition; semi-supervised learning (SSL)

Author Information

By: Liu, WF (Liu Weifeng) 1; Ma, X (Ma, Xuegui) 1; Zhou, YC (Zhou, Yicong) 2; Tao, DP (Tao, Dapeng) 3; Cheng, J (Cheng, Jun) 4, 5

View Web of Science ResearcherID and ORCID (provided by Clarivate)

IEEE TRANSACTIONS ON CYBERNETICS
Volume: 49 Issue: 8 Page: 2927-2940
DOI: 10.1109/TCYB.2018.2833843
Published: AUG 2019
Document Type: Article

Full text at publisher

Citation Network

In All Databases

68

Citations

Create citation alert

All Citations

68 In All Databases

See more citations

Cited References

36

View related records

You may also like...


Highly Cited

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

Mu, Y; Tao, DC; Murtagh, F; et al. Biologically Inspired Tensor Features

COGNITIVE COMPUTATION

Capobianco, L; Gazzelli, A; Camps-Valhs, G; Target Detection With Semi-supervised Kernel Orthogonal Subspace Projection

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Lei, YX; Chen, XF; Xie, YF; et al. A semi-supervised Laplacian extreme learning machine and feature fusion with CNN for industrial superheat identification

NEUROCOMPUTING

Shi, XS; Guo, ZH; Yang, L; et al. Anchor-Based Self-Ensembling for Semi-Supervised Deep Pairwise Hashing

INTERNATIONAL JOURNAL OF COMPUTER VISION

See all

Most Recently Cited by

Liu, WF; Fu, SC; Nie, LQ; et al. Human activity recognition by manifold regularization based dynamic graph convolutional networks

NEUROCOMPUTING

Fu, SC; Liu, WF; Tao, DP; et al. Semi-supervised classification by graph p-Laplacian convolutional networks

INFORMATION SCIENCES

See all

Funding agency

Grant number

Show All Details

National Natural Science Foundation of China (NSFC)

61671480

Show details

Natural Science Foundation of Shandong Province

ZR2018MF017

Show details

Fundamental Research Funds for the Central Universities, China University of Petroleum (East China)

18CX07011A

Show details

Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China

YCX2017059

Show details

Categories/Classification

Research Areas: Automation & Control Systems; Computer Science

Funding

Show All Details

Show All Details