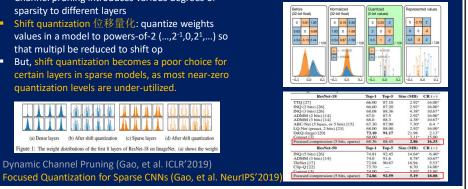


Representative Work III: Efficeint Model Inference in AD: 2/3 (Shift Quantization)

深度学习推理效率决定智能驾驶的速度

Key Observation:

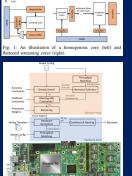

- Channel pruning introduces various degrees of sparsity to different layers
- Shift quantization 位移量化: quantize weights values in a model to powers-of-2 (...,2⁻¹,0,2¹,...) so
- that multipl be reduced to shift op But, shift quantization becomes a poor choice for certain layers in sparse models, as most near-zero quantization levels are under-utilized.

Dynamic Channel Pruning (Gao, et al. ICLR'2019)

are 1: The weight distributions of the first 8 layers of ResNet-18 on ImageNet. (a) shows the weight

Proposed Focused Quantization exploit the statistical properties of weights in pruned models to quantize them efficiently and effectively

Representative Work III: Efficient Model Inference in AD: 3/3 (HW/SW Co-Design)


UNIVERSIDADE DE MACAU

深度学习推理效率决定智能驾驶的速度

Key Observations:

- Shift op facilitates HW impl. HW design tends to use flattened streaming arch (vs systolic arrays) for inference acceleration.
- Flatten streaming accelerators isolate layer-wise computations, offering the chance to use different arithmetic and precisions for each layer's computation
- Proposed Tomato HW/SW Co-Design:
- HW: Multi-Precision Multi-Arith accelerator on Multi-FPGAs SW: Hybrid quantization to automate the selection of arithmetic
- and precisions for different layers of the model, so as to map all the layers onto a single or multiple FPGAs.

		Quantis	ation(s)		Frequency	Latency	Throughput	Arithmetic		
	Implementation	Weights	Acts	Platform	(MHz)	(ms)	(FPS)	perf. (GOP/s)		
	Throughput-Opt [33]	FXP8	FXP16	Intel Stratix V	120	262.9	3.8*	117.8		25 State 1
	fpgaConvNet [34]	FXP16	FXP16	Xilinx Zynq XC7Z045	125	197*	5.07	156		I and a
VGG16	Angel-Eye [9]	BFP8	BFP8	Xilinx Zynq XC7Z045	150	163*	6.12*	188		Real and Re
8	Going Deeper [25]	FXP16	FXP16	Xilinx Zynq XC7Z045	150	224*	4.45	137		
>	Shen et al. [31]	FXP16	FXP16	Xilinx Virtex US XCVU440	200	49.1	26.7	821		
	HARPv2 [23]	BIN	BIN	Intel HARPv2	-	8.77*	114	3500		Dynamic Char
	GPU [23]	FP32	FP32	Nvidia Titan X	-	-	121	3590		
	Ours	Mixed	FXP8	Intel Stratix 10	156	0.32	3109	3536		Focused Quar
cNe	Ours	Mixed	FXP8	Xilinx Virtex US+ XCVU9P	125	0.40	2491	2833		NeurIPS'2019
MobileNet	Zhao et al. [41]	FXP16	FXP16	Intel Stratix V	200	0.88	1131	1287	_	
N	Zhao et al. [42]	FXP8	FXP8	Intel Stratix V	150	4.33	231	264		FPGA Implem
	GPU	FP32	FP32	Nvidia GTX 1080Ti	-	279.4	515	586		
-										et al. FTS'201
					190	AL 62 3	魚 門 大	學		
					8					
					1		IVERSIDADE DE			
					1.00	T-1/ 1/	NIVERSITY OF I	MACAEL		

ICLR'2019) vs (Gao, et a

				FC
決 門 大 夢 NIVERSIDADE DE MACAU INIVERSITY OF MACAU		Mostly Cited Venues in Go (google scholar metrics)	ogle	e ~
	Categ	ories *		English +
		Publication	h5-index	h5-median
	1.	Nature	414	607
	2.	The New England Journal of Medicine	410	704
	3.	Science	391	564
<	4.	IEEE/CVF Conference on Computer Vision and Pattern Recognition	356	583
	5.	The Lancet	345	600
	6.	Advanced Materials	294	406
	- 7.	Cell	288	459
	8.	Nature Communications	287	389
	9.	Chemical Reviews	270	434
<	10.	International Conference on Learning Representations	253	470
	11.	JAMA	253	446
<	12.	Neural Information Processing Systems	245	422
	13.	Proceedings of the National Academy of Sciences	245	337
	14.	Journal of the American Chemical Society	245	330
	15.	Angewandte Chemie	235	314
	16.	Chemical Society Reviews	234	339
	17.	Nucleic Acids Research	233	512
	18.	Renewable and Sustainable Energy Reviews	225	294
	19.	Journal of Clinical Oncology	213	297
	20.	Physical Review Letters	209	297
	21.	Advanced Energy Materials	206	267
	22.	Nature Medicine	205	356
<	23	International Conference on Machine Learning	204	370
	24	Enamy & Environmental Science	202	306