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A B S T R A C T

In this paper, we propose an unsupervised textural-intensity-based natural image quality evaluator (TI-NIQE) by
modelling the texture, structure and naturalness of an image. In detail, an effective quality-aware feature named
as textural intensity (TI) is proposed in this paper to detect image texture. The image structure is captured
by the distribution of gradients and basis images. The naturalness is characterized through the distributions
of the locally mean subtracted and contrast normalized (MSCN) coefficients and the products of pairs of
the adjacent MSCN coefficients. Furthermore, a new application pattern of image quality assessment (IQA)
measures is proposed by taking the quality scores as the essential input of the recognition model. Using statistics
of video quality scores computed by TI-NIQE as input features, an automatic IQA-based visual recognition
model is proposed for the condition recognition in rotary kiln. Extensive experiments on benchmark datasets
demonstrate that TI-NIQE shows better performance both in accuracy and computational complexity than
other state-of-the-art unsupervised IQA methods, and experimental results on real-world data show that the
recognition model has high prediction accuracy for condition recognition in rotary kiln.
. Introduction

With the increasing application of machine vision technology in
utomatic detection and monitoring in the industrial and commercial
ields, a simple and accurate image quality assessment (IQA) algorithm
s critical since it can not only help for to monitor the performance
f systems, but also be used as feedback to optimize vision analysis
ystems.

IQA can be classified into subjective and objective (Chan and En-
elke, 2015). According to the information accessibility of the reference
mage, the objective IQA can be further divided into full-reference (FR),
educed-reference (RR) and no-reference (NR). FR and RR IQAs require
eference images, which limits their application because reference im-
ges are often unavailable in practical applications (Wang, 2004; Wu
t al., 2019). NR IQA, also called blind IQA (BIQA), does not need
eference images in implementation. Therefore, it is more popular than
R and RR in applications. According to the distortion type of images
hat BIQA deals with, BIQA can be further categorized into distortion-
pecific and general-purpose IQAs. A distortion-specific algorithm is
sually designed for one or more specific types of distortion. Through
esigning some target features sensitive to specific distortions, the
egradation of the image is precisely quantified (Tang et al., 2015;
ang et al., 2015). In most of application scenarios, the distortion
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types are usually unavailable. Thus, the application scope of distortion-
specific is limited. General-purpose algorithms are more applicable
because they can evaluate the image quality without restriction of the
distortion types. According to the accessibility of subjective scores of
images, there are two strategies of general-purpose BIQA methods:
supervised BIQA and unsupervised BIQA. Supervised BIQA trains a
quality prediction model using large amounts of distorted images with
subjective scores, and the quality score of a test image is predicted by
the trained model (Mittal et al., 2012; Ma et al., 2018). The training
and calibration of prediction models require plenty of image samples
and subjective scores, which are time-consuming and costly acquisition
tasks and usually inaccessible in many real application scenarios.

Unsupervised BIQA aims to build a reference by extracting some
quality-aware features and fitting the features to a multivariate Gaus-
sian (MVG) model with a set of pristine images. The quality of a
distorted image is defined as the distance between its MVG model
and the pristine MVG model (Wu et al., 2015; Zhang et al., 2015;
Liu et al., 2019; Wu et al., 2020). Xue et al. proposed the quality-
aware clustering (QAC) method (Xue et al., 2013) by labelling the
distorted images using a FR method. In the natural image quality
evaluator (NIQE) method (Wu et al., 2015) proposed by Mittal et al. the
distribution parameters that are fit to the mean subtracted and contrast
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normalized (MSCN) coefficients and the products of pairs of adjacent
MSCN coefficients are employed as the quality-aware features. To boost
the performance of the model, the integrated local NIQE (IL-NIQE)
method (Zhang et al., 2015) proposed by Zhang et al. incorporated
additional statistical features, including gradient magnitude, response
of log-Gabor filters and colour, into MVG modelling. Liu et al. proposed
the structure, naturalness and perception quality NIQE (SNP-NIQE)
method (Liu et al., 2019) by introducing high-level natural scenes
statistics (NSS) features. Wu et al. proposed the quaternion NIQE
(Q-NIQE) method (Wu et al., 2020) by representing the image as a
quaternion and extracted some quality-aware features from it. They
also proposed a visual perception NIQE method by introducing the
global perception into IQA modelling (Wu et al., 2021).

Free from the requirement of subjective scores for training, the
unsupervised model affords more applicability. However, there are
still some issues to be solved in the application of the unsupervised
methods. One of the urgent problems to be solved is that although the
prediction accuracy of unsupervised method is boosted with complex
and advanced features, the computational complexity also increases
significantly. Developing a both fast and effective unsupervised BIQA
method for real-time applications is urgently needed. In this paper,
focusing on the efficiency and effectiveness requirements of real appli-
cations, we developed a fast and simple general-purpose unsupervised
IQA metric. Specifically, in addition to extracting the traditional MSCN
and gradient statistical features for structure distortion from the spatial
domain, we proposed an effective feature named textural intensity
(TI) in the singular value decomposition (SVD) transform domain to
capture the texture distortion in the image. Different from existing
methods that adopt the Gabor filter to perceive the texture from various
directions and scales (Zhang et al., 2015; Wu et al., 2020), this method
extracts the texture from the patches, which is more efficient than
existing methods. The proposed TI-NIQE is evaluated on the bench-
mark databases. The validation results show that the proposed metric
has higher prediction accuracy and lower computational complexity
than state-of-the-art (SOTA) unsupervised methods, which are more
conducive to practical applications.

In previous IQA-based applications, IQA measures always play a
supporting and auxiliary role in application systems. The systems select
or optimize the core algorithm modules according to the feedback
signals the IQA provides. The IQA-based applications are employed
in two modes (Wang, 2011). In the first mode, the IQA measure acts
as a selector. Besides helping select high quality images to enhance
the quality-of-experience of users in multimedia systems (Fong et al.,
2019), IQA helps determine the best parameters automatically for im-
age/video processing algorithms, such as the parameter determination
in image enhancement (Gu et al., 2016). The IQA can even be used
to select the best image processing algorithm that generates the best
perceptual quality in visual-based application systems (Wang, 2011). In
the second mode, the quality score acts as a controller to control and
optimize the operation of the system. For example, the IQA measure
is used in an iterative mode to create feedback signals that help to
update the image processing module (Yousaf and Qin, 2015), or is
implemented in the core of the optimization algorithm in the image
processing algorithm (Preiss et al., 2014).

In this paper, we apply the IQA measure to an application in a
completely different way than previously implemented by taking the
evaluation quality score as the essential input of the pattern recognition
system. The application scenery is a vision-based condition recogni-
tion system of rotary kilns. The video quality is affected by coal and
smoke/dust in industrial sites, while the smoke/dust concentration and
the flicker degree of the video image are different under different
conditions. By analysing the statistical characteristics of the image
quality scores of flame videos, an IQA-based condition recognition
system of rotary kilns is proposed in this paper.

Our contributions of this paper can be summarized as follows.

First, we propose an effective TI-based NIQE (TI-NIQE) method by
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texture, structure and naturalness measurements. It is more effective
than the SOTA unsupervised methods with higher prediction accu-
racy and lower computational complexity on benchmark databases.
Second, considering that the rotary kiln has different video qualities
and flickers under different working conditions, a condition recognition
model using statistics of video quality scores by TI-NIQE is designed.
The validation results on real-word data demonstrate that the model
outperforms other methods. Finally, taking the quality scores as the
essential input of the recognition model, we propose a new application
pattern of IQA measures for vision-based recognition systems, which
provides an instructive example for the IQA-based applications.

The rest of the paper is organized as follows. In next section,
we present the proposed unsupervised BIQA model. In Section 3, we
describe the condition recognition model using the quality score se-
quence. In Section 4, we show the experimental results on benchmark
datasets and real word data, and we conclude this paper in Section 5.

2. The proposed unsupervised BIQA method

A high-quality image possesses certain regular statistical properties,
while the degradation will break the regularity. Therefore, the statistics
of a distorted image will be measurably different from those of pristine
images. The BIQA methods include two procedures: perceived model
construction and distance computation. The construction of the pristine
model and distortion model is the same: the images are first divided
into patches, and a visual-feature vector is extracted from each patch.
Then, the feature vectors are stacked together and fitted with a MVG
model.

Quality-aware feature extraction is the key issue in the BIQA al-
gorithm, and the selection of features should be an effective repre-
sentation of visual quality variations. The human visual system (HVS)
is highly sensitive to the structure and texture information in visual
scenes (Wang, 2004). Therefore, the variation in structure and tex-
ture (smoothness/roughness) can reflect the quality degradation degree
well. Based on this concern, we design our BIQA features by capturing
the structure and texture information in the image.

2.1. Quality-aware features extraction

A 2-D transform SVD decomposes the image into several basis im-
ages weighted by transformation coefficients, and visual quality can be
assessed by the changes in basis images and transformation coefficients.
For an image 𝐼𝑚×𝑛, SVD decompose it into three parts: left singular
ector 𝑈𝑚×𝑚, right singular vector 𝑉𝑛×𝑛 and singular values 𝛿𝑘×𝑘 as
ollows:

𝑚×𝑛 =
[

𝑢1, .𝑢𝑖., 𝑢𝑚
]

⎡

⎢

⎢

⎣

𝛿1
⋱

𝛿𝑘

⎤

⎥

⎥

⎦

[

𝑣1, .𝑣𝑖., 𝑣𝑛
]𝑇 (1)

where 𝑘 = 𝑚𝑖𝑛(𝑚, 𝑛). The matrix 𝑢𝑖𝑣𝑇𝑖 is the basis image of 𝐼 , which
denotes the low frequency (major structure) with small 𝑖, and denotes
high frequency (finer details) with large 𝑖. The sum of the basis images
forms the whole structure of the image, and is formulated as (Narwaria
and Lin, 2012):

𝑠 =
𝑘
∑

𝑖=1
𝑢𝑖𝑣

𝑇
𝑖 (2)

To visually show this point, Fig. 1(a) illustrates a clear image, and (b)
and (c) are the Addictive Gaussian Noise (AGN) — distorted, Gaussian
blur (GB)-distorted versions of (a), respectively. Fig. 1(d) illustrates
the 𝑠 map of (a). Notably that the 𝑠 map can effectively capture the
structure of the image. Any changes in the image will cause the changes
in 𝑈 and 𝑉 according to perturbation theory, and distortions affect
the structure of the visual perception represented by the basis image.
Fig. 1(e) illustrates the 𝑠 distribution of (a)∼(c), and it shows that the

𝑠 distribution can be accurately fitted with the zero-mean generalized
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Fig. 1. (a) is a clear image, (b) and (c) are the white noise (WN) and Gaussian blur (GB) distorted of (a). (d) illustrates the 𝑠 map of (a), and (e) illustrates the 𝑠 distribution of
(a)∼(c).
z
c
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𝑓

Gaussian distribution (GGD) (Sharifi and Leon-Garcia, 1995) with two
parameters 𝛼 and 𝛽:

𝑓𝐺𝐺𝐷(𝜒 ; 𝛼, 𝛽) =
𝛼

2𝛽𝛤 (1∕𝛼)
exp

(

−
(

𝜒
𝛽

)𝛼)

(3)

where 𝛤 (⋅) is the gamma function as follow:

𝛤 (𝜒) = ∫

∞

0
𝑡𝜒−1𝑒−𝑡 𝑑𝑡, 𝜒 > 0 (4)

The fitted parameters 𝛼 and 𝛽 are employed as the quality-aware
features.

The singular value (SV) 𝛿𝑖 is the weight of basis image 𝑢𝑖𝑣𝑇𝑖 , and
it is related to the luminance changes in images. Any distortions in
the image will cause a change in the luminance or texture of the
image, which represents a change in the singular values. In the M-
SVD metric (Shnayderman et al., 2006), Shnayderman et al. defined
the activity level of an image as the ratio between the largest and
the second largest singular values. A higher activity level indicates a
rougher or stronger texture of the image. In Wu et al. (2019), the
author found the first singular value related to the mean luminance of
the image, and the second and subsequent singular values were more
sensitive to the contrast change of the image. The texture variation
of an image is more sensitive to contrast change but less sensitive
to illustration change, so we use the second and subsequent singular
values to represent the variation of the image. Considering that the
energy of high frequencies (SVs with large indices) will be increased
when the image becomes rougher, and is reflected in the SVs with large
indices, we define the textural intensity (𝑇 𝐼) as the proportion of high
frequency components in the image:

𝑇 𝐼 =
∑𝑘

𝑖=4 𝛿𝑖
∑𝑘

𝑖=2 𝛿𝑖 + 𝑐1
(5)

here the sum from the fourth to the last SVs represents the 𝑇 𝐼 of high
requency components of image, and the sum from the second to the
ast SVs represents the 𝑇 𝐼 of whole image, and 𝑐1 is a constant value to
ncrease the stability of 𝑇 𝐼 . A larger 𝑇 𝐼 value indicates the rougher of
n image. To validate this point, we calculate 𝑇 𝐼 values on an reference
mage (Fig. 2(a)) and five level AGN distorted images (Fig. 2(b)∼(f)) as
ell as five level GB distorted images (Fig. 2(g)∼(k)). To capture the

local information, the image is decomposed into non-overlapped 8 × 8
atches. The mean value of 𝑇 𝐼 on each patch is set as the measure
ndex. The image becomes rougher with the increase noise level, and
moother with the increase of blur level.

Fig. 3(a) illustrates the 𝑇 𝐼 results of the images illustrated in Fig. 2.
ote that the distortion level 0 denotes the clear image. The figure

hows that the 𝑇 𝐼 value increased with the increasing AGN distortion
evel, and decreased with the increasing GB distortion level. Therefore,
he 𝑇 𝐼 value reflects the textural level of the image, since the AGN-
istorted image is rougher than GB-distorted. Fig. 3(b) shows the
bsolute difference value of 𝑇 𝐼 between the clear image and the dis-
orted image in Fig. 3(a): 𝐷 = |𝑇 𝐼𝑐𝑙𝑒𝑎𝑟 − 𝑇 𝐼𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 |. It can be found that
he 𝐷 value monotonically increased with the increasing of distortion
evel. That indicates 𝑇 𝐼 can effectively capture the distortions in the
mage.

In addition, motivated by the fact that HVS is sensitive to the

ost distorted areas, the percentile strategy is adopted to improve the
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correlations with subjective perception. Specifically, 𝑇 𝐼𝑠 are calculated
on the non-overlapped patches across the image. The quality-aware fea-
tures are calculated as the average value of the lowest 10th percentile
and the 100th percentile 𝑇 𝐼 values.

In regard to the naturalness of the images, modelling by the locally
MSCN coefficients and the products of pairs of adjacent MSCN coef-
ficients, has been proven to be an effective measure for naturalness
measurement (Wu et al., 2015; Zhang et al., 2015; Liu et al., 2019;
Wu et al., 2020). Given an image 𝐼 with spatial coordinates 𝑖 and 𝑗,
the MSCN is calculated as:

𝑀(𝑖, 𝑗) =
𝐼(𝑖, 𝑗) − 𝑢(𝑖, 𝑗)
𝜎(𝑖, 𝑗) + 𝑐2

(6)

where 𝑐2 denotes a constant value, and is fixed as 1. 𝑢 and 𝜎 are the
local mean and contrast, which can be obtained through

𝜇(𝑖, 𝑗) =
𝑀
∑

𝑚=−𝑀

𝑁
∑

𝑛=−𝑁
𝑤𝑖,𝑗𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) (7)

𝜎(𝑖, 𝑗) =

√

√

√

√

𝑀
∑

𝑚=−𝑀

𝑁
∑

𝑛=−𝑁
𝑤𝑚,𝑛(𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) − 𝜇(𝑖, 𝑗))2 (8)

For a clear image, the MSCN coefficients are subjective to a GGD. The
fitting parameters 𝛼 and 𝛽 will be changed accordingly when the image
is affected by distortions (Wu et al., 2015; Zhang et al., 2015; Liu et al.,
2019; Wu et al., 2020). The fitting parameters 𝛼 and 𝛽 are employed
as quality-aware features.

The fitting parameters that correspond to adjacent MSCN coeffi-
cients products are also selected to characterize the naturalness of an
image. For a MSCN map 𝑀(𝑖, 𝑗), the adjacent MSCN map at the hori-
ontal, vertical, main-diagonal, secondary diagonal orientations can be
alculated as 𝑀(𝑖, 𝑗)𝑀(𝑖+ 1, 𝑗), 𝑀(𝑖, 𝑗)𝑀(𝑖, 𝑗 + 1), 𝑀(𝑖, 𝑗)𝑀(𝑖+ 1, 𝑗 + 1),
nd 𝑀(𝑖, 𝑗)𝑀(𝑖+1, 𝑗 −1). The adjacent MSCN coefficients products can
e well modelled using a zero mode asymmetric GGD (AGGD) (Lasmar
t al., 2009):

𝐴𝐺𝐺𝐷(𝜒 ; 𝛾, 𝛽𝑙 , 𝛽𝑟) =

⎧

⎪

⎨

⎪

⎩

𝛾

(𝛽𝑙+𝛽𝑟)𝛤
(

1
𝛾

) exp
(

−
(

−𝜒
𝛽𝑙

)𝛾)
𝜒 ≤ 0

𝛾

(𝛽𝑙+𝛽𝑟)𝛤
(

1
𝛾

) exp
(

−
(

𝜒
𝛽𝑟

)𝛾)
𝜒 > 0

(9)

with the mean of the distribution is:

𝜂 =
(

𝛽𝑟 − 𝛽𝑙
)

𝛤
(

2
𝛾

)

𝛤
(

1
𝛾

) (10)

The fitting parameters (𝛾, 𝛽𝑙 , 𝛽𝑟, 𝜂) are obtained on each adjacent MSCN
map. Therefore 16 features are obtained. In totally, 18 features are
employed to characterize the naturalness of an image.

A high-quality image usually has high contrast and clear edges,
which can be captured by the gradient map. The fitting parameters of
the gradient map are employed as quality-aware features. The gradient
map in horizontal 𝐺ℎ and in vertical 𝐺𝑣 are obtained by convolving
the image with two Gaussian derivative filters along the horizontal
𝑓ℎ and vertical 𝑓𝑣 directions. For a zero-mean Gaussian distribution
𝑔(𝑥, 𝑦) = 1

2𝜋𝜎2 𝑒
−(𝑥2+𝑦2)∕(2𝜎2), 𝑓ℎ and 𝑓𝑣 are defined as:

𝑓 = 𝜕 𝑔(𝑥, 𝑦) = −𝑥 𝑒
− (𝑥2+𝑦2)

(2𝜎2) (11)
ℎ 𝜕𝑥 2𝜋𝜎4
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Fig. 2. (a) is a clear image from TID2013 database. (b)∼(f) are AGN distorted images, and (g)∼(k) are GB distorted images. The distortion level increased from left to right.
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Fig. 3. (a): 𝑇 𝐼 values of the images in Fig. 2. (b): 𝐷 values of the GB-distorted and
AGN-distorted images with different level.

𝑓𝑣 = 𝜕
𝜕𝑦

𝑔(𝑥, 𝑦) =
−𝑦
2𝜋𝜎4

𝑒
− (𝑥2+𝑦2)

(2𝜎2) (12)

he gradient coefficients 𝐺ℎ and 𝐺𝑣 can be fitted with zero mean GGD
6]. The fitted parameters 𝛼 and 𝛽 are employed as the quality-aware
eatures.

In summary, 26 features are extracted from an image, with 2
eatures to characterize the texture, 18 features to characterize the
aturalness and 6 features to characterize the structure. Furthermore,
he features are extracted in the original scale and the downsampled
cale, as HVS perceives the image in a multiscale strategy. Therefore,
total of 52 features are employed for IQA modelling.

.2. Feature pooling and quality score computation

To capture the local information of an image, the images are di-
ided into non-overlapped patches (denoted as 𝑏𝑠). The quality-aware
eatures are extracted on the patches, and fitted with a MVG model with
wo fitting parameters: the mean vector 𝑢 and the covariance matrix 𝛴,

formulated as:

𝑓 (𝜒 ; 𝑢, 𝛴) = 1
(2𝜋)𝑙∕2|𝛴|

1∕2
exp

(

−1
2
(𝜒 − 𝑢)𝑇 𝛴−1 (𝜒 − 𝑢)

)

(13)

where 𝜒 are the extracted features and 𝑙 = 52 is the length of the fea-
tures. The pristine MVG model is first constructed by extracting quality-
aware features from 125 pristine images from the NIQE model (Wu
et al., 2015). The fitting parameters 𝑢𝑝 and 𝛴𝑝 are calculated. Fur-
thermore, only the patches containing rich texture information are
selected for learning. In practice, patches with a larger contrast value
than the 𝛾% peak patch contrast are selected. Then, the same process
is performed on the test images to obtain the fitting parameters 𝑢𝑑

and 𝛴𝑑 . Finally, the quality score of the test image is formulated as

4

the Bhattacharyya distance between the MVG model fitted to pristine
images and the MVG model fitted to the test image.

𝑄𝑡 =

√

(

𝜇𝑡 − 𝜇𝑝
)𝑇

(𝛴𝑡 + 𝛴𝑝

2

)−1
(

𝜇𝑡 − 𝜇𝑝
)

(14)

ote that a higher 𝑄 indicates an image with relatively lower quality.

. IQA-based sintering condition recognition model

In most of IQA-based applications, the image quality is used as
supplementary means for the application, such as the parameter

election algorithms. In this paper, we propose to use the evaluated
uality scores as the direct factors, that is, the feature inputs of the
lassifier, for a visual recognition application. This strategy is based
n the fact that in a vision-based condition recognition of rotary kilns,
ifferent conditions have different patterns of image quality sequences
n flame videos.

.1. Background of condition recognition in rotary kiln

Monitoring and recognition of conditions based on flame images
nd videos have been developed in many coal-fired industries (Wang
t al., 2020a,b). There are three main conditions: normal, super-chilled,
uper-heated according to the temperature level in the burning zone
f the rotary kiln. The normal condition represents the temperature in
he burning zone within the set range, and it is the desired condition.
he super-heated and super-chilled conditions denote the temperatures
re lower or higher than the desired temperatures, which are abnormal
onditions and should be avoided in the burning process. Researchers
ave developed various methods to determine the conditions of the
otary kilns. They adopted the framework in which a feature extraction
rocess followed a classification method to determine the conditions.
he extracted features are the most obvious difference for different
ethods. There are three types of methods according to the feature

xtraction process (Hua Chen, 2020). The first type segments several
egions of interest areas (ROIs) (e.g., flame region, material region)
rom the flame image, and then extracts some statistical features on
t (Li et al., 2002). However, the ROIs are difficult to segment in
ome flame images due to the presence of dust and smoke. Hence
he second type of method extracts global and local features from
lame images (Wang et al., 2017). This strategy does not need the seg-
entation process, and therefore generates more robust performance.
ith the development of deep learning networks, the last type of
ethod extracts the features automatically based on the deep-learning
ethods (Qiu et al., 2019). Visual-based methods have a vital defect in

hat the recognition performance is affected significantly by the quality
f the images and videos.

According to field experience, the condition of the rotary kiln is
losely related to the quality of flame videos. When the sintering
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Fig. 4. The framework of the proposed quality-based condition recognition model.
emperature is moderate and the condition is normal, there is less dust
nd smoke in the burning zone, so images and videos captured under
ormal condition are of relatively high quality. Under super-chilled
ondition, the raw material has not sintered enough and still remains as
powder and is full of air in the burning zone, which deteriorates the
uality of flame images and videos. In addition, the flame videos flicker
eriously, which makes the quality of the flame image unstable. Under
uper-heated condition, a high temperature results in a large area of
ntensity saturation in the image, similar to over-exposed images (Chen
t al., 2016). This makes the quality of flame images relatively poor,
ut the qualities of images remain relatively stable. Under different
intering conditions, the quality of the flame videos exhibits different
atterns. Therefore, we attempt to use the quality of flame video as the
isual feature to recognize the condition of the kiln.

.2. Framework of the condition recognition model

The framework of the condition recognition model is illustrated
n Fig. 4. First, some flame images with relatively high quality are
mployed to build a pristine MVG model. Specifically, the flame images
re defogged to obtain the pristine flame images. The quality-aware
eatures are extracted from defogged images and were fitted with a
VG pristine model. Then, in the training stage, the flame image

equence is first extracted from the flame video and is divided into
erial batches. Each batch contains 𝑛 flame images. Then, for each
lame image, quality-aware features are extracted and fitted with a
VG model. The quality of an image is calculated as the Bhattacharyya

istance between the MVG pristine model and the MVG model. The
uality of each image is obtained and is combined into a quality vector
= [𝑞1, 𝑞2,… , 𝑞𝑛]. Finally, a classification model is trained to map

he feature vectors to the conditions 𝑦 (𝑦 = 1, 2, 3) of the kiln. In this
aper, the multi-class optimal margin machine (mcODM) (Zhang and
hou, 2017) is employed as the classification model. Finally, in the
est stage, similar to the process of the training stage, a quality vector
𝑡 = [𝑞1, 𝑞2,… , 𝑞𝑛] is extracted from the testing flame image batch and
ed into the trained classification model to obtain the classification
esult 𝑦𝑡.

.3. Pristine model construction of flame images

We attempted to use the pristine MVG model learned from nat-

ral images to compute the image qualities of flames. However, the

5

Fig. 5. (a): A flame image and (b): the corresponds filtered image.

recognition performance was not satisfactory (shown in Table 5). We
surmise that this occurred because the model was constructed using
pristine natural images under the natural light source. Nevertheless,
the flame image is slightly different from the natural image. The light
source of the flame image in the burning zone is the burning material
and flame image in the centre of the image, which is not a natural
light source. Therefore, we train a pristine MVG model using a set of
high-quality flame images. Because of the on-site combustion of coal
and material, pristine flame images cannot be obtained, as dust and
smoke are always present in the flame images. Therefore, we use the
guided filter algorithm (He et al., 2013) for enhancement of flame
images to obtain pristine flame images. Fig. 5 illustrates a flame image
and its filtered image. The flame image is effectively deblurred, and
its structure and edge are retained. We used a total of 108 filtered
flame images for fitting with a pristine MVG model, and these severed
as an ‘‘reference’’ against the test flame image. The quality of the test
flame image is calculated as the Bhattacharyya distance between the
reference MVG model and the MVG model from the test flame image.

To validate the effectiveness of our proposed IQA model on flame
images, we evaluated it on six flame images with increasing distortion
levels, as shown in Fig. 6. The quality scores of the images in Fig. 6
evaluated by the proposed IQA are shown in Fig. 7(a). We can see that
the quality scores monotonically increase with increasing distortion
level. In contrast, we compute the quality scores by existing unsuper-
vised IQA algorithms: QAC, NIQE, IL-NIQE, SNP-NIQE and Q-NIQE.
The results are plotted in Fig. 7(b)∼(f). The quality scores evaluated by
the competing methods do not change monotonically with the change
in distortion level. This indicates that the proposed model is more
effective in evaluating the distortion level of flame images compared
with existing unsupervised IQA algorithms.



L. Wu, X. Zhang, H. Chen et al. Engineering Applications of Artificial Intelligence 107 (2022) 104547

m
q
F
T

w
f
T
u
h
s
i
m
t
(
i
s
o
c

Fig. 6. Six flame images with increasing distortion level.
Fig. 7. The quality scores of the flame images in Fig. 6 using the model (a) Proposed. (b) QAC, (c) NIQE, (d) IL-NIQE, (e) SNP-NIQE, (f) Q-NIQE.
Fig. 8. The 𝑠 distribution of the three flame images illustrated in Fig. 6.

Furthermore, one crucial question to be verified is whether the
ethod used to extract feature from natural images can be used in the

uality-aware feature extraction of flame images. To verify this point,
ig. 8 illustrates the 𝑠 distribution of the three flame images in Fig. 6.
his figure shows that the 𝑠 distribution probability density can also

be well modelled by the zero-mean GGD. Therefore, it is feasible to
adopt feature extraction method used for natural images to extract the
quality-aware features from flame images.

To investigate the relation between quality scores and conditions
in rotary kiln, we perform the proposed IQA algorithm to compute
quality scores on four flame clips with different sintering conditions
from ZhongZhou Aluminium Corporation in China. Each video contains
5 min at 25 average frames per second fps. Therefore, each video
contains 5 × 60 × 25 = 7500 frames. To reduce the computational cost,

e capture an frame every 6 frames for each video. Therefore, 1250
rames are analysed in each video. The results are illustrated in Fig. 9.
he quality score sequences of the flame videos have different patterns
nder different conditions. One can observe that the image quality is
igh and stable under normal condition (Fig. 9(a)), therefore yielding
mall mean and variance values. In the super-heated condition, the
mage quality is relatively poor but remains stable (Fig. 9(b)), that
eans the mean of sequence is large while the variance is small. In

he super-chilled condition, the image quality is worst and unstable
Fig. 9(c)). The mean value and the variance are both large. Specif-
cally, in Fig. 9(d), when the condition is changed from normal to
uper-chilled, an increasing and unstable quality score sequence is
bserved. This indicates that the statistics of the quality score sequence
an be used to distinguish burning conditions of rotary kilns.
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4. Experimental results

4.1. Experimental protocol and setup

We comprehensively compare the proposed model with existing
state-of-art unsupervised models: QAC (Xue et al., 2013), NIQE (Wu
et al., 2015), IL-NIQE (Zhang et al., 2015), SNP-NIQE (Liu et al.,
2019) and Q-NIQE (Wu et al., 2020) on four popular public IQA
databases: LIVE (Sheikh et al., 2006), CSIQsub (Larson and Chandler,
2010), TID2013sub (Ponomarenko et al., 2013), and IVCsub (Le Callet
and Autrusseau, 2005). In the comparison, the prediction accuracy
and computational complexity are taken into consideration. Similar
to the experiment on SNP-NIQE and Q-NIQE approaches, the most
common distortions (e.g., JPEG, JP2K, AGN and GB) are selected for
testing. Detailed information on the databases is shown in Table 1.
Four commonly used measure indices, the Spearman Rank order Corre-
lation coefficient (SRCC), Kendall’s rank correlation coefficient (KRCC),
Pearson linear correlation coefficient (PLCC) and root mean square
error (RMSE), are employed for evaluation. SRCC and KRCC measure
the prediction monotonicity of an IQA model. The PLCC measures the
linear correlation between the objective quality scores and subjective
scores. RMSE measures the errors between subjective scores and the ob-
jective scores after regression, with the regression function is modelled
as follows:

𝑓 (𝜒) = 𝜃1

(

1
2
− 1

1 + exp
(

𝜃2 ⋅
(

𝜒 − 𝜃3
))

)

+ 𝜃4 ⋅ 𝜒 + 𝜃5 (15)

where 𝜃1,.,5 are the five parameters to be fitted. Larger SRCC, KRCC and
PLCC values as well as smaller RMSE value indicate better performance
of the model. To obtain the overall performance of an IQA model,
the direct average (denoted as avg) and weighted average (denoted as
AVG) are commonly used. The number of images in the database is set
as the weight.

There are three parameters in our model: the block size 𝑏𝑠, the
threshold percentile value 𝛾 and the length of the quality vector
𝑛. Fig. 10 illustrates the SRCC values on the LIVE, CSIQsub and
TID2013sub databases, with 𝑏𝑠 ranging from 56 to 104 with an interval
of 8, and 𝛾 ranging from 0.55 to 0.8 with an interval of 0.05. Fig. 10
indicates that a higher SRCC value can be obtained when 𝑏𝑠 is within
the interval [72 96], and 𝛾 within the interval [0.55 0.7]. In our
model, 𝑏𝑠 is fixed as 96, and 𝛾 is fixed as 0.6. Fig. 11 illustrates
the overall prediction accuracy versus the length of the flame image
sequence 𝑛, with 𝑛 ranging from 10 to 50 with an interval of 10.
In this experiment, we employ 𝑛 flame images from the 25-fps flame
video by extracting one frame in six frames. Therefore, when predicting
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Fig. 9. The quality evaluation of the proposed model on four flame videos with the condition is (a) Normal, (b) Super-heated, (c) Super-chilled and (d) from Normal to Super-chilled.
Table 1
Main information about tested image quality databases.
Database LIVE CSIQsub TID2013sub IVCsub

Reference images Number 29 30 25 10
Distorted images Number 779 600 500 120
Distortion types JP2K, JPEG, FF, GB, WN JP2K, JPEG, GB, AWGN JPEG, JP2K, AGN, GB JP2K, JPEG, GB
Observers 161 35 917 15
Fig. 10. The SRCC values under various parameters on the (a) LIVE database, (b) CSIQsub database, (c) TID2013sub database.
the working condition at time 𝑡, the continuous image frames of the
previous 𝑛 ∗ 6∕25 time period are used. For each experiment, the
model is tested 50 times, and the average value is illustrated. When 𝑛 is
too small, the recognition model is susceptible to short-term abnormal
working conditions (such as deflagration). When 𝑛 is large enough,
the model has good robustness and can effectively suppress short-
term abnormal working conditions interference. One can observe that
the model achieves relatively high classification accuracy when 𝑛 ≥
30. Therefore, taking into account both calculation and accuracy, we
employ 𝑛 = 30. This means that we adopt the flame video of the
previous 7 s to extract flame characteristics.

4.2. Experimental on benchmark databases

First, we analyse the extracted features. Fig. 12 shows the SRCC val-
ues on the LIVE, CSIQsub, TID2013sub and IVCsub databases when con-
structing the model using the structure+texture features, naturalness
features, and their combination. One can observe that the prediction
accuracy is boosted when combining the structural and texture features
as well as the naturalness features. That indicates the features play a
complementary role in image representation.

Then, the proposed method is compared with the competing meth-
ods on each database. The results are shown in Table 2. The best two
results in each row are highlighted in red and blue, respectively. One
can observe that the performance of the proposed model is nearly
consistent well on all measure indices. Overall, the proposed model
achieves the best results regardless of whether the direct average or
weighted average is used.
7

Fig. 11. The prediction accuracy versus the length of the flame image sequence 𝑛.

In practical applications, the speed of the model is also an important
factor for consideration. Finally, the computational complexity of a
model is evaluated in terms of the fps. This experiment is conducted
on a Dell workstation with a 3.2 GHz Intel Core 7 processor and 16 GB
RAM. The software platform is Matlab R2018b. Each model is tested
on LIVE 20 times, and the average results are shown in Table 3. Our
model is much faster than SOTA models such as IL-NIQE, SNP-NIQE and
Q-NIQE. QAC and NIQE are faster than ours, but they have the modest
prediction accuracy. Combining Tables 2 and 3, One can observe that
the proposed model not only has higher prediction accuracy but also
has lower complexity than other SOTA unsupervised methods.
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Table 2
Evaluation results compared with unsupervised methods.

Database Measure
index

QAC
(Xue et al., 2013)

NIQE
(Wu et al., 2015)

IL-NIQE
(Zhang et al., 2015)

SNP-NIQE
(Liu et al., 2019)

Q-NIQE
(Wu et al., 2020)

TI-NIQE

LIVE

SRCC 0.8443 0.9083 0.8978 0.9073 0.9113 0.9268
KRCC 0.6443 0.7310 0.7129 0.7350 0.7323 0.7664
PLCC 0.7575 0.9067 0.9025 0.9059 0.9077 0.9275
RMSE 17.8371 11.5223 11.7686 11.5722 11.4622 10.2119

CSIQsub

SRCC 0.8364 0.8714 0.8802 0.9013 0.9046 0.8956
KRCC 0.6272 0.6863 0.6980 0.7205 0.7216 0.7270
PLCC 0.8474 0.8883 0.9070 0.9082 0.9126 0.9214
RMSE 0.1500 0.1298 0.1190 0.1183 0.1157 0.1098

TID2013sub

SRCC 0.7862 0.7976 0.8420 0.8574 0.8586 0.8608
KRCC 0.5941 0.5930 0.6536 0.6592 0.6562 0.6687
PLCC 0.7801 0.8092 0.8582 0.8484 0.8576 0.8926
RMSE 0.8726 0.8195 0.7161 0.7385 0.7174 0.6288

IVCsub

SRCC 0.7424 0.7911 0.8494 0.8390 0.8596 0.8923
KRCC 0.5352 0.6029 0.6571 0.6532 0.6717 0.7111
PLCC 0.7547 0.7971 0.8604 0.8507 0.8735 0.9066
RMSE 0.8148 0.7499 0.6329 0.6528 0.6047 0.5241

avg
SRCC 0.8023 0.8421 0.8674 0.8763 0.8835 0.8939
KRCC 0.6502 0.6533 0.6804 0.6920 0.6955 0.7183
PLCC 0.7849 0.8503 0.8820 0.8783 0.8879 0.9120

AVG
SRCC 0.8213 0.8625 0.8757 0.8889 0.8930 0.8989
KRCC 0.6980 0.6754 0.6902 0.7068 0.7064 0.7268
PLCC 0.7900 0.8702 0.8902 0.8889 0.8946 0.9157
Fig. 12. SRCC values when constructing the model using the Structural and Texture
eatures, Naturalness features and the combination of them.

able 3
omputational complexity of the tested methods on LIVE database.
Metrics QAC NIQE IL-NIQE SNP-NIQE Q-NIQE TI-NIQE

fps 8.2508 9.5420 0.2729 0.5172 0.3502 2.4155

4.3. Experiments on real-word data with the condition recognition model of
rotary kilns

To train and test the model, 53 2-min videos at 25-fps recorded
in the ZhongZhou Aluminium Corporation in China are used, which
include 20 videos in the normal condition, 20 videos in super-chilled
condition and 13 videos in the super-heated condition as labelled by
an experienced kilnman. There are 25 × 2 × 60 = 3000 frames for
ach video. We capture an image every 6 frames. Therefore, 500 flame
mages are obtained from each video. Since we chose 30 flame images
or condition recognition, we obtained 471 samples for each video. For
ach condition, 4 videos are used for training, and the rest are used for
esting (which means a total of 12 videos for training and 41 videos
or testing). Overall, 5652 samples are used for training, and 19 311
amples are used for testing. Detailed numbers of samples used for
raining and testing are listed in Table 4.
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Table 4
The number of samples used in the sintering condition recognition.

Normal Super-chilled Super-heated Total

Training 1884 1884 1884 5652
Testing 7536 7536 4239 19311

Two types of models are employed for comparison. The first type
of model comes from existing unsupervised methods (i.e., QAC, NIQE,
IL-NIQE, SNP-NIQE, Q-NIQE). They are retrained using high-quality
flame images and implemented in the flame image quality evaluation.
The second type of model consists of two deep learning classification
models: deep convolution neural networks (CNN)-based and trans-
fer learning (TL)-based. Detailed information of the two models is
illustrated as follows:

The CNN-based classification model: including an input layer, two
convolution layers, two dropout layers, two ReLU layers, two cross
channel normalization layers and two max pooling layers to extract the
deep features. These are followed by a fully connected layer, a softmax
layer and a classification layer to obtain the classification results.

TL-based classification model: a model based on the alexanet net-
work is established. By using the transfer learning, the network model
is initialized by the parameters of AlexNet’s convolutional network
trained on the ImageNet dataset to realize parameter migration. The
model is retrained on the flame image dataset to realize the condition
recognition of rotary kilns.

Table 5 illustrates the prediction accuracy of the proposed method
and the competing methods. Note that only the ‘‘proposed-original’’ is
trained on pristine natural images, and the rest are trained on high-
quality flame images. Some conclusions can be drawn from Table 5.
First, comparing the results of the proposed-original method and the
proposed-flame method, a much better results can be achieved when
the method is retrained using the flame images. Therefore, it is nec-
essary to retrain the model using high quality flame images. Next,
the proposed method achieves much better performance than existing
unsupervised methods. This indicates that the proposed method is more
effective in capturing the distortions in the flame image. Finally, the
deep learning-based methods show good performance under normal
and super-chilled conditions. However, the performance is very poor
under super-heated condition. This is mainly because the flame image
in the super-heated condition is not much different from that in the
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Fig. 13. The confusion matrix of the best four sintering condition recognition methods: (a) Q-NIQE, (b) CNN-based, (c) TL-based and (d) the proposed methods.
Table 5
The prediction accuracy of the proposed and the competing models.

Method Normal Super-chilled Super-heated Overall

Proposed-original 53.59% 52.38% 81.46% 59.23%
QAC 76.59% 78.41% 18.77% 64.61%
NIQE 76.59% 78.41% 18.77% 64.61%
IL-NIQE 94.67% 50.29% 48.59% 67.24%
SNP-NIQE 95.42% 63.48% 73.69% 78.19%
Q-NIQE 95.79% 68.53% 80.25% 81.74%
CNN-based 95.86% 94.53% 23.65% 79.49%
TL-based 96.13% 94.85% 27.38% 80.53%
Proposed-flame 96.48% 94.16% 90.38% 94.23%

normal condition. In contrast, the proposed method shows consistently
good performance (above 90%) under all the conditions. This indicates
that the proposed method is more robust and effective than the other
methods.

To show the global performance of a model, Fig. 13 illustrates the
confusion matrix of the best 4 methods. Some conclusions can be drawn
from the figure. First, the normal condition is more easily misclassified
as a super-heated condition than the super-chilled condition. The main
reason is that the normal and super-heated conditions have higher
brightness and clearer edges compared with the super-chilled condi-
tion. Second, the super-chilled condition is more easily misclassified
as a super-heated condition than the normal condition. This is because
the flame videos under normal conditions are of better quality than the
flame videos under super-chilled and super-heated conditions.

In many factories, the condition of the kiln is still determined the
kilnman by watching the flame video captured by the camera. This
is mainly caused by the unstable prediction accuracy. We believe the
proposed model will contribute to objective condition recognition. With
the objective model, the workload of the kilnman can be significantly
reduced. In addition, benefiting from the high prediction accuracy of
the proposed sintering recognition model, the energy consumption of
the rotary kiln will be greatly reduced. Finally, the proposed model
can also be used as a reference for other industrial fields. The proposed
idea has great potential in the fractional domain Zhang et al. (2018)
and Zhe et al. (2020). For more robust performance, the quality scores
of the images/videos may be a good choice for a control system.

5. Conclusion

For more robust visual-based technology applications in industrial
systems, we first proposed an application appealing unsupervised BIQA
model. Then, this BIQA model is applied to flame images to realize the
flame image quality evaluation. Finally, based on the quality score se-
quence of the flame videos, we proposed a robust condition recognition
model. This paper provides the following contributions. In principle, we
proposed an unsupervised BIQA method. The proposed model does not
need the reference image and subjective quality scores for implemen-
tation, and more importantly, has high prediction accuracy and low
computational complexity compared with SOTA unsupervised models.
Therefore, the proposed model is easy to implement in applications.
9

Regarding application, this paper gives an example of how to use
the general BIQA model to finish the industrial flame image quality
evaluation. In addition, we provide an example of how to use the
quality scores to solve practical industrial problems. In the future, we
will further concentrate on the application of IQA in other fields, such
as image defogging and rain removal tasks.
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