Numerical Solutions of Initial Value Problems －－－Numerical Methods for ODEs

MATH 3014
Monday \＆Thursday 14：30－15：45
Instructor：Dr．Luo Li
https：／／www．fst．um．edu．mo／personal／liluo／math3014／

Department of Mathematics
Faculty of Science and Technology

- Finite difference methods for IVPs
- How to use Matlab programming to solve IVP
- The methods described here can be used as time discretization techniques for various applications.

Reference book:

Kendall Atkinson, Weimin Han, David Stewart, Numerical Solution of Ordinary Differential Equations, John Wiley \& Sons, Inc. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118164495

A first-order differential equation

$$
Y^{\prime}(t)=f(t, Y(t))
$$

where $Y(t)$ is an unknown function that is being sought.
For example, given a function $g, \quad Y^{\prime}(t)=g(t) \quad \Longrightarrow \quad Y(t)=\int g(s) d s+c$
with c an arbitrary integration constant. The constant c, and thus a particular solution, can be obtained by using the initial condition $Y\left(t_{0}\right)=Y_{0}$.

Example $\quad\left\{\begin{array}{l}Y^{\prime}(t)=\sin (t) \\ Y\left(\frac{\pi}{3}\right)=2,\end{array}\right.$
The general solution of the equation is $Y(t)=-\cos (t)+c$.
If we specify the condition $Y\left(\frac{\pi}{3}\right)=2$, then it is easy to find $c=2.5$.

Example Using the method of integrating factors.

$$
Y^{\prime}(t)=\lambda Y(t)+g(t)
$$

with λ a given constant. Multiplying the linear equation by the integrating factor $e^{-\lambda t}$, we can reformulate the equation as $\frac{d}{d t}\left(e^{-\lambda t} Y(t)\right)=e^{-\lambda t} g(t)$.
Integrating both sides from t_{0} to t, we obtain

$$
e^{-\lambda t} Y(t)=c+\int_{t_{0}}^{t} e^{-\lambda s} g(s) d s
$$

where

$$
c=e^{-\lambda t_{0}} Y\left(t_{0}\right) .
$$

So the general solution

$$
Y(t)=e^{\lambda t}\left[c+\int_{t_{0}}^{t} e^{-\lambda s} g(s) d s\right]=c e^{\lambda t}+\int_{t_{0}}^{t} e^{\lambda(t-s)} g(s) d s
$$

General Solvability Theory

For an IVP, the Lipschitz continuity can guarantee the well-posedness.

Theorem Let D be an open connected set in \mathbb{R}^{2}, let $f(t, y)$ be a continuous function of t and y for all (t, y) in D, and let $\left(t_{0}, Y_{0}\right)$ be an interior point of D. Assume that $f(t, y)$ satisfies the Lipschitz condition

$$
\left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right| \leq K\left|y_{1}-y_{2}\right| \quad \text { all }\left(t, y_{1}\right),\left(t, y_{2}\right) \text { in } D
$$

for some $K \geq 0$. Then there is a unique function $Y(t)$ defined on an interval $\left[t_{0}-\alpha, t_{0}+\alpha\right]$ for some $\alpha>0$, satisfying

$$
\begin{aligned}
& Y^{\prime}(t)=f(t, Y(t)), \quad t_{0}-\alpha \leq t \leq t_{0}+\alpha \\
& Y\left(t_{0}\right)=Y_{0}
\end{aligned}
$$

For example, we can use $K=\max _{(t, y) \in \bar{D}}\left|\frac{\partial f(t, y)}{\partial y}\right|$
provided this is finite.

Example Consider the initial value problem

$$
Y^{\prime}(t)=2 t[Y(t)]^{2}, \quad Y(0)=1
$$

Here

$$
f(t, y)=2 t y^{2}, \quad \frac{\partial f(t, y)}{\partial y}=4 t y
$$

and both of these functions are continuous for all (t, y). Thus, by the theorem there is a unique solution to this initial value problem for t in a neighborhood of $t_{0}=0$. This solution is

$$
Y(t)=\frac{1}{1-t^{2}}, \quad t \neq \pm 1
$$

This example illustrates that the continuity of $f(t, y)$ and $\partial f(t, y) / \partial y$ for all (t, y) does not imply the existence of a solution $Y(t)$ for all t.

Stability of the Initial Value Problem

Stability means that a small perturbation in the initial value of the problem

leads to a small change in the solution.

Make a small change in the initial value for the initial value problem,

$$
Y_{\epsilon}^{\prime}(t)=f\left(t, Y_{\epsilon}(t)\right), \quad t_{0} \leq t \leq b, \quad Y_{\epsilon}\left(t_{0}\right)=Y_{0}+\epsilon .
$$

The original problem $\quad Y^{\prime}(t)=f(t, Y(t)), \quad Y\left(t_{0}\right)=Y_{0}$.
If for some $c>0$ that is independent of ϵ,

$$
\left\|Y_{\epsilon}-Y\right\|_{\infty} \equiv \max _{t_{0} \leq t \leq b}\left|Y_{\epsilon}(t)-Y(t)\right| \leq c \epsilon
$$

then small changes in the initial value Y_{0} will lead to small changes in the solution $Y(t)$ of the initial value problem.

$$
\left\{\begin{array}{l}
\left\|Y_{\epsilon}-Y\right\|_{\infty} \approx \epsilon: \text { well-conditioned } \\
\left\|Y_{\epsilon}-Y\right\|_{\infty} \gg \epsilon: \text { ill-conditioned }
\end{array}\right.
$$

Example The problem

$$
Y^{\prime}(t)=\lambda[Y(t)-1], \quad 0 \leq t \leq b, \quad Y(0)=1
$$

has the solution

$$
Y(t)=1, \quad 0 \leq t \leq b
$$

The perturbed problem

$$
Y_{\epsilon}^{\prime}(t)=\lambda\left[Y_{\epsilon}(t)-1\right], \quad 0 \leq t \leq b, \quad Y_{\epsilon}(0)=1+\epsilon
$$

has the solution

$$
Y_{\epsilon}(t)=1+\epsilon e^{\lambda t}, \quad 0 \leq t \leq b
$$

For the error, we obtain

$$
\begin{aligned}
Y(t)-Y_{\epsilon}(t) & =-\epsilon e^{\lambda t} \\
\max _{0 \leq t \leq b}\left|Y(t)-Y_{\epsilon}(t)\right| & =\left\{\begin{array}{cl}
|\epsilon|, & \lambda \leq 0, \longrightarrow \text { well-conditioned } \\
|\epsilon| e^{\lambda b}, & \lambda \geq 0 .
\end{array} \quad\right. \text { ill-conditioned }
\end{aligned}
$$

Why Numerical Methods?

- Many differential equations are too complicated to have solution formulas.
- Numerical methods provide a powerful alternative tool for solving the differential equation
Denote $Y(t)$ the true solution of the initial value problem with the initial value Y_{0}

$$
\left\{\begin{array}{l}
Y^{\prime}(t)=f(t, Y(t)), \quad t_{0} \leq t \leq b, \\
Y\left(t_{0}\right)=Y_{0}
\end{array}\right.
$$

We aim to find an approximate solution $y(t)$ at a discrete set of nodes,

The following notations are all used for the approximate solution at the node points:

$$
y\left(t_{n}\right)=y_{h}\left(t_{n}\right)=y_{n}, \quad n=0,1, \ldots, N .
$$

1.3 The Forward EULER'S Method

A forward difference approximation $Y^{\prime}(t) \approx \frac{1}{h}[Y(t+h)-Y(t)]$.
Applying this to the initial value problem at $t=t_{n}, \quad Y^{\prime}\left(t_{n}\right)=f\left(t_{n}, Y\left(t_{n}\right)\right)$,
we obtain

$$
\begin{aligned}
\frac{1}{h}\left[Y\left(t_{n+1}\right)-Y\left(t_{n}\right)\right] & \approx f\left(t_{n}, Y\left(t_{n}\right)\right) \\
Y\left(t_{n+1}\right) & \approx Y\left(t_{n}\right)+h f\left(t_{n}, Y\left(t_{n}\right)\right)
\end{aligned}
$$

Euler's method is defined by taking this to be exact:

$$
y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right), \quad 0 \leq n \leq N-1
$$

Figure: An illustration of Forward Euler's Method

The tangent line at t_{n} has slope $Y^{\prime}\left(t_{n}\right)=f\left(t_{n}, Y\left(t_{n}\right)\right)$.

Example Solve

$$
Y^{\prime}(t)=\frac{Y(t)+t^{2}-2}{t+1}, \quad Y(0)=2
$$

whose true solution is

$$
Y(t)=t^{2}+2 t+2-2(t+1) \log (t+1)
$$

Euler's method for this differential equation is

$$
y_{n+1}=y_{n}+\frac{h\left(y_{n}+t_{n}^{2}-2\right)}{t_{n}+1}, \quad n \geq 0
$$

with $y_{0}=2$ and $t_{n}=n h$.

Matlab program for Forward Euler's Method $y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)$

h	t	$y_{h}(t)$	Error	Relative Error
0.2	1.0	2.1592	$6.82 \mathrm{e}-2$	0.0306
	2.0	3.1697	$2.39 \mathrm{e}-1$	0.0701
	3.0	5.4332	$4.76 \mathrm{e}-1$	0.0805
	4.0	9.1411	$7.65 \mathrm{e}-1$	0.129
	5.0	14.406	1.09	0.0703
	6.0	21.303	1.45	0.0637
0.1	1.0	2.1912	$3.63 \mathrm{e}-2$	0.0163
	2.0	3.2841	$1.24 \mathrm{e}-1$	0.0364
	3.0	5.6636	$2.46 \mathrm{e}-1$	0.0416
	4.0	9.5125	$3.93 \mathrm{e}-1$	0.0665
	5.0	14.939	$5.60 \mathrm{e}-1$	0.0361
	6.0	22.013	$7.44 \mathrm{e}-1$	0.0327
0.05	1.0	2.2087	$1.87 \mathrm{e}-2$	0.00840
	2.0	3.3449	$6.34 \mathrm{e}-2$	0.0186
	3.0	5.7845	$1.25 \mathrm{e}-1$	0.0212
	4.0	9.7061	$1.99 \mathrm{e}-1$	0.0337
	5.0	15.214	$2.84 \mathrm{e}-1$	0.0183
	6.0	22.381	$3.76 \mathrm{e}-1$	0.0165

Solution of Forward Euler's Method when $h=0.2$.

1.4 Error Analysis of Euler's Method

- Assume that the initial value problem has a unique solution $Y(t)$ on $t_{0} \leq t \leq b$
- Assume that the solution has a bounded second derivative $Y^{\prime \prime}(t)$ over this interval

$$
Y\left(t_{n+1}\right)=Y\left(t_{n}\right)+h Y^{\prime}\left(t_{n}\right)+\frac{1}{2} h^{2} Y^{\prime \prime}\left(\xi_{n}\right)
$$

for some $t_{n} \leq \xi_{n} \leq t_{n+1}$. Using the fact that $Y(t)$ satisfies the differential equation,

$$
Y^{\prime}(t)=f(t, Y(t)),
$$

our Taylor approximation becomes

$$
Y\left(t_{n+1}\right)=Y\left(t_{n}\right)+h f\left(t_{n}, Y\left(t_{n}\right)\right)+\frac{1}{2} h^{2} Y^{\prime \prime}\left(\xi_{n}\right) .
$$

The term

$$
T_{n+1}=\frac{1}{2} h^{2} Y^{\prime \prime}\left(\xi_{n}\right)
$$

is called the truncation errorfor Euler's method, and it is the error in the approximation

$$
Y\left(t_{n+1}\right) \approx Y\left(t_{n}\right)+h f\left(t_{n}, Y\left(t_{n}\right)\right) .
$$

To analyze the error in Euler's method, subtract $y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)$

$$
\text { from } \quad Y\left(t_{n+1}\right)=Y\left(t_{n}\right)+h f\left(t_{n}, Y\left(t_{n}\right)\right)+\frac{1}{2} h^{2} Y^{\prime \prime}\left(\xi_{n}\right)
$$

we have $Y\left(t_{n+1}\right)-y_{n+1}=Y\left(t_{n}\right)-y_{n}+h\left[f\left(t_{n}, Y\left(t_{n}\right)\right)-f\left(t_{n}, y_{n}\right)\right]$

$$
+\frac{1}{2} h^{2} Y^{\prime \prime}\left(\xi_{n}\right)
$$

The error in y_{n+1} consists of two parts:
(1) the truncation error T_{n+1}, newly introduced at step t_{n+1};
(2) the propagated error $Y\left(t_{n}\right)-y_{n}+h\left[f\left(t_{n}, Y\left(t_{n}\right)\right)-f\left(t_{n}, y_{n}\right)\right]$.

$$
f\left(t_{n}, Y\left(t_{n}\right)\right)-f\left(t_{n}, y_{n}\right)=\frac{\partial f\left(t_{n}, \zeta_{n}\right)}{\partial y}\left[Y\left(t_{n}\right)-y_{n}\right] \quad \text { Mean value thedrem }
$$

for some ζ_{n} between $Y\left(t_{n}\right)$ and y_{n}. Let $e_{k} \equiv Y\left(t_{k}\right)-y_{k}, k \geq 0$,

$$
e_{n+1}=\left[1+h \frac{\partial f\left(t_{n}, \zeta_{n}\right)}{\partial y}\right] e_{n}+\frac{1}{2} h^{2} Y^{\prime \prime}\left(\xi_{n}\right) .(*)
$$

Let us first consider a special case that $e_{n+1}=\left[1+h \frac{\partial f\left(t_{n}, \zeta_{n}\right)}{\partial y}\right] e_{n}+\frac{1}{2} h^{2} Y^{\prime \prime}\left(\xi_{n}\right)$. the error in Euler's method. Consider using Euler's method to solve the problem

$$
Y^{\prime}(t)=2 t, \quad Y(0)=0
$$

whose true solution is $Y(t)=t^{2}$. Then, from the error formula (*) , we have

$$
e_{n+1}=e_{n}+h^{2}, \quad e_{0}=0
$$

where we are assuming the initial value $y_{0}=Y(0)$. This leads, by induction, to

$$
e_{n}=n h^{2}, \quad n \geq 0
$$

Since $n h=t_{n}$.

$$
e_{n}=h t_{n}
$$

For each fixed t_{n}, the error at t_{n} is proportional to h. The truncation error is $\mathcal{O}\left(h^{2}\right)$, but the cumulative effect of these errors is a total error proportional to h.

What if at some point t_{n+1} we discover that $Y\left(t_{n+1}\right)-y_{n+1}$ is too large?
Decreasing h from t_{n} to t_{n+1} ? No!
Decreasing h from t_{n-1} to t_{n+1} ? No!
We should decrease h from t_{0} to t_{n+1} !

The error $Y\left(t_{n+1}\right)-y_{n+1}$ is called the global error or total error at t_{n+1}.
We next define the locall error by introducing the following initial value problem: $u_{n}^{\prime}(t)=f\left(t, u_{n}(t)\right), \quad t \geq t_{n}$,

$$
u_{n}\left(t_{n}\right)=y_{n} . \longrightarrow \text { local solution }
$$

Assuming the solution y_{n} at t_{n} is the exact solution.

$$
\text { local error: } L E_{n+1}=u_{n}\left(t_{n+1}\right)-y_{n+1} . \longrightarrow \begin{aligned}
& \text { Relation with } \\
& \text { truncation error? }
\end{aligned}
$$

	$u_{n}\left(t_{n}\right)=y_{n}$
Global initial value problem: from t_{0} to t_{n+1}	y_{n+1}
$Y^{\prime}(t)=f(t, Y(t))$,	t_{n}
$Y\left(t_{0}\right)=Y_{0}$.	$u_{n}^{\prime}(t)=f\left(t, u_{n}(t)\right)$,
$t_{n}\left(t_{n}\right)=y_{n}$.	

For the initial value problem $\quad Y^{\prime}(t)=f(t, Y(t)), \quad t_{0} \leq t \leq b, \quad(* *)$

$$
Y\left(t_{0}\right)=Y_{0} .
$$

If there exists $K \geq 0$ such that $\quad\left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right| \leq K\left|y_{1}-y_{2}\right|(* * *)$ for $-\infty<y_{1}, y_{2}<\infty$ and $t_{0} \leq t \leq b$.
Theorem Let $f(t, y)$ be a continuous function for $t_{0} \leq t \leq b$ and $-\infty<y<\infty$, and further assume that $f(t, y)$ satisfies the Lipschitz condition (***). Assume that the solution $Y(t)$ of ($(*)$ has a continuous second derivative on $\left[t_{0}, b\right]$. Then the solution $\left\{y_{h}\left(t_{n}\right) \mid t_{0} \leq t_{n} \leq b\right\}$ obtained by Euler's method satisfies

$$
\max _{t_{0} \leq t_{n} \leq b}\left|Y\left(t_{n}\right)-y_{h}\left(t_{n}\right)\right| \leq e^{\left(b-t_{0}\right) K}\left|e_{0}\right|+\left[\frac{e^{\left(b-t_{0}\right) K}-1}{K}\right] \tau(h),
$$

where

$$
\tau(h)=\frac{1}{2} h\left\|Y^{\prime \prime}\right\|_{\infty}=\frac{1}{2} h \max _{t_{0} \leq t \leq b}\left|Y^{\prime \prime}(t)\right|
$$

and $e_{0}=Y_{0}-y_{h}\left(t_{0}\right)$.

If, in addition, we have
Initial error e_{0}
$\left|Y_{0}-y_{h}\left(t_{0}\right)\right| \leq c_{1} h \quad$ as $h \rightarrow 0$
for some $c_{1} \geq 0$ (e.g., if $Y_{0}=y_{0}$ for all h, then $c_{1}=0$), then there is a constant $B \geq 0$ for which

$$
\max _{t_{0} \leq t_{n} \leq b} \frac{\left|Y\left(t_{n}\right)-y_{h}\left(t_{n}\right)\right| \leq B h}{\longrightarrow \text { Final error } e_{n}}
$$

In general, if we have $\left|Y\left(t_{n}\right)-y_{h}\left(t_{n}\right)\right| \leq c h^{p}, \quad t_{0} \leq t_{n} \leq b$
for some constant $p \geq 0$, then we say that the numerical method is convergent with order p.

Proof:

Let $e_{n}=Y\left(t_{n}\right)-y\left(t_{n}\right), n \geq 0$. Let $N \equiv N(h)$ be the integer for which

$$
t_{N} \leq b, \quad t_{N+1}>b
$$

Define

$$
\tau_{n}=\frac{1}{2} h Y^{\prime \prime}\left(\xi_{n}\right), \quad 0 \leq n \leq N(h)-1,
$$

then

$$
\max _{0 \leq n \leq N-1}\left|\tau_{n}\right| \leq \tau(h)=\frac{1}{2} h\left\|Y^{\prime \prime}\right\|_{\infty}
$$

Taking bounds using $\left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right| \leq K\left|y_{1}-y_{2}\right|$, we obtain

$$
\begin{aligned}
& \left|e_{n+1}\right| \leq\left|e_{n}\right|+h K\left|Y_{n}-y_{n}\right|+h\left|\tau_{n}\right| \\
& \left|e_{n+1}\right| \leq(1+h K)\left|e_{n}\right|+h \tau(h), \quad 0 \leq n \leq N(h)-1 .
\end{aligned}
$$

Apply this recursively to obtain

$$
\left|e_{n}\right| \leq(1+h K)^{n}\left|e_{0}\right|+\left[1+(1+h K)+\cdots+(1+h K)^{n-1}\right] h \tau(h) .
$$

Using the formula for the sum of a finite geometric series,
we obtain

$$
\begin{array}{cc}
1+r+r^{2}+\cdots+r^{n-1}=\frac{r^{n}-1}{r-1}, \quad r \neq 1, \\
\left|e_{n}\right| \leq(1+h K)^{n} & \left|e_{0}\right|+\left[\frac{(1+h K)^{n}}{K}-1\right. \\
K & \tau(h) .
\end{array}
$$

Lemma For any real t,

$$
1+t \leq e^{t}
$$

and for any $t \geq-1$, any $m \geq 0$,

$$
0 \leq(1+t)^{m} \leq e^{m t}
$$

Proof. Using Taylor's theorem yields

$$
e^{t}=1+t+\frac{1}{2} t^{2} e^{\xi} \text { with } \xi \text { between } 0 \text { and } t .
$$

Using this lemma, we have

$$
(1+h K)^{n} \leq e^{n h K}=e^{\left(t_{n}-t_{0}\right) K} \leq e^{\left(b-t_{0}\right) K}
$$

Substitute back to the formula, we obtain

$$
\max _{t_{0} \leq t_{n} \leq b}\left|Y\left(t_{n}\right)-y_{h}\left(t_{n}\right)\right| \leq e^{\left(b-t_{0}\right) K}\left|e_{0}\right|+\left[\frac{e^{\left(b-t_{0}\right) K}-1}{K}\right] \tau(h)
$$

$$
\max _{t_{0} \leq t_{n} \leq b}\left|Y\left(t_{n}\right)-y_{h}\left(t_{n}\right)\right| \leq e^{\left(b-t_{0}\right) K}\left|e_{0}\right|+\left[\frac{e^{\left(b-t_{0}\right) K}-1}{K}\right] \tau(h)
$$

If, in addition, $\left|Y_{0}-y_{h}\left(t_{0}\right)\right| \leq c_{1} h$, there is a constant

$$
B=c_{1} e^{\left(b-t_{0}\right) K}+\frac{1}{2}\left[\frac{e^{\left(b-t_{0}\right) K}-1}{K}\right]\left\|Y^{\prime \prime}\right\|_{\infty}
$$

Such that

$$
\max _{t_{0} \leq t_{n} \leq b}\left|Y\left(t_{n}\right)-y_{h}\left(t_{n}\right)\right| \leq B h .
$$

The procedure of the proof

1. Subtract the "Taylor expansion of the exact solution $Y\left(t_{n+1}\right)$ at t_{n} " with the "numerical scheme of y_{n+1} ".
2. Apply the Lipschitz condition to obtain the inequality between $\left|e_{n+1}\right|$ and $\left|e_{n}\right|$.
3. Apply the inequality recursively from n to 0 .
4. Use some summation formulas to simplify the expression.
5. Use the Lemma to allow having $t_{n}-t_{0}=n h$.

1.5 Numerical Stability

Define a numerical solution $\left\{z_{n}\right\}$

$$
z_{n+1}=z_{n}+h f\left(t_{n}, z_{n}\right), \quad n=0,1, \ldots, N(h)-1
$$

with $z_{0}=y_{0}+\epsilon$. We now compare the two numerical solutions $\left\{z_{n}\right\}$ and $\left\{y_{n}\right\}$ as $h \rightarrow 0$.
Let $e_{n}=z_{n}-y_{n}, n \geq 0$. Then $e_{0}=\epsilon$, and subtracting $y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)$
we obtain

$$
e_{n+1}=e_{n}+h\left[f\left(t_{n}, z_{n}\right)-f\left(t_{n}, y_{n}\right)\right] .
$$

Lipschitz condition

Apply this recursively to obtain

$$
\left|e_{n}\right| \leq(1+h K)^{n}\left|e_{0}\right|
$$

```
Lemma For any real t,
\[
1+t \leq e^{t}
\]
\[
\text { and for any } t \geq-1 \text {, any } m \geq 0
\]
\[
0 \leq(1+t)^{m} \leq e^{m t}
\]
```

Using this lemma, we obtain

$$
(1+h K)^{n} \leq e^{n h K}=e^{\left(t_{n}-t_{0}\right) K} \leq e^{\left(b-t_{0}\right) K},
$$

substitute to $\left|e_{n}\right| \leq(1+h K)^{n}\left|e_{0}\right|$, and note that $e_{0}=\epsilon$, the following holds

$$
\max _{0 \leq n \leq N(h)}\left|z_{n}-y_{n}\right| \leq e^{\left(b-t_{0}\right) K}|\epsilon| .
$$

Consequently, there is a constant $\widehat{c} \geq 0$, independent of h, such that

$$
\max _{0 \leq n \leq N(h)}\left|z_{n}-y_{n}\right| \leq \widehat{c}|\epsilon| .
$$

Euler's method is a stable numerical method for the initial value problem if $h K \geq-1$.

- The forward Euler's method is a first-order method. $\max _{t_{0} \leq t_{n} \leq b}\left|Y\left(t_{n}\right)-y_{h}\left(t_{n}\right)\right| \leq B h$. when the step size h is smaller, the method is more accurate.
- A very small h decreases the efficiency of the numerical method.
- The forward Euler's method may not be stable when h is large.

$$
\begin{array}{ll}
\text { Example } & Y^{\prime}=\lambda Y, \quad t>0, \\
& Y(0)=1 .
\end{array}
$$

$\lambda<0$ or λ is complex and with $\operatorname{Real}(\lambda)<0$.
The true solution of the problem is

$$
Y(t)=e^{\lambda t}
$$

which decays exponentially in t since the parameter λ has a negative real part.

We would like the numerical solution satisfies

$$
y_{h}\left(t_{n}\right) \rightarrow 0 \quad \text { as } \quad t_{n} \rightarrow \infty
$$

The Euler method on the model problem

$$
y_{n+1}=y_{n}+h \lambda y_{n}=(1+h \lambda) y_{n}, \quad n \geq 0, \quad y_{0}=1 .
$$

By an inductive argument, it is not difficult to find

$$
y_{n}=(1+h \lambda)^{n}, \quad n \geq 0 .
$$

Note that for a fixed node point $t_{n}=n h \equiv \bar{t}$, as $n \rightarrow \infty$, we obtain

$$
y_{n}=\left(1+\frac{\lambda \bar{t}}{n}\right)^{n} \rightarrow e^{\lambda \bar{t}}
$$

We can see that $y_{n} \rightarrow 0$ as $n \rightarrow \infty$ if and only if

$$
|1+h \lambda|<1 \quad \text { or } \quad-2<h \lambda<0
$$

Region of absolute stability

Example Consider the model problem with $\lambda=-100$.

$$
\begin{aligned}
& Y^{\prime}=\lambda Y, \quad t>0 \\
& Y(0)=1
\end{aligned}
$$

The true solution $Y(t)=e^{-100 t} \quad$ at $t=0.2$ is
The forward Euler method will perform well only when $h<2 \times 100^{-1}=0.02$.

h	$y_{h}(0.2)$
0.1	81
0.05	256
0.02	1
0.01	0
0.001	$7.06 \mathrm{e}-10$

The Backward Euler Method

Absolutely stable: a numerical method is stable for any step size h.

$$
\text { i. e., } \quad y_{h}\left(t_{n}\right) \rightarrow 0 \quad \text { as } \quad t_{n} \rightarrow \infty \quad \text { for } \quad\left\{\begin{array}{l}
Y^{\prime}=\lambda Y, \quad t>0, \\
Y(0)=1
\end{array}\right.
$$

The backward Euler method has this property.
Forward difference approximation

$$
Y^{\prime}(t) \approx \frac{1}{h}[Y(t+h)-Y(t)] \Longrightarrow\left\{\begin{array}{l}
y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right) \\
y_{0}=Y_{0}
\end{array}\right.
$$

Backward difference approximation

$$
Y^{\prime}(t) \approx \frac{1}{h}[Y(t)-Y(t-h)] \Longrightarrow\left\{\begin{array}{l}
y_{n+1}=y_{n}+h f\left(t_{n+1}, y_{n+1}\right) \\
y_{0}=Y_{0}
\end{array}\right.
$$

Like the Euler method, the backward Euler method is of first-order accuracy.

The backward Euler's method for the model problem is absolutely stable:

$$
\left\{\begin{array}{l}
Y^{\prime}=\lambda Y, \quad t>0, \\
Y(0)=1
\end{array}\right.
$$

Applying the backward Euler's method,

$$
\begin{aligned}
& y_{n+1}=y_{n}+h \lambda y_{n+1}, \\
& y_{n+1}=(1-h \lambda)^{-1} y_{n}, \quad n \geq 0 .
\end{aligned}
$$

The forward Euler method

h	$y_{h}(0.2)$
0.1	81
0.05	256
0.02	1
0.01	0
0.001	$7.06 \mathrm{e}-10$

The backward Euler method
Using this together with $y_{0}=1$, we obtain

h	$y_{h}(0.2)$
0.1	$8.26 \mathrm{e}-3$
0.05	$7.72 \mathrm{e}-4$
0.02	$1.69 \mathrm{e}-5$
0.01	$9.54 \mathrm{e}-7$
0.001	$5.27 \mathrm{e}-9$

The backward Euler's method is an implicit method: y_{n+1} must be found by solving a root finding problem (usually, by solving a nonlinear algebraic equation).

$$
y_{n+1}=y_{n}+h f\left(t_{n+1}, y_{n+1}\right)
$$

Lipschitz continuity assumption on $f(t, y)$ h is small enough

Given an initial guess $y_{n+1}^{(0)} \approx y_{n+1}$, define $y_{n+1}^{(1)}, y_{n+1}^{(2)}$, etc., by

$$
y_{n+1}^{(j+1)}=y_{n}+h f\left(t_{n+1}, y_{n+1}^{(j)}\right), \quad j=0,1,2, \ldots
$$

Will $y_{n+1}^{(j)}$ converge to y_{n+1} ?

$$
\begin{gathered}
\text { By subtraction, } y_{n+1}-y_{n+1}^{(j+1)}=h\left[f\left(t_{n+1}, y_{n+1}\right)-f\left(t_{n+1}, y_{n+1}^{(j)}\right)\right], \\
y_{n+1}-y_{n+1}^{(j+1)} \approx h \cdot \begin{array}{c}
\text { Mean value theorem } \\
\&
\end{array} \\
h \text { is small }
\end{gathered}
$$

$$
\text { If } \left.\quad \left\lvert\, \begin{array}{l}
\left.h \cdot \frac{\partial f\left(t_{n+1}, y_{n+1}\right)}{\partial y} \right\rvert\,<1 \\
y_{n+1}^{(0)} \rightarrow y_{n+1}
\end{array}\right.\right] \text { the errors will converge to zero }
$$

The usual choice of the initial guess is based on the forward Euler method.
The Predictor Formula: $\quad \bar{y}_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)$,

$$
y_{n+1}=y_{n}+h f\left(t_{n+1}, \bar{y}_{n+1}\right)
$$

Or in combined form: $\quad y_{n+1}=y_{n}+h f\left(t_{n+1}, y_{n}+h f\left(t_{n}, y_{n}\right)\right)$

- The scheme predicts the root of the implicit method.
- The scheme is usually sufficient to do the iteration once.
- The scheme is still of first-order accuracy.
- The scheme is no longer absolutely stable. i.e., try $\begin{aligned} & Y^{\prime}=\lambda Y, \\ & Y(0)=1 .\end{aligned}$

Matlab program for Backward Euler's Method

$$
\begin{aligned}
& y_{n+1}^{(1)}=y_{n}+h f\left(t_{n}, y_{n}\right) \\
& y_{n+1}^{(k+1)}=y_{n}+h f\left(t_{n+1}, y_{n+1}^{(k)}\right)
\end{aligned}
$$

```
function [t,y] = euler_back(t0,y0,t_end,h,fcn,tol)
% Initialize
n = fix((t_end-t0)/h)+1;
t = linspace(t0,t0+(n-1)*h,n)';
y = zeros(n,1);
y(1) = y0;
i=2;
% advancing
while i <= n
```



```
    i = i+1;
end
```

```
% forward Euler estimate
```

% forward Euler estimate
yt1 = y(i-1)+h*feval(fcn,t(i-1),y(i-1));
yt1 = y(i-1)+h*feval(fcn,t(i-1),y(i-1));
% one-point iteration
% one-point iteration
count = 0; diff = 1;
count = 0; diff = 1;
while diff > tol \& count < 10
while diff > tol \& count < 10
yt2 = y(i-1) + h*feval(fcn,t(i),yt1);
yt2 = y(i-1) + h*feval(fcn,t(i),yt1);
diff = abs(yt2-yt1);
diff = abs(yt2-yt1);
yt1 = yt2;
yt1 = yt2;
count = count +1;
count = count +1;
End
End
if count >= 10
if count >= 10
disp('Not converging after 10 steps at t = ')
disp('Not converging after 10 steps at t = ')
fprintf('%5.2f\n', t(i))
fprintf('%5.2f\n', t(i))
end
end
y(i) = yt2;

```
y(i) = yt2;
```


The Trapezoidal Method

Drawback of both the forward Euler method and the backward Euler method: only first-order accuracy
The Trapezoidal Method $\left\{\begin{array}{l}\text { Has a higher convergence order } \\ \text { Has the stability property for any step size } h\end{array}\right.$
To derive the Trapezoidal Method, we start from the trapezoidal rule for numerical integration

$$
\int_{a}^{b} g(s) d s=\frac{1}{2}(b-a)[g(a)+g(b)]-\frac{1}{12}(b-a)^{3} g^{\prime \prime}
$$

We integrate the differential equation $Y^{\prime}(t)=f(t, Y(t))$ from t_{n} to t_{n+1} :

$$
Y\left(t_{n+1}\right)=Y\left(t_{n}\right)+\int_{t_{n}}^{t_{n+1}} f(s, Y(s)) d s
$$

Use the trapezoidal rule to approximate the integral:

$$
Y\left(t_{n+1}\right)=Y\left(t_{n}\right)+\frac{1}{2} h\left[f\left(t_{n}, Y\left(t_{n}\right)\right)+f\left(t_{n+1}, Y\left(t_{n+1}\right)\right)\right]
$$

$$
-\frac{1}{12} h^{3} Y^{(3)} \xi_{n} \quad t_{n} \leq \xi_{n} \leq t_{n+1}
$$

By dropping the final error term and then
 equating both sides,

$$
\left\{\begin{array}{l}
y_{n+1}=y_{n}+\frac{1}{2} h\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n+1}\right)\right], \quad n \geq 0 \\
y_{0}=Y_{0}
\end{array}\right.
$$

The trapezoidal method

$$
\left\{\begin{array}{l}
\text { is of second-order accuracy } \max _{t_{0} \leq t_{n} \leq b}\left|Y\left(t_{n}\right)-y_{h}\left(t_{n}\right)\right| \leq c h^{2} \\
\text { is absolutely stable i.e., try } \quad \begin{array}{l}
Y^{\prime}=\lambda Y, t>0, \lambda<0 \\
Y(0)=1 .
\end{array}
\end{array}\right.
$$

The trapezoidal method is an implicit method

$$
\begin{gathered}
y_{n+1}^{(j+1)}=y_{n}+\frac{h}{2}\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n+1}^{(j)}\right)\right], \quad j=0,1,2, \ldots \\
\text { If }\left\{\begin{array}{c}
\left|\frac{h}{2} \cdot \frac{\partial f\left(t_{n+1}, y_{n+1}\right)}{\partial y}\right|<1 \\
y_{n+1}^{(0)} \rightarrow y_{n+1}
\end{array}\right\} \text { the iteration will converge }
\end{gathered}
$$

The usual choice of the initial guess is based on the forward Euler method.

$$
y_{n+1}^{(0)}=y_{n}+h f\left(t_{n}, y_{n}\right)
$$

and if we accept $y_{n+1}^{(1)}$ as the value of y_{n+1}, then the resulting new scheme is called Heun's method

$$
y_{n+1}=y_{n}+\frac{h}{2}\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n}+h f\left(t_{n}, y_{n}\right)\right)\right]
$$

- The Heun method is of second-order accuracy.
- The Heun method it is no longer absolutely stable. i.e., try $\begin{aligned} & Y^{\prime}=\lambda Y, \quad t>0, \\ & Y(0)=1 .\end{aligned}$

Forward Euler Method

Not Absolutely Stable

Backward Euler Method

Absolutely Stable

Backward Euler Method with
Forward Euler as Predictor

Trapezoidal method

Absolutely Stable

Trapezoidal Method with Forward Euler as Predictor (Heun's method)

Matlab program for Trapezoidal Method

```
function [t,y] = trapezoidal (t0,y0,t_end,h,fon,tol)
% Initialize
n = fix((t_end-t0)/h)+1;
t= linspace(t0,t0+(n-1)*h,n);
y = zeros(n,1);
y(1) = y0;
i=2;
% advancing
while i <= n
    -.-----------------------------------------------------------------------------------
    i = i+1;
end
```

```
% forward Euler estimate
yt1 = y(i-1)+h*feval(fcn,t(i-1),y(i-1));
% one-point iteration
count = 0; diff = 1;
while diff > tol & count < 10
        yt2 = y(i-1) +h*(feval(fcn,t(i-1),y(i-1))+
        feval(fcn,t(i),yt1))/2;
        diff = abs(yt2-yt1);
        yt1 = yt2;
        count = count +1;
    End
    if count >= 10
    disp('Not converging after 10 steps at t = ')
    fprintf('%5.2f\n', t(i))
end
y(i) = yt2;
```


Example Consider the problem

$$
Y^{\prime}(t)=\lambda Y(t)+(1-\lambda) \cos (t)-(1+\lambda) \sin (t), \quad Y(0)=1,
$$

whose true solution is $Y(t)=\sin (t)+\cos (t)$.

Forward Euler's method vs Backward Euler's method vs Trapezoidal method

| λ | t | Error
 $h=0.5$ | Error
 $h=0.1$ | Error
 $h=0.01$ | |
| :---: | :---: | ---: | ---: | ---: | :--- | Forward Euler's method

Backward Euler's method $\quad h=0.5$

t	Error $\lambda=-1$	Error $\lambda=-10$	Error $\lambda=-50$
2	$2.08 \mathrm{e}-1$	$1.97 \mathrm{e}-2$	$3.60 \mathrm{e}-3$
4	$-1.63 \mathrm{e}-1$	$-3.35 \mathrm{e}-2$	$-6.94 \mathrm{e}-3$
6	$-7.04 \mathrm{e}-2$	$8.19 \mathrm{e}-3$	$2.18 \mathrm{e}-3$
8	$2.22 \mathrm{e}-1$	$2.67 \mathrm{e}-2$	$5.13 \mathrm{e}-3$
10	$-1.14 \mathrm{e}-1$	$-3.04 \mathrm{e}-2$	$-6.45 \mathrm{e}-3$

The backward Euler method and the trapezoidal method are therefore more desirable!

No stability problems!

Trapezoidal method $h=0.5$

t	Error $\lambda=-1$	Error $\lambda=-10$	Error $\lambda=-50$
2	$-1.13 \mathrm{e}-2$	$-2.78 \mathrm{e}-3$	$-7.91 \mathrm{e}-4$
4	$-1.43 \mathrm{e}-2$	$-8.91 \mathrm{e}-5$	$-8.91 \mathrm{e}-5$
6	$2.02 \mathrm{e}-2$	$2.77 \mathrm{e}-3$	$4.72 \mathrm{e}-4$
8	$-2.86 \mathrm{e}-3$	$-2.22 \mathrm{e}-3$	$-5.11 \mathrm{e}-4$
10	$-1.79 \mathrm{e}-2$	$-9.23 \mathrm{e}-4$	$-1.56 \mathrm{e}-4$

Higher Order Methods: Taylor and Runger-Kutta Methods

Forward Euler's method

$$
Y^{\prime}(t) \approx \frac{1}{h}[Y(t+h)-Y(t)]
$$

Linear Taylor polynomial approximation

$$
Y\left(t_{n+1}\right) \approx Y\left(t_{n}\right)+h Y^{\prime}\left(t_{n}\right),
$$

How about using higher-order Taylor approximations to improve the accuracy (or speed)?

- Need higher-order derivatives
- Usually tedious and time-consuming
- Use compositions of the right-side function to approximate the derivative
- Among the most popular methods in solving IVP

Example For the problem

$$
Y^{\prime}(t)=-Y(t)+2 \cos (t), \quad Y(0)=1
$$

whose true solution is $Y(t)=\sin (t)+\cos (t)$.
We use the quadratic Taylor approximation

$$
Y\left(t_{n+1}\right) \approx Y\left(t_{n}\right)+h Y^{\prime}\left(t_{n}\right)+\frac{1}{2} h^{2} Y^{\prime \prime}\left(t_{n}\right)
$$

Its truncation error is

$$
\begin{gathered}
T_{n+1}(Y)=\frac{1}{6} h^{3} Y^{\prime \prime \prime}\left(\xi_{n}\right), \quad \text { some } t_{n} \leq \xi_{n} \leq t_{n+1} \\
Y^{\prime \prime}(t)=-Y^{\prime}(t)-2 \sin (t)=Y(t)-2 \cos (t)-2 \sin (t)
\end{gathered}
$$

Substitute into the Taylor expansion, we have

$$
\begin{aligned}
Y\left(t_{n+1}\right) \approx & Y\left(t_{n}\right)+h\left[-Y\left(t_{n}\right)+2 \cos \left(t_{n}\right)\right] \\
& +\frac{1}{2} h^{2}\left[Y\left(t_{n}\right)-2 \cos \left(t_{n}\right)-2 \sin \left(t_{n}\right)\right]
\end{aligned}
$$

By forcing equality, $y_{n+1}=y_{n}+h\left[-y_{n}+2 \cos \left(t_{n}\right)\right]$

$$
+\frac{1}{2} h^{2}\left[y_{n}-2 \cos \left(t_{n}\right)-2 \sin \left(t_{n}\right)\right], \quad n \geq 0 \quad \text { with } y_{0}=1
$$

Results of the second-order Taylor method

h	t	$y_{h}(t)$	Error	Euler Error
0.1	2.0	0.492225829	$9.25 \mathrm{e}-4$	$-4.64 \mathrm{e}-2$
	4.0	-1.411659477	$1.21 \mathrm{e}-3$	$3.91 \mathrm{e}-2$
	6.0	0.682420081	$-1.67 \mathrm{e}-3$	$1.39 \mathrm{e}-2$
	8.0	0.843648978	$2.09 \mathrm{e}-4$	$-5.07 \mathrm{e}-2$
	10.0	-1.384588757	$1.50 \mathrm{e}-3$	$2.83 \mathrm{e}-2$
0.05	2.0	0.492919943	$2.31 \mathrm{e}-4$	$-2.30 \mathrm{e}-2$
	4.0	-1.410737402	$2.91 \mathrm{e}-4$	$1.92 \mathrm{e}-2$
	6.0	0.681162413	$-4.08 \mathrm{e}-4$	$6.97 \mathrm{e}-3$
	8.0	0.843801368	$5.68 \mathrm{e}-5$	$-2.50 \mathrm{e}-2$
	10.0	-1.383454154	$3.62 \mathrm{e}-4$	$1.39 \mathrm{e}-2$

In general, for the initial value problem

$$
Y^{\prime}(t)=f(t, Y(t)), \quad t_{0} \leq t \leq b, \quad Y\left(t_{0}\right)=Y_{0}
$$

Taylor method selects a Taylor approximation of order p

$$
Y\left(t_{n+1}\right) \approx Y\left(t_{n}\right)+h Y^{\prime}\left(t_{n}\right)+\cdots+\frac{h^{p}}{p!} Y^{(p)}\left(t_{n}\right),
$$

With the truncation error $T_{n+1}(Y)=\frac{h^{p+1}}{(p+1)!} Y^{(p+1)}\left(\xi_{n}\right), \quad t_{n} \leq \xi_{n} \leq t_{n+1}$.
Find $Y^{\prime \prime}(t), \ldots, Y^{(p)}(t)$ by differentiating the differential equation successively, obtaining formulas that implicitly involve only t_{n} and $Y\left(t_{n}\right)$.

$$
\begin{aligned}
Y^{\prime \prime}(t) & =f_{t}+f_{y} f \\
Y^{(3)}(t) & =f_{t t}+2 f_{t y} f+f_{y y} f^{2}+f_{y}\left(f_{t}+f_{y} f\right)
\end{aligned}
$$

See next page for

 the derivationwhere

$$
f_{t}=\frac{\partial f}{\partial t}, \quad f_{y}=\frac{\partial f}{\partial y}, \quad f_{t y}=\frac{\partial^{2} f}{\partial t \partial y}, \quad \text { For higher derivatives, too complicate!!! }
$$

$$
\begin{aligned}
& Y^{\prime \prime}(t)=\left(Y^{\prime}(t)\right)^{\prime}=(f(t, y))^{\prime}=f_{t}+f_{y} y_{t}=f_{t}+f_{y} f \\
& Y^{\prime \prime \prime}(t)=\left(Y^{\prime \prime}(t)\right)^{\prime} \\
& \quad=\left(f_{t}+f_{y} f\right)^{\prime} \\
& \quad=\left(f_{t}(t, y)\right)^{\prime}+\left(f_{y}(t, y) f(t, y)\right)^{\prime} \\
& \quad=f_{t t}+f_{t y} y_{t}+\left(f_{y}\right)^{\prime} f+f_{y} f^{\prime} \\
& \quad=f_{t t}+f_{t y} f+\left(f_{y t}+f_{y y} y_{t}\right) f+f_{y}\left(f_{t}+f_{y} y_{t}\right) \\
& \quad=f_{t t}+f_{t y} f+\left(f_{y t}+f_{y y} f\right) f+f_{y}\left(f_{t}+f_{y} f\right)
\end{aligned}
$$

- Assume that $f_{t y}=f_{y t}$, substitute into the above formula, we can get the derivation on Slide 49 of Charpter 1.
- Note that f, f_{t}, f_{y} are also functions that depend on (t, y), and y depends on t, so we need to use chain rule for their derivatives w.r.t t.
- $Y^{\prime \prime \prime}(t)$ is already very complicate, so the Taylor method is not a good choice compared to the Runge-Kutta Method.

Substitute these derivatives into the Taylor approximation and force it to be an equality, we have

$$
y_{n+1}=y_{n}+h y_{n}^{\prime}+\frac{h^{2}}{2} y_{n}^{\prime \prime}+\cdots+\frac{h^{p}}{p!} y_{n}^{(p)}
$$

$$
\text { where } y_{n}^{\prime}=f\left(t_{n}, y_{n}\right), \quad y_{n}^{\prime \prime}=\left(f_{t}+f_{y} f\right)\left(t_{n}, y_{n}\right), \text { etc. }
$$

If the solution $Y(t)$ and the derivative function $f(t, z)$ are sufficiently differentiable, the method satisfies

$$
\max _{t_{0} \leq t_{n} \leq b}\left|Y\left(t_{n}\right)-y_{h}\left(t_{n}\right)\right| \leq c h^{p} \max _{t_{0} \leq t \leq b}\left|Y^{(p+1)}(t)\right| .
$$

The Taylor approximation of order p leads to a convergent numerical method with order of convergence p.

- Need higher-order derivatives
- Usually tedious and time-consuming
- Evaluate $f(t, y)$ at more points
- Retain the accuracy of the Taylor approximation
- Fairly easy to program

Runge-Kutta Methods

$$
y_{n+1}=y_{n}+h F\left(t_{n}, y_{n} ; h\right), \quad n \geq 0, \quad y_{0}=Y_{0}
$$

For methods of order 2, slope" of the solution

$$
F(t, y ; h)=b_{1} f(t, y)+b_{2} f(t+\alpha h, y+\beta h f(t, y))
$$

We determine the constants $\left\{\alpha, \beta, b_{1}, b_{2}\right\}$ so that the truncation error will satisfy

$$
T_{n+1}(Y) \equiv Y\left(t_{n+1}\right)-\left[Y\left(t_{n}\right)+h F\left(t_{n}, Y\left(t_{n}\right) ; h\right)\right]=\mathcal{O}\left(h^{3}\right)
$$

(1)
(2)

Truncation error for a 2-or method
To find the equations for the constants, we use Taylor expansions to compute the truncation error $T_{n+1}(Y)$.

To find the equations for the constants, we use Taylor expansions to compute the truncation error $T_{n+1}(Y)$. For the term $f(t+\alpha h, y+\beta h f(t, y))$, we first expand with respect to the second argument around y. Note that we need a remainder $\mathcal{O}\left(h^{2}\right)$:

$$
f(t+\alpha h, y+\beta h f(t, y))=f(t+\alpha h, y)+f_{y}(t+\alpha h, y) \beta h f(t, y)+\mathcal{O}\left(h^{2}\right)
$$

We then expand the terms with respect to the t variable to obtain

$$
f(t+\alpha h, y+\beta h f(t, y))=f+f_{t} \alpha h+f_{y} \beta h f+\mathcal{O}\left(h^{2}\right)
$$

A lot of things can be put here
(1) For the term $Y\left(t_{n+1}\right)$

$$
\begin{aligned}
Y(t+h) & =Y+h \sqrt[Y^{\prime}]{+\frac{h^{2}}{2}} Y^{\prime \prime}+\mathcal{O}\left(h^{3}\right) & Y^{\prime}(t)=f \\
& =Y+h f+\frac{h^{2}}{2}\left(f_{t}+f_{y} f\right)+\mathcal{O}\left(h^{3}\right) . & Y^{\prime \prime}(t)=f_{t}+f_{y} f
\end{aligned}
$$

(2) For the term $f(t+\alpha h, y+\beta h f(t, y))$

We first expand $f(t+\alpha h, y+\beta h f(t, y))$ with respect to the second argument around y.

$$
f(t+\alpha h, y+\beta h f(t, y))=f(t+\alpha h, y)+f_{y}(t+\alpha h, y) \beta h f(t, y)+\mathcal{O}\left(h^{2}\right)
$$

We then expand the terms with respect to the t variable to obtain

$$
f(t+\alpha h, y+\beta h f(t, y))=f+f_{t} \alpha h+f_{y} \beta h f+\mathcal{O}\left(h^{2}\right)
$$

Then

$$
\begin{aligned}
T_{n+1}(Y)= & Y(t+h)-[Y(t)+h F(t, Y(t) ; h)] \\
= & Y+h f+\frac{1}{2} h^{2}\left(f_{t}+f_{y} f\right) \\
& -\left[Y+h b_{1} f+b_{2} h\left(f+\alpha h f_{t}+\beta h f_{y} f\right)\right] \\
= & h \frac{\left(1-b_{1}-b_{2}\right) f+\frac{1}{2} h^{2}\left[h^{3}\right)}{+\left(1-2 b_{2} \alpha\right) f_{t}} \\
& \underline{\left.\left(1-2 b_{2} \bar{\beta}\right) f_{y} f\right]+\mathcal{O}\left(h^{3}\right) .}
\end{aligned}
$$

The coefficients must satisfy the system

$$
\text { Underdetermined system }\left\{\begin{array}{l}
1-b_{1}-b_{2}=0 \\
1-2 b_{2} \alpha=0 \\
1-2 b_{2} \beta=0
\end{array}\right.
$$

By solving this system, we have

$$
b_{2} \neq 0, \quad b_{1}=1-b_{2}, \quad \alpha=\beta=\frac{1}{2 b_{2}} .
$$

Thus there is a family of Runge-Kutta methods of order 2, depending on the choice of b_{2}. The three favorite choices are $b_{2}=\frac{1}{2}, \frac{3}{4}$, and 1 .

With $b_{2}=\frac{1}{2}$, we obtain the numerical method \rightarrow Forward Euler solution at t_{n+1}

$$
\left.y_{n+1}=y_{n}+\frac{h}{2}\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n}+h, y_{n}+h f\left(t_{n}, y_{n}\right)\right)\right]\right], \quad n \geq 0 .
$$

Heun's method

$$
F\left(t_{n}, y_{n} ; h\right)=\frac{1}{2}\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n}+h, y_{n}+h f\left(t_{n}, y_{n}\right)\right)\right]
$$

is an "average" slope of the solution on the interval $\left[t_{n}, t_{n+1}\right]$.

Another choice is to use $b_{2}=1$, resulting in the numerical method

$$
y_{n+1}=y_{n}+h f\left(t_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h f\left(t_{n}, y_{n}\right)\right) .
$$

Note: L_{2} is not $f(t+h, Y(t+h))$

Example For the problem

$$
Y^{\prime}(t)=-Y(t)+2 \cos (t), \quad Y(0)=1,
$$

whose true solution is $Y(t)=\sin (t)+\cos (t)$.

Results of the			
2-or Runge-Kutta metho			
t	$y_{h}(t)$	Error	
0.1	2.0	0.491215673	$1.93 \mathrm{e}-3$
4.0	-1.407898629	$-2.55 \mathrm{e}-3$	
6.0	0.680696723	$5.81 \mathrm{e}-5$	
8.0	0.841376339	$2.48 \mathrm{e}-3$	
	10.0	-1.380966579	$-2.13 \mathrm{e}-3$
0.05	2.0	0.492682499	$4.68 \mathrm{e}-4$
4.0	-1.409821234	$-6.25 \mathrm{e}-4$	
6.0	0.680734664	$2.01 \mathrm{e}-5$	
8.0	0.843254396	$6.04 \mathrm{e}-4$	
10.0	-1.382569379	$-5.23 \mathrm{e}-4$	

2-or Taylor method	
Error	Euler Error
$9.25 \mathrm{e}-4$	$-4.64 \mathrm{e}-2$
$1.21 \mathrm{e}-3$	$3.91 \mathrm{e}-2$
$-1.67 \mathrm{e}-3$	$1.39 \mathrm{e}-2$
$2.09 \mathrm{e}-4$	$-5.07 \mathrm{e}-2$
$1.50 \mathrm{e}-3$	$2.83 \mathrm{e}-2$
$2.31 \mathrm{e}-4$	$-2.30 \mathrm{e}-2$
$2.91 \mathrm{e}-4$	$1.92 \mathrm{e}-2$
$-4.08 \mathrm{e}-4$	$6.97 \mathrm{e}-3$
$5.68 \mathrm{e}-5$	$-2.50 \mathrm{e}-2$
$3.62 \mathrm{e}-4$	$1.39 \mathrm{e}-2$

A General Framework for Explicit Runge-Kutta Methods

An explicit Runge-Kutta formula with s stages has the following form:

$$
\begin{aligned}
& \begin{aligned}
z_{1}= & y_{n}, \\
z_{2}= & y_{n}+h a_{2,1} f\left(t_{n},\left(z_{1}\right),\right. \\
z_{3}= & y_{n}+h\left[a_{3,1} f\left(t_{n}, z_{1}\right)+a_{3,2} f\left(t_{n}+c_{2} h,\left(z_{2}\right)\right]\right.
\end{aligned} \\
& \vdots \\
& z_{s}= y_{n}+h\left[a _ { s , 1 } f \left(t_{n},\left(z_{1}\right)+a_{s, 2} f\left(t_{n}+c_{2} h, z_{2}\right)\right.\right. \\
&\left.+\cdots+a_{s, s-1} f\left(t_{n}+c_{s-1} h, z_{s-1}\right)\right]
\end{aligned},
$$

More succinctly

$$
\begin{aligned}
z_{i} & =y_{n}+h \sum_{j=1}^{i-1} a_{i, j} f\left(t_{n}+c_{j} h, z_{j}\right), \quad i=1, \ldots, s, \\
y_{n+1} & =y_{n}+h \sum_{j=1}^{s} b_{j} f\left(t_{n}+c_{j} h, z_{j}\right) .
\end{aligned}
$$

The coefficients are often displayed in a table called a Butcher tableau

The coefficients $\left\{c_{i}\right\}$ and $\left\{a_{i, j}\right\}$ are usually assumed to satisfy the conditions

$$
\sum_{j=1}^{i-1} a_{i, j}=c_{i}, \quad i=2, \ldots, s
$$

Example

Heun's method
$y_{n+1}=y_{n}+\frac{h}{2}\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n}+h, y_{n}+h f\left(t_{n}, y_{n}\right)\right)\right]$

Fourth-order RK method

$$
\begin{aligned}
z_{1} & =y_{n}, \\
z_{2} & =y_{n}+\frac{1}{2} h f\left(t_{n}, z_{1}\right), \\
z_{3} & =y_{n}+\frac{1}{2} h f\left(t_{n}+\frac{1}{2} h, z_{2}\right), \\
z_{4} & =y_{n}+h f\left(t_{n}+\frac{1}{2} h, z_{3}\right), \\
y_{n+1}= & y_{n}
\end{aligned}+\frac{1}{6} h\left[f\left(t_{n}, z_{1}\right)+2 f\left(t_{n}+\frac{1}{2} h, z_{2}\right) .\right.
$$

Convergence of the Runge-Kutta Method

We want to examine the convergence of the Runge-Kutta method

$$
y_{n+1}=y_{n}+h F\left(t_{n}, y_{n} ; h\right), \quad n \geq 0, \quad y_{0}=Y_{0}
$$

We want the truncation error

$$
\tau_{n}(Y)=\frac{Y\left(t_{n+1}\right)-Y\left(t_{n}\right)}{h}-F\left(t_{n}, Y\left(t_{n}\right), h ; f\right) \quad \rightarrow 0
$$

we require that

$$
F(t, Y(t), h ; f) \rightarrow Y^{\prime}(t)=f(t, Y(t)) \quad \text { as } h \rightarrow 0
$$

Accordingly, define
and assume

$$
\delta(h)=\sup _{\substack{t_{0} \leq t \leq b \\-\infty<y<\infty}}|f(t, y)-F(t, y, h ; f)|
$$

$$
\text { (1) } \delta(h) \rightarrow 0 \quad \text { as } h \rightarrow 0 .
$$

We also need a Lipschitz condition on F

$$
\text { (2) }|F(t, y, h ; f)-F(t, z, h ; f)| \leq L|y-z|
$$

for all $t_{0} \leq t \leq b,-\infty<y, z<\infty$, and all small $h>0$.

Theorem Assume that the Runge-Kutta method satisfies the Lipschitz condition. Then, for the initial value problem, the solution $\left\{y_{n}\right\}$ satisfies

$$
\max _{t_{0} \leq t_{n} \leq b}\left|Y\left(t_{n}\right)-y_{n}\right| \leq e^{\left(b-t_{0}\right) L}\left|Y_{0}-y_{0}\right|+\left[\frac{e^{\left(b-t_{0}\right) L}-1}{L}\right] \tau(h)
$$

where

$$
\tau(h) \equiv \max _{t_{0} \leq t_{n} \leq b}\left|\tau_{n}(Y)\right|
$$

If the consistency condition is satisfied, then the numerical solution $\left\{y_{n}\right\}$ converges to $\mathrm{Y}(\mathrm{t})$.

$$
h \tau_{n}(Y)=Y\left(t_{n+1}\right)-Y\left(t_{n}\right)-h F\left(t_{n}, Y\left(t_{n}\right), h ; f\right)
$$

Taylor expansion
$=\underbrace{h Y^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2} Y^{\prime \prime}\left(\xi_{n}\right)-h F\left(t_{n}, Y\left(t_{n}\right), h ; f\right),}$

$$
\begin{aligned}
h\left|\tau_{n}(Y)\right| & \leq h \delta(h)+\frac{h^{2}}{2}\left\|Y^{\prime \prime}\right\|_{\infty} \\
\tau(h) & \leq \delta(h)+\frac{1}{2} h\left\|Y^{\prime \prime}\right\|_{\infty}
\end{aligned}
$$

Thus $\tau(h) \rightarrow 0$ as $h \rightarrow 0$
Corollary If the Runge-Kutta method has a truncation error $T_{n}(Y)=\mathcal{O}\left(h^{m+1}\right)$, then the error in the convergence of $\left\{y_{n}\right\}$ to $Y(t)$ on $\left[t_{0}, b\right]$ is $\mathcal{O}\left(h^{m}\right)$.

Example Consider the problem

$$
Y^{\prime}=\frac{1}{1+x^{2}}-2 Y^{2}, \quad Y(0)=0
$$

with the solution $Y=x /\left(1+x^{2}\right)$. The stepsizes are $h=0.25$ and $2 h=0.5$.

Fourth-order Runge-Kutta method

$$
\begin{aligned}
& z_{1}=y_{n} \\
& z_{2}=y_{n}+\frac{1}{2} h f\left(t_{n}, z_{1}\right), \\
& z_{3}=y_{n}+\frac{1}{2} h f\left(t_{n}+\frac{1}{2} h, z_{2}\right), \\
& z_{4}=y_{n}+h f\left(t_{n}+\frac{1}{2} h, z_{3}\right),
\end{aligned}
$$

Results of fourth-order Runge-Kutta method				
x	$y_{h}(x)$	$Y(x)-y_{h}(x)$	$Y(x)-y_{2 h}(x)$	Ratio
2.0	0.39995699	$4.3 \mathrm{e}-5$	$1.0 \mathrm{e}-3$	24
4.0	0.23529159	$2.5 \mathrm{e}-6$	$7.0 \mathrm{e}-5$	28
6.0	0.16216179	$3.7 \mathrm{e}-7$	$1.2 \mathrm{e}-5$	32
8.0	0.12307683	$9.2 \mathrm{e}-8$	$3.4 \mathrm{e}-6$	36
10.0	0.09900987	$3.1 \mathrm{e}-8$	$1.3 \mathrm{e}-6$	41

$$
\begin{aligned}
y_{n+1}=y_{n} & +\frac{1}{6} h\left[f\left(t_{n}, z_{1}\right)+2 f\left(t_{n}+\frac{1}{2} h, z_{2}\right)\right. \\
& \left.+2 f\left(t_{n}+\frac{1}{2} h, z_{3}\right)+f\left(t_{n}+h, z_{4}\right)\right]
\end{aligned}
$$

Runge-Kutta-Fehlberg Methods

- Currently most popular Runge-Kutta methods (Matlab code ode45.m).
- Simultaneously computes by using two methods of different orders
- The two methods share most of the function evaluations of f at each step from t_{n} to t_{n+1}. Define six intermediate slopes in $\left[t_{n}, t_{n+1}\right]$ by

$$
\begin{aligned}
& v_{0}=f\left(t_{n}, y_{n}\right), \\
& v_{i}=f\left(t_{n}+\alpha_{i} h, y_{n}+h \sum_{j=0}^{i-1} \beta_{i j} v_{j}\right), \quad i=1,2,3,4,5 .
\end{aligned}
$$

Then the fourth- and fifth-order formulas are given by

$$
\begin{array}{lccccccc}
\cline { 1 - 7 } & y_{n+1}=y_{n}+h \sum_{i=0}^{4} \gamma_{i} v_{i}, & i & 0 & 1 & 2 & 3 & 4 \\
\hline & \gamma_{i} & \frac{25}{216} & 0 & \frac{1408}{2565} & \frac{2197}{4104} & -\frac{1}{5} & \\
\hat{y}_{n+1}=y_{n}+h \sum_{i=0}^{5} \delta_{i} v_{i} . & \delta_{i} & \frac{16}{135} & 0 & \frac{6656}{12825} & \frac{28561}{56430} & -\frac{9}{50} & \frac{2}{55} \\
\hline
\end{array}
$$

Example Consider the problem

$$
Y^{\prime}=\frac{1}{1+x^{2}}-2 Y^{2}, \quad Y(0)=0
$$

with the solution $Y=x /\left(1+x^{2}\right)$. The stepsizes are $h=0.25$ and $2 h=0.5$.
Results of fourth-order of Fehlberg method

h	t	$y_{h}(t)$	$Y(t)-y_{h}(t)$
0.25	2.0	0.493156301	$-5.71 \mathrm{e}-6$
	4.0	-1.410449823	$3.71 \mathrm{e}-6$
	6.0	0.680752304	$2.48 \mathrm{e}-6$
	8.0	0.843864007	$-5.79 \mathrm{e}-6$
	10.0	-1.383094975	$2.34 \mathrm{e}-6$
0.125	2.0	0.493150889	$-2.99 \mathrm{e}-7$
	4.0	-1.410446334	$2.17 \mathrm{e}-7$
	6.0	0.680754675	$1.14 \mathrm{e}-7$
	8.0	0.843858525	$-3.12 \mathrm{e}-7$
	10.0	-1.383092786	$1.46 \mathrm{e}-7$

The s-stage explicit Runge-Kutta method

$$
\begin{array}{rlr|rlll}
z_{i} & =y_{n}+h \sum_{j=1}^{i-1} a_{i, j} f\left(t_{n}+c_{j} h, z_{j}\right), & 0=c_{1} & & & & \\
c_{2} & a_{2,1} & & & \\
c_{3} & a_{3,1} & a_{3,2} & & \\
\vdots & =y_{n}+h \sum_{j=1}^{s} b_{j} f\left(t_{n}+c_{j} h, z_{j}\right) . & \vdots & & \ddots & \\
\hline c_{s} & a_{s, 1} & a_{s, 2} & \cdots & a_{s, s-1} & \\
\hline & & b_{1} & b_{2} & \cdots & b_{s-1} & b_{s}
\end{array}
$$

The s-stage implicit Runge-Kutta method

$$
\begin{aligned}
z_{i} & =y_{n}+h \sum_{j=1}^{s} a_{i, j} f\left(t_{n}+c_{j} h, z_{j}\right), \\
y_{n+1} & =y_{n}+h \sum_{j=1}^{s} b_{j} f\left(t_{n}+c_{j} h, z_{j}\right)
\end{aligned}
$$

The equations form a simultaneous system of s nonlinear equations for the s unknowns z_{1}, \ldots, z_{s} :

How to derive implicit methods? --- Integral methods
Integrating the equation $Y^{\prime}(t)=f(t, Y(t))$ over the interval $\left[t_{n}, t\right]$,

$$
\begin{aligned}
\int_{t_{n}}^{t} Y^{\prime}(r) d r & =\int_{t_{n}}^{t} f(r, Y(r)) d r, \\
Y(t) & =Y\left(t_{n}\right)+\int_{t_{n}}^{t} f(r, Y(r)) d r .
\end{aligned}
$$

Approximate the equation $\left\{\begin{array}{l}\bullet \\ \bullet \\ \bullet\end{array}\right.$ replacing $\mathrm{Y}\left(t_{n}\right)$ with y_{n}

- replacing the integrand with a polynomial interpolant of it

Let $p(r)$ be the unique polynomial of degree $<s$ that interpolates $f(r, Y(r))$ at the node points $\left\{t_{n, i} \equiv t_{n}+\tau_{i} h: i=1, \ldots, s\right\}$ on $\left[t_{n}, t_{n+1}\right] ; 0 \leq \tau_{1}<\cdots<\tau_{s} \leq 1$.

The integral equation is then approximated by

$$
Y(t) \approx y_{n}+\int_{t_{n}}^{t} p(r) d r \quad \text { where } \quad\left\{\begin{array}{l}
p(r)=\sum_{j=1}^{s} f\left(t_{n, j}, Y\left(t_{n, j}\right)\right) l_{j}(r) \\
l_{i}(x)=\prod_{j \neq i}\left(\frac{x-x_{j}}{x_{i}-x_{j}}\right), \quad i=0,1, \ldots, n
\end{array}\right.
$$

Forcing equality in the expression and let $\left\{y_{n, j}\right\}$ denote the approximate values to be determined by solving the nonlinear system

$$
y_{n, i}=y_{n}+\sum_{j=1}^{s} f\left(t_{n, j}, y_{n, j}\right) \int_{t_{n}}^{t_{n, i}} l_{j}(r) d r, \quad i=1, \ldots, s
$$

If $\tau_{s}=1$, then we define $y_{n+1}=y_{n, s}$. Otherwise, we define

$$
y_{n+1}=y_{n}+\sum_{j=1}^{s} f\left(t_{n, j}, y_{n, j}\right) \int_{t_{n}}^{t_{n+1}} l_{j}(r) d r .
$$

Two-point Collocation Methods (implicit RK)

Let $0 \leq \tau_{1}<\tau_{2} \leq 1$, and recall that $t_{n, 1}=t_{n}+h \tau_{1}$ and $t_{n, 2}=t_{n}+h \tau_{2}$. Then the interpolation polynomial is

$$
\begin{gathered}
p(r)=\frac{1}{h\left(\tau_{2}-\tau_{1}\right)}\left[\left(t_{n+1}-r\right) f\left(t_{n, 1}, Y\left(t_{n, 1}\right)\right)+\left(r-t_{n}\right) f\left(t_{n, 2}, Y\left(t_{n, 2}\right)\right)\right] \\
y_{n, i}=y_{n}+\sum_{j=1}^{s} f\left(t_{n, j}, y_{n, j}\right) \int_{t_{n}}^{t_{n, i}} l_{j}(r) d r \\
z_{i}=y_{n}+h \sum_{j=1}^{s} a_{i, j} f\left(t_{n}+c_{j} h, z_{j}\right) \\
\text { Implicit RK formula }
\end{gathered}
$$

$$
\begin{array}{c|cc}
\tau_{1} & \left(\tau_{2}^{2}-\left[\tau_{2}-\tau_{1}\right]^{2}\right) /\left(2\left[\tau_{2}-\tau_{1}\right]\right) & -\tau_{1}^{2} /\left(2\left[\tau_{2}-\tau_{1}\right]\right) \\
\tau_{2} & \tau_{2}^{2} /\left(2\left[\tau_{2}-\tau_{1}\right]\right) & \left(\left[\tau_{2}-\tau_{1}\right]^{2}-\tau_{1}^{2}\right) /\left(2\left[\tau_{2}-\tau_{1}\right]\right) \\
\hline & \left(\tau_{2}^{2}-\left[1-\tau_{2}\right]^{2}\right) /\left(2\left[\tau_{2}-\tau_{1}\right]\right) & \left(\left[1-\tau_{1}\right]^{2}-\tau_{1}^{2}\right) /\left(2\left[\tau_{2}-\tau_{1}\right]\right)
\end{array}
$$

when $\tau_{1}=0$ and $\tau_{2}=1$

$$
\begin{aligned}
& y_{n, 1}=y_{n}, \\
& y_{n, 2}=y_{n}+\frac{1}{2} h\left[f\left(t_{n}, y_{n, 1}\right)+f\left(t_{n+1}, y_{n, 2}\right)\right] .
\end{aligned}
$$

Substituting from the first equation into the second equation and using $y_{n+1}=y_{n, 2}$, we have

$$
y_{n+1}=y_{n}+\frac{1}{2} h\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n+1}\right)\right],
$$

which is simply the trapezoidal method.

Another choice is to use $\quad \tau_{1}=\frac{1}{2}-\frac{1}{6} \sqrt{3}, \quad \tau_{2}=\frac{1}{2}+\frac{1}{6} \sqrt{3}$.
The Butcher tableau is

$$
\begin{array}{c|cc}
(3-\sqrt{3}) / 6 & 1 / 4 & (3-2 \sqrt{3}) / 12 \\
(3+\sqrt{3}) / 6 & (3+2 \sqrt{3}) / 12 & 1 / 4 \\
\hline & 1 / 2 & 1 / 2
\end{array}
$$

The associated nonlinear system is

$$
\begin{aligned}
& y_{n, i}=y_{n}+\sum_{j=1}^{2} a_{i, j} f\left(t_{n}+\tau_{j} h, y_{n, j}\right), \\
& \\
& y_{n+1}=y_{n}+\frac{h}{2}\left[f\left(t_{n+1}, y_{n, 1}\right)+f\left(t_{n+1}, y_{n, 2}\right)\right]
\end{aligned}
$$

- Truncation error for this method has size $\mathcal{O}\left(h^{5}\right)$
- The convergence is $\mathcal{O}\left(h^{4}\right)$

