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• Finite difference methods for IVPs

• How to use Matlab programming to solve IVP

• The methods described here can be used as time discretization 

techniques for various applications.

Reference book:

Kendall Atkinson, Weimin Han, David Stewart, Numerical Solution of 

Ordinary Differential Equations, John Wiley & Sons, Inc. 

https://onlinelibrary.wiley.com/doi/book/10.1002/9781118164495
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For example, given a function 𝑔,

with 𝑐 an arbitrary integration constant. The constant 𝑐, and thus a particular solution, 

can be obtained  by using the initial condition

A first-order differential equation

Example

The general solution of the equation is

If we specify the condition then it is easy to find 𝑐 = 2.5.

3



Example Using the method of integrating factors.

with      a given constant. Multiplying the linear equation by the integrating 

factor         ,  we can reformulate the equation as
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General Solvability Theory

1.The solution exists,

2.The solution is unique,

3.The solution is not sensitive to 

perturbations of the data.

A well-posed problem

For an IVP, the Lipschitz continuity can guarantee the well-posedness.

• initial condition

• coefficients
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For example, we can use

provided this is finite.

6

Mean value theorem



𝑡 ≠ ±1

the theorem 
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Make a small change in the initial value for the initial value problem,

If for some 𝑐 > 0 that is independent of 𝜖,

then small changes in the initial value 𝑌0 will lead to small changes in the solution 𝑌(𝑡)
of the initial value problem.

Stability means that a small perturbation in the initial value of the problem 

leads to a small change in the solution.

≈ ϵ ∶ well−conditioned

≫ ϵ ∶ ill−conditioned

Stability of the Initial Value Problem
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The original problem



well−conditioned

ill−conditioned
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Why Numerical Methods?

• Many differential equations are too complicated to have solution formulas.

• Numerical methods provide a powerful alternative tool for solving the 

differential equation

Denote 𝑌(𝑡) the true solution of the initial value problem with the initial value 𝑌0

We aim to find an approximate solution 𝑦 𝑡 at a discrete set of nodes,

The following notations are all used for the approximate solution at the node points:
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1.3 The Forward EULER’S Method

A forward difference approximation

Applying this to the initial value problem at 𝑡 = 𝑡𝑛,
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Figure: An illustration of Forward Euler’s Method

The tangent line at 𝑡𝑛 has slope

ℎ
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function [t,y] = euler_for(t0,y0,t_end,h,fcn)
% Solve the initial value problem
% y’ = f(t,y), t0 <= t <= b, y(t0)=y0

n = fix((t_end-t0)/h)+1;
t = linspace(t0, t0+(n-1)*h, n)’;
y = zeros(n, 1);

y(1) = y0;

for i = 2:n
y(i) = y(i-1)+h*feval(fcn, t(i-1), y(i-1));

end

The routine returns two 
vectors
The right-side function 
of the differential 
equation.

t0

t_end

t0+(n-1)*h

i=1 i=2 i=n

t0+h

The node points
t(j)=t0+(j-1)*h, j=1,2,...,N

Approximated solution vector

Matlab program for Forward Euler’s Method 
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Solution of Forward Euler’s Method 

when ℎ = 0.2.
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1.4 Error Analysis of Euler’s Method

• Assume that the initial value problem has a unique solution 𝑌 𝑡 on 𝑡0 ≤ 𝑡 ≤ 𝑏
• Assume that the solution has a bounded second derivative 𝑌′′ 𝑡 over this interval
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The error in 𝑦𝑛+1
consists of two parts:

(1) the truncation error 𝑇𝑛+1, newly introduced at step 𝑡𝑛+1;

(2) the propagated error

Mean value theorem

(∗)

To analyze the error in Euler’s method, subtract 
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from

we have



(∗)
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What if at some point 𝑡𝑛+1 we discover that 𝑌(𝑡𝑛+1) − 𝑦𝑛+1 is too large?

Decreasing ℎ from 𝑡𝑛 to 𝑡𝑛+1?

Decreasing ℎ from 𝑡𝑛−1 to 𝑡𝑛+1?
We should decrease ℎ from 𝑡0 to 𝑡𝑛+1!

No!

No!

The error 𝑌 𝑡𝑛+1 − 𝑦𝑛+1 is called the global error or total error at 𝑡𝑛+1.

We next define the local error by introducing the following 

initial value problem:

local solution

local error: 

Assuming the solution 𝑦𝑛 at 𝑡𝑛 is the exact solution.

Relation with 

truncation error?
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Local initial value problem: from 𝑡𝑛 to 𝑡𝑛+1Global initial value problem: from 𝑡0 to 𝑡𝑛+1

Initial value: the numerical solution 

Numerical method to obtain           : Euler

Global error Local error = Truncation error

Initial value: given value

Numerical method to obtain           : Euler



For the initial value problem

If there exists 𝐾 ≥ 0 such that

∗∗

∗∗∗

∗∗∗

∗∗
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Initial error 𝑒0

Final error 𝑒𝑛

In general, if we have

for some constant 𝑝 ≥ 0, then we say that the numerical method is 

convergent with order 𝑝.
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Proof:

then

From

we obtain
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Taking bounds using , we obtain 
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Using this lemma, we have 

Substitute back to the formula, we obtain 
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If, in addition,                                  , there is a constant

Such that
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1. Subtract the “Taylor expansion of the exact solution 𝑌 𝑡𝑛+1 at 𝑡𝑛” 
with the “numerical scheme of 𝑦𝑛+1”.

2. Apply the Lipschitz condition to obtain the inequality between 
|𝑒𝑛+1| and |𝑒𝑛| .

3. Apply the inequality recursively from 𝑛 to 0.

4. Use some summation formulas to simplify the expression. 

5. Use the Lemma to allow having 𝑡𝑛 − 𝑡0 = 𝑛ℎ.
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The procedure of the proof



1.5 Numerical Stability

Define a numerical solution 𝑧𝑛

We now compare the two numerical solutions 𝑧𝑛 and 𝑦𝑛 as ℎ → 0.

Apply this recursively to obtain

we obtain

Taking bounds using , we have

or

Lipschitz 

condition
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Using this lemma, we obtain

substitute to , and note that                the following holds

Euler’s method is a stable numerical method for the initial value problem if ℎ𝐾 ≥ −1.
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• The forward Euler’s method is a first-order method.

when the step size ℎ is smaller, the method is more accurate.

• A very small ℎ decreases the efficiency of the numerical method.

• The forward Euler’s method may not be stable when ℎ is large.

Example

The true solution of the problem is
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We would like the numerical solution satisfies

The Euler method on the model problem

We can see that

or

Region of absolute stability
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Example         Consider the model problem with 𝜆 = −100.

The true solution at 𝑡 = 0.2 is 

2.061 × 10−9.
The forward Euler method will perform well only when 
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The Backward Euler Method

Absolutely stable: a numerical method is stable for any step size ℎ.

The forward Euler’s method

The backward Euler method 

Forward difference approximation

The backward Euler method  has this property.

Backward difference approximation

fori. e. ,

Like the Euler method, the backward Euler method is of first-order accuracy.
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The backward Euler’s method for the model 

problem is absolutely stable:

Applying the backward Euler’s method, 

The forward Euler method 

The backward Euler method 
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The backward Euler’s method is an implicit method: 𝑦𝑛+1 must be found by solving a root 

finding problem (usually, by solving a nonlinear algebraic equation).

Lipschitz continuity assumption on 𝑓 𝑡, 𝑦

ℎ is small enough
The equation has a unique solution

Will            converge to           ? 

By subtraction, Mean value theorem

&

ℎ is small
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If
→

the errors will converge to zero

The usual choice of the initial guess is based on the forward Euler method.

• The scheme predicts the root of the implicit method.

• The scheme is usually sufficient to do the iteration once.

• The scheme is still of first-order accuracy.

• The scheme is no longer absolutely stable.

The Predictor Formula:

Or in combined form:

i.e., try
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Matlab program for Backward Euler’s Method 

function [t,y] = euler_back(t0,y0,t_end,h,fcn,tol)
% Initialize
n = fix((t_end-t0)/h)+1;
t = linspace(t0,t0+(n-1)*h,n)’;
y = zeros(n,1);
y(1) = y0;
i = 2;

% advancing
while i <= n

i = i+1;
end

% forward Euler estimate
yt1 = y(i-1)+h*feval(fcn,t(i-1),y(i-1));

% one-point iteration
count = 0;    diff = 1;
while diff > tol & count < 10

yt2 = y(i-1) + h*feval(fcn,t(i),yt1);
diff = abs(yt2-yt1);
yt1 = yt2;
count = count +1;

End

if count >= 10
disp(’Not converging after 10 steps at t = ’)
fprintf(’%5.2f\n’, t(i))

end
y(i) = yt2;

…
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The Trapezoidal Method

Drawback of both the forward Euler method and the backward Euler method:  

only first-order accuracy

Has a higher convergence order

Has the stability property for any step size ℎ
The Trapezoidal Method

To derive the Trapezoidal Method, we start from the trapezoidal rule 

for numerical integration

We integrate the differential equation 
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Use the trapezoidal rule to approximate the integral:

By dropping the final error term and then 

equating both sides,
Truncation Error

is of second-order accuracy

is absolutely stable

The trapezoidal method

i.e., try
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The trapezoidal method is an implicit method

The usual choice of the initial guess is based on the forward Euler method.

and if we accept            as the value of           , then the resulting new scheme is called 

Heun’s method 

• The Heun method is of second-order accuracy.

• The Heun method it is no longer absolutely stable.

If

→

the iteration will converge

i.e., try
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Forward Euler Method 

Backward Euler Method Trapezoidal method

Absolutely Stable Absolutely Stable

Not Absolutely Stable

Not Absolutely Stable Not Absolutely Stable

Backward Euler Method with 

Forward Euler as Predictor 

Trapezoidal Method with 

Forward Euler as Predictor 

(Heun’s method) 



function [t,y] = euler_back (t0,y0,t_end,h,fcn,tol)
% Initialize
n = fix((t_end-t0)/h)+1;
t = linspace(t0,t0+(n-1)*h,n)’; 
y = zeros(n,1);
y(1) = y0;
i = 2;

% advancing
while i <= n

i = i+1;
end

% forward Euler estimate
yt1 = y(i-1)+h*feval(fcn,t(i-1),y(i-1));

% one-point iteration
count = 0;    diff = 1;
while diff > tol & count < 10

yt2 = y(i-1) + h*feval(fcn,t(i),yt1);

diff = abs(yt2-yt1);
yt1 = yt2;
count = count +1;

End

if count >= 10
disp(’Not converging after 10 steps at t = ’)
fprintf(’%5.2f\n’, t(i))

end
y(i) = yt2;

…

yt2 = y(i-1) +h*(feval(fcn,t(i-1),y(i-1))+
feval(fcn,t(i),yt1))/2;

trapezoidal

Matlab program for Trapezoidal Method 
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Forward Euler’s method   vs   Backward Euler’s method   vs    Trapezoidal method      

ℎ = 0.5, 0.1, 0.01

𝜆 = -1, -10, -50

Parameters:

Stiff Differential Equation

A larger ℎ is better, 

more efficient
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• The actual global error depends 

strongly on 𝜆

• Unstable and rapid growth happen 

when 𝜆 ℎ is outside the stability 

region

• The forward Euler scheme is of 

first-order accuracy

Forward Euler’s method 

44



Backward Euler’s method 

No stability problems!

Trapezoidal method 

The backward Euler method and the 

trapezoidal method are therefore more 

desirable!
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Forward Euler’s method Linear Taylor polynomial 

approximation

How about using higher-order Taylor approximations to improve 

the accuracy (or speed)?

Runge–Kutta methodsTaylor methods

• Need higher-order derivatives

• Usually tedious and time-consuming

• Use compositions of the right-side 

function to approximate the derivative

• Among the most popular methods in 

solving IVP

Higher Order Methods: 

Taylor and Runger–Kutta Methods
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Example For the problem

We use the quadratic Taylor approximation

Substitute into the Taylor expansion, we have

Differentiat

e
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By forcing equality,

Results of the second-order Taylor method
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In general, for the initial value problem

Taylor method selects a Taylor approximation of order 𝑝

With the truncation error

Find                               by differentiating the differential equation successively, obtaining 

formulas that implicitly involve only 𝑡𝑛 and 𝑌 𝑡𝑛 .

where

For higher derivatives, too complicate!!!
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See next page for 

the derivation



𝑌′′ 𝑡 = 𝑌′ 𝑡
′
= 𝑓 𝑡, 𝑦 ′ = 𝑓𝑡 + 𝑓𝑦𝑦𝑡 = 𝑓𝑡 + 𝑓𝑦𝑓

𝑌′′′ 𝑡 = 𝑌′′ 𝑡
′

= 𝑓𝑡 + 𝑓𝑦𝑓 ’

= 𝑓𝑡 𝑡, 𝑦 ′ + (𝑓𝑦(𝑡, 𝑦)𝑓(𝑡, 𝑦))′

= 𝑓𝑡𝑡 + 𝑓𝑡𝑦𝑦𝑡 + 𝑓𝑦 ′𝑓 + 𝑓𝑦𝑓′

= 𝑓𝑡𝑡 + 𝑓𝑡𝑦𝑓 + (𝑓𝑦𝑡+𝑓𝑦𝑦𝑦𝑡)𝑓 + 𝑓𝑦 𝑓𝑡 + 𝑓𝑦𝑦𝑡
= 𝑓𝑡𝑡 + 𝑓𝑡𝑦𝑓 + (𝑓𝑦𝑡+𝑓𝑦𝑦𝑓)𝑓 + 𝑓𝑦 𝑓𝑡 + 𝑓𝑦𝑓

• Assume that 𝑓𝑡𝑦 = 𝑓𝑦𝑡, substitute into the above formula, we can get the derivation 

on Slide 49 of Charpter 1.

• Note that 𝑓, 𝑓𝑡 , 𝑓𝑦 are also functions that depend on 𝑡, 𝑦 , and 𝑦 depends on 𝑡, so 

we need to use chain rule for their derivatives w.r.t 𝑡.
• 𝑌′′′ 𝑡 is already very complicate, so the Taylor method is not a good choice 

compared to the Runge-Kutta Method.
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Substitute these derivatives into the Taylor approximation and force it to be an 

equality, we have

where etc.

If the solution 𝑌 𝑡 and the derivative function 𝑓 𝑡, 𝑧 are sufficiently differentiable, the 

method satisfies

The Taylor approximation of order 𝑝 leads to a convergent numerical method with order 

of convergence 𝑝.

Runge–Kutta methodsTaylor methods

• Need higher-order derivatives

• Usually tedious and time-consuming
• Evaluate 𝑓 𝑡, 𝑦 at more points

• Retain the accuracy of the Taylor 

approximation

• Fairly easy to program
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Runge–Kutta Methods

some kind of “average 

slope” of the solutionFor methods of order 2,

We determine the constants                      so that the truncation error will satisfy

Truncation error for a 2-or method

To find the equations for the constants, we use Taylor expansions to compute the

truncation error                 .                 

① ②
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A lot of things can be put here
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We first expand                                        with respect to the second argument around   .

We then expand the terms with respect to the 𝑡 variable to obtain

① For the term 

② For the term 
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Then

The coefficients must satisfy the system

By solving this system, we have
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Underdetermined system



Heun’s method

Forward Euler solution at

is an “average” slope of the solution on the interval                 .

56



Slope of L1 = 𝑓 𝑡, 𝑌 𝑡Slope of L2 = 𝑓 𝑡 + ℎ, 𝑌 𝑡 + ℎ𝑓 𝑡, 𝑌 𝑡

Slope of L3(= L4) are the 

average 𝐹 𝑡, 𝑌 𝑡 ; ℎ

57

Note: L2 is not 𝑓 𝑡 + ℎ, 𝑌(𝑡 + ℎ)

𝑌 𝑡 + ℎ𝑓 𝑡, 𝑌 𝑡

𝑌 𝑡 + ℎ



Example For the problem

Results of the 2-or Runge–Kutta method 2-or Taylor method
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A General Framework for Explicit Runge–Kutta Methods

An explicit Runge–Kutta formula with 𝑠 stages has the following form:
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More succinctly

The coefficients are often displayed in a table called a Butcher tableau

The coefficients {𝑐𝑖} and {𝑎𝑖,𝑗}

are usually assumed to satisfy 

the conditions
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Example

Heun’s method

Fourth-order RK method
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Convergence of the Runge-Kutta Method

We want to examine the convergence of the Runge-Kutta method 

We want the truncation error

①

consistency condition 

62



We also need a Lipschitz condition on 𝐹

Theorem   Assume that the Runge–Kutta method satisfies the Lipschitz 

condition. Then, for the initial value problem, the solution          satisfies 

②
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If the consistency condition is satisfied, then the numerical solution 

converges to Y t . 

Taylor expansion

Corollary  If the Runge–Kutta method has a truncation error                               ，
then the error in the convergence of 
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Results of fourth-order Runge-Kutta method

Fourth-order Runge-Kutta method

Not accurate enough
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Runge–Kutta–Fehlberg Methods

• Currently most popular Runge–Kutta methods (Matlab code ode45.m).

• Simultaneously computes by using two methods of different orders

• The two methods share most of the function evaluations of f at each step from 𝑡𝑛 to 𝑡𝑛+1.
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Results of fourth-order of Fehlberg method
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The s-stage explicit Runge–Kutta method

The s-stage implicit Runge–Kutta method

The equations form a simultaneous system of s nonlinear 

equations for the 𝑠 unknowns

Stability!
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How to derive implicit methods? --- Integral methods

Integrating the equation                                over the interval 𝑡𝑛, 𝑡 ,

• replacing Y(𝑡𝑛) with 𝑦𝑛
• replacing the integrand with a polynomial interpolant of it

Approximate the equation
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where

Forcing equality in the expression and let              denote the approximate values to be 

determined by solving the nonlinear system

The integral equation is then approximated by
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Two-point Collocation Methods (implicit RK)

Implicit RK formula
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Trapezoidal methodImplicit RK method
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Two stage Gauss method

Another choice is to use

• Truncation error for this method has size

• The convergence is
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