Homework 1

1. Show that the trapezoidal method is absolutely stable using the example (on Page 30)

$$
\begin{aligned}
& Y^{\prime}=\lambda Y, \quad t>0, \quad \lambda<0 \\
& Y(0)=1 .
\end{aligned}
$$

2. Show that the Heun's method (Page 40) is not absolutely stable, what's the region of absolute stability (Page 31)?
3. Derive the second-order Runge-Kutta methods (Page 56) corresponding to $b_{2}=\frac{3}{4}$ and $b_{2}=1$. Please write the corresponding Butcher tableaus and the schemes. (Drawing an illustrative graph analogous to Page 57 helps you understand the scheme.)
4. Solve the problem (Page 58)

$$
Y^{\prime}(t)=-Y(t)+2 \cos (t), \quad Y(0)=1
$$

with the formula $b_{2}=3 / 4$ from Problem 3. Present your codes and conduct the numerical tests with $h=0.1$ and $h=0.05$. Compare your results to those on Page 58.

