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Abstract
We consider the numerical simulation of the left ventricle of the human heart by a hyperelastic fiber reinforced transversely
isotropic model. This is an important model problem for the understanding of the mechanical properties of the human
heart but its calculation is very time consuming because the lack of fast, scalable method that is also robust with respect
to the model parameters. In this paper, we propose and study a fully implicit overlapping domain decomposition method
on unstructured meshes for the discretized system. The algorithm is constructed within the framework of Newton–Krylov
methods with an analytically constructed Jacobian. We show numerically that the algorithm is highly parallel and robust with
respect to the material parameters, the large deformation, the fiber reinforcement, and the geometry of the patient-specific
left ventricle. Numerical experiments show that the algorithm scales well on a supercomputer with more than 8000 processor
cores.

Keywords Fiber-reinforced hyperelasticity · Left ventricle · Domain decomposition · Finite element · Parallel computing

1 Introduction

Computational modeling is used increasingly to study the
mechanical properties of the human heart [10,14,28,39,41].
To have more realistic simulations, sophisticated material
models are being considered and very finemeshes are used to
discretize the highly nonlinear partial differential equations.
Such simulations are extremely time consuming and require
highly parallel algorithms that are also robust with respect
the material properties. In this paper, we develop a domain
decomposition method for the simulation of the left ventricle
described by a hyperelastic model reinforced by transversely
isotropic fibers.
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Several parallel algorithms for cardiac mechanics have
been introduced in the past few years. Among them, one cat-
egory is developed based on structured or mapped structured
grids that are relatively easy to parallelize. For example, in
[34], an electro-mechanical model problem was investigated
by Reumann et al. on a structured grid, the calculation uses
16,000 processor cores for a mesh with 128 million cells.
Pavarino et al. developed a Newton-Krylov type method for
a cardiac mechanical model discretized by finite element
methods on mapped regular grids, the resulting problem is
solved by either an algebraicmultigrid [12] orBDDCmethod
[13,31,32]. The method scales well for up to 16000 proces-
sor cores for a mesh with 6.5 million degrees of freedom.
The other class of methods uses fully unstructured meshes
for which the geometrical details of the heart can be pre-
served, which is essential for patient-specific clinic studies.
However, such methods are difficult to parallelize due to the
lack of memory alignment, unbalanced computational load
and irregular communication requirements. Most of pub-
lished works in the literature are limited to small number
of processors or simulations on coarse meshes [19,29], or
using explicit methods [37]. In [21], a very large simula-
tion was carried out for the whole heart using an approach
based the Schur complement which is formed explicitly.
Generally speaking, forming the Schur complement matrix
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is considered prohibitively expensive, but the authors of
[21,30] applied a homogenization technique to the stiffness
matrix to reduce considerably the arithmetic complexity of
the problem, at the cost of reduced fidelity of the simula-
tion. Another remarkable work is [2], in which Augustin et
al. computed an electromechanic problem of the whole heart
with a Newton-Krylov method on a machine with 8192 pro-
cessor cores. However, as pointed out by the authors, the
ellipticity required by the method may be lost when the
deformation is large [26]. The focus of the present paper
is a method without requiring the ellipticity condition.

The aim of this paper is to develop an efficient and
robustmethod for cardiac elastodynamic problemswith large
deformation. More specifically, a patient-specific human
left ventricle is described by a fiber-reinforced hyperelastic
model, and the problem is discretized on a fully unstructured
tetrahedral mesh by a finite element method in space and a
fully implicit method in time. For solving the resulting non-
linear algebraic system, we use an inexact Newtonmethod to
deal with the nonlinearity in the governing equations, com-
bined with the GMRES method [36] to solve the Jacobian
system. One key ingredient of this approach is that we con-
struct the Jacobian matrix analytically which improves the
robustness and computational efficiency considerably. For
the scalability, and also for the robust of themethod,we adopt
a restricted additive Schwarz (RAS) preconditioner [7]which
works well without requiring the ellipticity of the Jacobian
system [7–9,22]. Numerical experiments show that the pro-
posed algorithm is highly parallel and robust with respect to
the material coefficients, the large deformation, and the fiber
reinforcement.

The rest of the paper is organized as follows. We
first describe a hyperelastic material model with fiber-
reinforcement designed for cardiac elastodynamics simula-
tions in Sect. 2. In Sect. 3, we introduce a fully implicit finite
element discretization of the model problems on unstruc-
tured meshes, and a highly parallel Newton-Krylov-Schwarz
method for solving the nonlinear algebraic system at each
time step. In Sect. 4, numerical evidence is presented for
validating the proposed algorithm and developed numerical
solver, some representative simulation results on a patient-
specific left ventricle are also demonstrated. At last, we
summerize some final remarks in Sect. 5.

2 Description of thematerial model

Let Ω ⊂ R
3 be the undeformed reference domain of an

elastomer, and X ∈ Ω a material point. We consider the
following elastodynamic system for the displacementd(t,X)

and the velocity v(t,X) in the Lagrangian coordinate system
[11]:

⎧
⎪⎨

⎪⎩

ρ
∂v
∂t

− ∇ · P = 0

∂d
∂t

= v
in Ω × (0, T ), (1)

with the boundary conditions d = 0 on Γd and PN = fT
on Γn , and the initial displacement d(0,X) = d0(X) and
velocity v(0,X) = v0(X). Here Γn and Γd are the Neumann
and Dirichlet boundaries ofΩ , respectively,N is the outward
unit normal vector, and fT denotes a traction force on Γn . In
addition, the first Piola-Kirchhoff stress tensor P is defined
as:

P = FS, (2)

where S is the second Piola-Kirchhoff stress tensor (to be
specified later), F = I + ∇d is the deformation gradient
tensor, I is the identity tensor of the second rank. Together, (1)
and (2) form a general formulation of finite elastodynamics.

The heart is a sophisticated organ that collects and pumps
blood via repeatedly diastole and systole of its muscles.
Under normal physiological conditions, it has been observed
that the human heart can bear large continuum deformations
when it is subject to internal and/or external force load-
ings, and return to its original shape after the loading is
removed. The heart muscles are formed by long thin cells
known as the cardiac fibers, and they response very differ-
entlywhen the loadings are applied alongdifferent directions.
These material properties can be conveniently described by
a hyperelasticity law through the passive part of the second
Piola-Kirchoff tensor. That is, there exists a strain energy
functional W , such that

Spas = ∂W

∂E
, (3)

where E = 1
2 (F

TF− I) is the Green-Lagrange strain tensor,
and Spas represents the passive part of S. Further, we assume
Ω is occupied by the left ventricle of a heart in the stress-free
state, for each point X ∈ Ω , there is a fiber described as a
three dimensional curve whose tangential direction at X is
denoted by a unit vector f(X). In this paper, we define

W = C

2
(eQ − 1) + κ

2
[ln(det F)]2. (4)

The first term in (4) comes from an transversely isotropic
constitutive model (Guccione model [18]), in which

Q = b f Ẽ
2
11 + bt (Ẽ

2
22 + Ẽ2

33 + Ẽ2
23 + Ẽ2

32)

+ b f s(Ẽ
2
12 + Ẽ2

21 + Ẽ2
13 + Ẽ2

31),
(5)

where Ẽab (a, b = 1, 2, 3) denote the components ofEmea-
sured in a local Cartesian coordinate system at each X ∈ Ω .
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More specifically, this local coordinate system is composed
of an orthonormal basis (e1, e2, e3) such that the e1-axis
aligns to the fiber direction f at X. In fact, according to the
transformation law of tensors [1],

Ẽab = (R[E]RT )ab, (6)

where [E] denotes the matrix representation of tensor E, and
R is a rotation matrix for the coordinate transformation, such
that Rf = (1, 0, 0)T at each X ∈ Ω . In (4) and (5), C
is a scaling parameter that measures the bulk stiffness of
the material, and the dimensionless coefficients b f , bt , b f s

specify the exponential weights of the strain energy, for the
subscript f representing the fiber normal component, the
subscript t the transverse normal component, and the sub-
script f s the fiber-shear component of the strain tensor E,
respectively. Note that e2 and e3 can be arbitrarily chosen (as
along as they form an orthonormal basis with e1) and are not
distinguished in (5), the transversely isotropy of the material
is implied. Besides, the second term of (4) appears due to a
volumetric constraint: the human heart is nearly incompress-
ible under deformation. Consequently, the ratio of volume
change det(F) can not deviate from 1 much, and κ stands for
a user-defined penalty parameter.

Other than Spas that determines the elastic passive prop-
erty, the elastic dynamics of the heart is prompted by the
active contraction of the heart muscles. This mechanism can
be described by introducing an internal stress Sact, as the
active part of the second Piola-Kirchhoff stress tensor. In
this paper, we assume Sact has the following form [13]:

Sact = Tactf0 ⊗ f0, (7)

where Tact is the scalar magnitude of the active stress that
may varywith time and location, f0 is a unit vector that points
to the fiber direction in the reference configuration, and ⊗
denotes the tensor product operator. In the case of (7), it
specifies that the contractile force produced by heart muscles
is along the direction of the myocardium fibers.

The complete second Piola–Kirchhoff stress S in (2) is
defined by combining the passive and active part:

S = Spas + Sact, (8)

and one can show that it has the following explicit form by
some straight forward tensor calculations:

S = CeQRT(A ∗ [Ẽ])R + κ ln(det F)C−1 + Tactf0 ⊗ f0,

(9)

whereC = FTF is the right Cauchy–Green tensor, ∗ denotes
a component-wise multiplication operator, A is a coefficient
matrix in the form of

A =
⎛

⎝
b f b f s b f s

b f s bt bt
b f s bt bt

⎞

⎠ , (10)

and [Ẽ] represents the matrix representation of E relative to
the local coordinate basis as described above.

Remark 1 In the literature, several hyperelasticity laws have
been proposed for modeling cardiac muscles with differ-
ent strain energy functions, see e.g. [3,25,33]. One popular
choice is the Holzapfel-Ogden (HO) model [20] and its vari-
ants (see [17] and the references therein). Comparing to the
Guccione model (4) adopted in this paper, the HO-type mod-
els involve one more characteristic direction corresponding
to the cardiac fiber sheet structure, and more physical param-
eters, hence is more sophisticated. Since both models share a
similar mathematical form as their strain energies consist of
similar exponential terms, the numerical method proposed in
this paper can be naturally extended to the HO-type models.

3 Methodolgy

In this section, we first present a fully implicit finite ele-
ment discretization of the elastodynamic problem (1), then
we discuss a highly parallel domain decomposition method
for solving the nonlinear algebraic system.

3.1 Discretization

LetD = {
d ∈ [H1(Ω)]3 | d = 0 on Γd

}
andV = [H1(Ω)]3,

the variational formof (1) reads ( [43]): Find (d, v) ∈ D×V ,
such that

F((d, v), (ϕ, ψ)) = 0 ∀(ϕ, ψ) ∈ D × V , (11)

where

F((d, v), (ϕ, ψ))

≡ ρ

∫

Ω

∂v
∂t

· ϕdX +
∫

Ω

P : ∇ϕdX −
∫

Γn

fT · ϕd

+
∫

Ω

∂d
∂t

· ψdX −
∫

Ω

v · ψdX.

(12)

To discretize (11), we assume there is a quasi-uniform
tetrahedral mesh Th on Ω , and create two piecewise linear
continuous finite element spaces: Dh ⊂ D and Vh ⊂ V . By
denoting the finite element solution of (3.1) asuh ≡ (dh, vh),
one has

Fh(uh, φh) = 0, ∀φh ∈ Uh, (13)

where Uh ≡ (Dh,Vh), and φh ≡ (ϕh, ψh) is the finite
dimensional test functions.
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To obtain a fully discretized form, we apply a backward
Euler scheme for the time derivative in (13) [35]. Namely,
by denoting unh ≡ (dnh, v

n
h), we approximate

∂unh
∂t

≈ unh − un−1
h


t
, (14)

where 
t is the time step size, tn = n
t is the nth time step,
dnh ≡ dh(tn, ·) and vnh ≡ vh(tn, ·).

Given an initial condition u0h at t0 = 0, then at each tn
for n = 1, 2, . . . , we form and solve the following finite
dimensional variational problem: Find unh ∈ Uh , such that

Fn
h (unh, φh) = 0 ∀φh ∈ Uh, (15)

where

Fn
h (unh, φh)

≡ ρ

∫

Ω

(
vnh − vn−1

h

)
· ϕhdX + 
t

∫

Ω

P(dnh) : ∇ϕhdX

−
t
∫

Γn

fT · ϕhd

+
∫

Ω

(
dnh − dn−1

h

)
· ψhdX − 
t

∫

Ω

vnh · ψhdX. (16)

For simplicity, we drop the scripts and write (15) as a
system of nonlinear algebraic equations:

F (x) = 0, (17)

where x represents the vector of current nodal values of uh
to be computed.

3.2 A Newton–Krylov–Schwarz solver

The strain energy of the Guccione model depends exponen-
tially on the strains, thus (17) is highly nonlinear. For the fast
convergence and robustness, we choose the Newton-Krylov
method for solving (17). That is, we start with an initial guess
x0 of the solution, then an updated solution is computed with
xm+1 = xm + αmym , where αm ∈ (0, 1] is the line search
step length [9], and ym is the search direction obtained via
inexactly solving the Jacobian system:

‖J (xm)ym + F(xm)‖ ≤ 10−4‖F(xm)‖. (18)

Here, J represents the Jacobianmatrix of F , whose assembly
processwill be given later. The Jacobian system (18) is solved
by a restarted GMRES method with a right preconditioner
B−1:

{
J B−1z = −F,

y = B−1z.
(19)

There are many ways to construct B−1. In this paper,
we focus on an overlapping Schwarz method [7]. First, the
finite element mesh T is partitioned into n p non-overlapping
submeshes such that T = ∪n p

i=1Ti , for Ti denoting the i th

subdomain. Then, each Ti is extended to T δ
i to overlap with

its neighbors, here the superscript δ denotes the number of
overlapping layers. Next, we construct a restriction matrix
Rδ
i that maps a global vector z into a sub-vector zδ

i defined
on the overlapping subdomain T δ

i :

zδ
i = Rδ

i z = z|T δ
i
. (20)

A restricted additive Schwarz preconditioner B−1 can then
be defined as

B−1 =
n p∑

i=1

(R0
i )

T J−1
i Rδ

i , (21)

where Ji denotes the subdomain Jacobian matrix, and R0
i is

the restriction matrix defined on the non-overlapping subdo-
main Ti . The subdomain problem corresponding to each Ji
is solved approximately using incomplete LU factorization.

For clarity,we summarize the discussion above into a com-
plete algorithm as follows:

Algorithm 1 A fully implicit time stepping Newton–Krylov–
Schwarz method for solving the elastodynamic problem (1).

1. Set x0 by the initial data d0 and v0.
2. For time step n = 1, 2, . . . , substitute xn−1 into (17),

then solve it for xn by using an inexact Newton method:

2.1 Set x̄0 = xn−1, m = 0.
2.2 Compute F(x̄m) by (17) and its Jacobian matrix

J (x̄m) analytically, create a RAS preconditioner
(Bm)−1 by (21), then set y0 = 0 and use GMRES
to solve the preconditioned linear system (19) for ym
approximately, s.t.

‖J (x̄m)(Bm)−1Bmym + F(x̄m)‖ ≤ 10−4‖F(x̄m)‖.

2.3 Find αm via a line search method.
2.4 Update x̄m+1 = x̄m + αmym .
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2.5 Stop the Newton iteration if

‖F(x̄m+1)‖ ≤ 10−6‖F(x̄0)‖ or ‖F(x̄m+1)‖ ≤ 10−8,

set xn = x̄m+1 and go to the next time step; otherwise,
let m = m + 1 and go to step 2.2.

3.3 Assembly of the Jacobianmatrix

The efficiency and the robustness of the proposed method
depends on how the Jacobianmatrix J is constructed. Instead
of the usual approximate Jacobian, we use the exact Jacobian
matrix constructed analytically. Later, we will demonstrate
the advantages of the analytical Jacobian over a finite differ-
ence approximation through numerical experiments. Here,
we explain some details about assembling J .

We first introduce some notations. In the following, we
use d as the displacement function in the finite dimensional
space, without ambiguity. By writing the vector function d
in the form d = (d1, d2, d3)T , we expand each component
in terms of the finite element basis functions:

d =
⎛

⎜
⎝

d1

d2

d3

⎞

⎟
⎠ =

⎛

⎜
⎝

d1,iΦi

d2,iΦi

d3,iΦi

⎞

⎟
⎠ = diΦi . (22)

Here, the subscript i denotes the i th node of the mesh,Φi and
di = (d1,i , d2,i , d3,i )T represent the i th nodal basis inUh and
the corresponding nodal displacement vector, respectively. In
this paper we assume there is a summation whenever a pair
of duplicated indices appear in the same term. Similarly, we
write vi = (v1,i , v2,i , v3,i )

T as the i th nodal velocity.
The Jacobian matrix J can be obtained by taking partial

derivatives of F , as defined in (17), with respect to each
of the nodal unknowns d1,i , d2,i , d3,i , v1,i , v2,i , v3,i . More
precisely, J is organized as

J = [Ji j ] for i, j = 1, 2, . . . , N , (23)

where N is the total number of mesh nodes, and each Ji j
takes the form of

Ji j =

⎡

⎢
⎢
⎣

∂Fd,i

∂d j

∂Fd,i

∂v j
∂Fv,i
∂d j

∂Fv,i
∂v j

⎤

⎥
⎥
⎦ . (24)

In (24), Fd,i and Fv,i are two vectors defined by

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣


t
∫

Ω

P1k
∂Φi

∂Xk
dX + ρ

∫

Ω

v1ΦidX


t
∫

Ω

P2k
∂Φi

∂Xk
dX + ρ

∫

Ω

v2ΦidX


t
∫

Ω

P3k
∂Φi

∂Xk
dX + ρ

∫

Ω

v3ΦidX

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(25)

and

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫

Ω

d1ΦidX − 
t
∫

Ω

v1ΦidX
∫

Ω

d2ΦidX − 
t
∫

Ω

v2ΦidX
∫

Ω

d3ΦidX − 
t
∫

Ω

v3ΦidX

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (26)

respectively. Note that both of the numerator (Fd,i or Fv,i )
and the denominator (d j or v j ) are vectors, thus each of these
partial derivatives in (24) produces a 3-by-3 tensor.

It is straight forward to find that

∂Fd,i

∂v j
= ρM,

∂Fv,i
∂d j

= M, and
∂Fv,i
∂v j

= −
tM, (27)

where M is a diagonal matrix:

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∫

Ω

ΦiΦ jdX 0 0

0
∫

Ω

ΦiΦ jdX 0

0 0
∫

Ω

ΦiΦ jdX

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (28)

On the other hand, calculating ∂Fd,i/∂d j needs considerably
more effort. To do so, we notice that for the first term in each
row of (25), one has

∂

∂d j ′, j

(


t
∫

Ω

Pi ′k
∂Φi

∂Xk
dX

)

= 
t
∫

Ω

∂Pi ′k
∂d j ′, j

∂Φi

∂Xk
dX for i ′, j ′ = 1, 2, 3.

(29)

This suggests that,wefirst need tofind the values of ∂Φi/∂Xk

and ∂Pi ′k/∂d j ′, j (k = 1, 2, 3), at all quadrature points. Cal-
culating the former is standard, while the latter needs the
definition of P. Namely, we calculate the partial derivative
of P by first finding the corresponding partial derivatives of
F and S:

∂Pi ′k
∂d j ′, j

= ∂(FS)i ′k
∂d j ′, j

= ∂Fi ′k′

∂d j ′, j
Sk′k + Fi ′k′

∂Sk′k
∂d j ′, j

. (30)
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Further, to evaluate Sk′k and ∂Sk′k/∂d j ′, j (k′ = 1, 2, 3), a
coordinate transformation needs to be performed. This is
because part of the definition of S relies on a local coordinate
system (see (9)), while the nodal unknowns d j and v j , the
finite element basis and the partial derivatives are described
in the global coordinate system. To remedy the gap, at each
quadrature point, we first calculate the value of E according
to its definition (see page 2) provided that the current value
of∇d has been precomputed in the global coordinate system

∇d = ∂d
∂X

= di ⊗ ∂Φi

∂X
.

Then according to the tensor transformation (6), the value
of the Green-Lagrange strain tensor in the local coordinate
system is revealed, andS can be calculated by (9).HereR rep-
resents a rotation matrix for performing the global-to-local
coordinate transformation, such that e1 of the local coordi-
nate system aligns to f0. Note that although the fiber changes
its direction as the deformation happens, one only needs to
know its value in the reference configuration and calculates
R once for all. In other words,R are not changed in time, due
to the fact that the governing equation (1) is described via the
Lagrangian approach,which simplifies the analysis and eases
the implementation. A method proposed in [27] is adopted
for calculating R for improving the numerical stability.

Below, we list the detailed formulae of the partial deriva-
tives of all related tensors for calculating ∂Sk′k/∂d j ′, j
(k, j ′, k′ = 1, 2, 3 and j = 1, 2, . . . , N ) as a reference. In
practice, they are used in a reversed order for evaluating (30)
at each quadrature point and the final assembly of (29).

∂Sk′k
∂d j ′, j

= CeQRmk′Rnk

((

2(A ∗ Ẽ) : ∂Ẽ
∂d j ′, j

)

(A ∗ Ẽ)mn + ∂(A ∗ Ẽ)mn

∂d j ′, j

)

+ κ

(
1

det F
∂ det F
∂d j ′, j

C−1
k′k + ln(det F)

∂C−1
k′k

∂d j ′, j

)

,

∂Emn

∂d j ′, j
= 1

2

∂Cmn

∂d j ′, j
,

∂ det F
∂d j ′, j

= det F tr

(

F−1 ∂F
∂d j ′, j

)

,

∂C−1
k′k

∂d j ′, j
= −C−1

k′m′
∂Cm′n′

∂d j ′, j
C−1
n′k ,

∂Cmn

∂d j ′, j
= ∂Flm

∂d j ′, j
Fln + Flm

∂Fln
∂d j ′, j

.

∂Flm
∂d j ′, j

= δl j ′
∂Φ j

∂Xm
,

where δ is the Kronecker delta, tr represents the trace oper-
ator, the dummy indices l,m, n,m′, n′ are all summed from
1 to 3.

Remark 2 We remark that the proposed method provides a
general framework for different elasticitymodels, such as the
Holzapfel-Ogden model [20]. The expression of the second
Piola-Kirchhoff stress S for the specific model is needed, as

well as the corresponding Jacobian matrix J . The discretiza-
tion scheme, the linear and nonlinear algebraic sol-vers and
the preconditioning technique can be used as is.

4 Numerical experiments

In this section, we present some numerical experiments to
show the accuracy of the proposed method, its robustness
with respect to various physical and numerical parameters,
and the parallel performance. The software is developed
using PETSc [4] (https://www.mcs.anl.gov/petsc) and the
partition of the unstructured meshes are obtained using
ParMetis (http://glaros.dtc.umn.edu/gkhome/metis/parmetis/
overview). We first consider a well-known benchmark prob-
lem to verify our algorithm and the implementation by com-
paring our results with what was reported in the literature.
We then apply the proposed approach to a patient-specific left
ventricle, for which we use a projection method to specify
the fiber distribution. In the end we show the parallel perfor-
mance on a supercomputer with a large number of processor
cores.

4.1 A benchmark test

To validate the proposed method, we consider a static elastic
benchmark problem in [24] (Problem 3). This problem aims
to find the deformation of an idealized ellipsoidal domain
subject to an active stress over the body and an expansive sur-
face loading on the interior surface. The constitutivemodel is
described in (4) and (5), and both the geometry and the fiber
distributions are defined analytically as shown in Fig. 1. In
the benchmark test, the model parameters are set as: ρ = 1.0
g/cm3, C = 2× 103 Pa, b f = 8.0, b f s = 4.0, and bt = 2.0,
the same values will be used for other tests, if not specified
otherwise.

As mentioned in [24], 11 research groups reported results
for this benchmark problem. In this paper we compare with
experiments reported by the CARP group [2] that uses an
unstructured tetrahedral mesh with 510,960 elements and
94,622 vertices. In our experiment, we use an unstructured
tetrahedral mesh with 4,087,680 elements and 718,945 ver-
tices.

To reach the steady state of the problem, we apply our
transient algorithm with 200 pseudo time steps and 
t =
0.005. The magnitude of the active stress and the surface
loading on the interior boundary are set to be 6× 104 Pa and
1.5× 104 Pa, respectively, and they are equally increased to
the desired values during the time stepping. We carry out the
experiment using different values of the incompressibility
parameter κ and compare the location of the apex and the
volume loss, and the results are summarized in Table 1 and
Fig. 2. From Table 1, it can be seen that larger κ corresponds
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Fig. 1 a The geometry of the ellipsoid for the benchmark problem. b
Fiber direction distributed along a line that penetrates the ellipsoid and
lays on the XY-plane. The line is colored according to the Z-component
of the unit fiber vector, which changes from −1 (epicardium) to +1
(endocardium). c and d are the surface mesh structure and the fiber
direction in a small square area on the epicardium

Table 1 Solutions of the benchmark problem in terms of the Z-
component of the displacement of the apex (Apex-Z), the volume of
the deformed ellipsoid (Volume), and the loss of the volume in per-
centage (Vol. Loss), for different κ values. The results reported by the
CARP group in [24] are listed on the second row

Apex-Z Volume Vol. loss

Undeformed 0 3233 0

CARP 4.58 3186 1.45%

κ = 1 × 105 5.39 2983 7.73%

κ = 3 × 105 4.81 3141 2.85%

κ = 5 × 105 4.65 3177 1.73%

κ = 8 × 105 4.52 3192 1.38%

to smaller deformation, and we obtain the same results as
in CARP’s experiment when κ is 5 × 105 Pa. This shows
more clearly in the contour plots of the deformed shapes
at a cross section in Fig. 2. We point out that there exists
a known singularity at the apex. Since the slight difference
does not change the main feature of the solution, we consider
our results are acceptable and this serves as a validation of
the proposed algorithm.

Fig. 2 a The benchmark solution obtained by our solver, for the case of
κ = 5×105.bThe cross section outlines on theYZ-plane of theCARP’s
data (black), and of our results for κ = 1 × 105 (red), κ = 3 × 105

(purple), κ = 5 × 105 (green) and κ = 8 × 105 (blue). The gray area
represents the original undeformed region. c Details of the outline in
the area near the apex

Table 2 Three finite elementmeshes used in the numerical experiments

Mesh # Vertices # Cells Element size (mm)

Meshc 104,395 496,905 0.8

Meshm 745,130 3,975,240 0.4

Meshf 5,623,243 31,801,920 0.2

4.2 A patient-specific left ventricle

In the following numerical experiments, we study the left
ventricle of a patient-specific human heart for one cardiac
cycle by solving the transient problem (1). By varying solver
and model parameters, and taking different physical settings,
we verify the convergence of the discretization scheme in
both space and time, and also investigate the robustness of
the proposed algorithm.

We first mention briefly the mesh generation of the
left ventricle, the distribution of the fiber orientation and
the simulation settings. As shown in Fig. 3a, b, the 3D
geometry is reconstructed from a computer tomography
(CT) image. Based on the geometry, three conformal quasi-
uniform unstructured tetrahedral finite element meshes are
generated, denoted as the coarse mesh (Meshc), the medium
mesh (Meshm), and the finemesh (Meshf), each of which has
the element size on the epicardium approximately 0.8 mm,
0.4 mm, and 0.2 mm, respectively (see Table 2). Some local
mesh structures on the epicardium are presented in Fig. 3d.

A heart fiber is a bundle of combined or connected neigh-
boring cardiomyocytes that aligns locally to a common
direction. The human left ventricle is composed of multi-
ple branches of fibers as a complicated 3D coiled structure.
Collectively, shrinking and extending of the fibers cause the
contraction and relaxation of the ventricle muscles in the
macroscopic view. As explained in the previous section, the
value of the fiber orientation vector f0 in the reference con-
figuration is needed for determining the constitutive relation
in (9). However, the detailed in vivo distribution of the fiber
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Fig. 3 a The CT image of a patient-specific human heart with its left
ventricle highlighted in magenta. b The geometry of the left ventricle
extracted from theCT image. c Fiber orientation on a line that penetrates
the ventriclewall, this line lays on a horizontal slice (gray) and is colored
according to the Z-component of the fiber vector. d Local structure in a
square region on the epicardium of Meshc (left), Meshm (middle), and
Meshf (right), respectively

orientation is difficult to get and not always available [38].
Here, inspired by the work of [42], we describe an algorith-
mic rule that assigns a fiber direction for each mesh point of
the ventricle.

1. We first choose a point a on the epicardium as the apex.
In our experiments, we select the point at the bottom
of the epicardium (−14.64,−5.73,−30.18) mm, which
has the shortest distance from the endocardium.

2. For each point p on the epicardium and endocardium,
we determine its fiber direction by its local geometrical
characteristics with the following steps:

(a) calculate the outward unit normal vector n, and the
vector that points to the apex b = a − p.

(b) define the local circumferential vector c by

c = n × b,

and the local longitudinal vector l by

l = c × n.

(c) the fiber orientation vector f0 at p is obtained by rotat-
ing l by a certain angle α in the local tangential plane:

f0 = l cosα + c sin α.

Usually, α is chosen differently for epicardium and endo-
cardium points, so that the resulting directions are similar
to the actual ventricular fiber distributions found from
anatomic observations. In our tests, we set α = 70◦ on
the epicardium and α = −110◦ on the endocardium.

Table 3 Basic settings used in the patient-specific left ventricle simu-
lations

Description Default setting

ρ Material density 1.0 g/cm3

C Bulk stiffness parameter 2.0 × 103 Pa

κ Incompressible penalty parameter 1.0 × 105 Pa

b f , b f s , bt Strain energy weights 8.0, 4.0, 2.0

Tact Active stress transient function See Fig. 4

A Active stress maximum magnitude 6.0 × 104 Pa


t Time step size See Table 4

Mesh Finite element mesh Meshm
Jacobian Jacobian construction method Analytical

ILU ILU fill-in level 1

Overlapping Overlapping size 1

Cores Number of processor cores 192

3. For each of the x, y, z-component of the fiber direc-
tion, we regard its values on the epicardium and the
endocardiumobtained from step 2 as theDirichlet bound-
ary values of a Laplace equation. Then by solving the
three boundary value problems we determine the fiber
directions for each mesh point in the interior of the left
ventricle.

In our implementation, each of the threeLaplace equations
is discretized by using the same finite element method on the
same mesh as for the elastodynamic problem (1), and solved
by using an additive Schwarz preconditioned Conjugate Gra-
dient solver with the relative tolerance 10−8. Figure 3c shows
the fiber orientations along a line that penetrates the ventricle
wall, obtained by using this scheme. There are other rule-
based methods for fiber generations over a ventricle or heart
domain, such as [5,16,40].

Both the model problem and the solution algorithm have
adjustable parameters, and all the parameters have certain
impact on the accuracy and efficiency of the simulation. Next
we study how these factors influence the simulation results
by tracking the geometrical change of the left ventricle and
their impact on the performance of the numerical solver. In
the rest of the paper, stress is measured in Pascal and length
is measured in millimeter, and we use “Apex” to denote the
displacement of the apex, “Volume” the volume of the left
ventricle, “Cavity” the internal cavity, “Area” the area of the
endocardium, “NI” the average number of Newton iterations
per time step, “LI” the average number of GMRES itera-
tions per Newton step, and “Time” the total compute time in
second. The default values of the parameters used in the fol-
lowing experiments can be found in Table 3, if not mentioned
otherwise.
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Fig. 4 The transient function of the active stress magnitude Tact accord-
ing to the data proposed in [23]. In each curve, the maximummagnitude
A is adjusted to be 4, 6, 8, 10 × 104 Pa, respectively. Here, the case of
A = 6 × 104 Pa is used as the default in our numerical experiments

Table 4 The nonuniform time step size used in this paper for the active
stress magnitude transient mode shown in Fig. 4

Stage 1 Stage 2 Stage 3 Stage 4

Time interval [0, 0.05] [0.05, 0.15] [0.15, 0.4] [0.4, 1.0]


t 0.01 0.0025 0.005 0.01

steps 5 40 50 60

The total number of time steps for one cardiac cycle is 155

We first consider the active stress that serves as the driv-
ing force of the elastodynamics. Customarily, one cardiac
cycle can be divided into two phases: the systole phase and
the diastole phase. Once the systole phase starts, the active
stress in the ventricle increases rapidly to itsmaximumvalue.
After that, it decreases gradually to and remains at a low level
(around 103 Pa) until the next cycle starts. In this paper, we
assume that the left ventricle experiences the same active
stress Tact that varies with time t and satisfies the transient
modeproposed in [23]. Since one cardiac cycle lasts for 1 sec-
ond, the maximum magnitude of the active stress is reached
at t = 0.185 s. Let A be the maximum value of Ta , we
test several values of A = 4, 6, 8, 10 × 104 Pa, with the
corresponding transient curves of Tact shown in Fig. 4. To
obtain better time accuracy, the cardiac cycle is divided into
four stages, and different time step sizes are used in different
stages, as specified in Table 4. We run the simulation from
t = 0 till the active stress reaches the maximum magnitude
A (at t = 0.185 s, 52 time steps) for each case, the numeri-
cal results and solver performance are reported in Table 5. As
one can see, when A is larger, the average number ofGMRES
iterations per Newton step remains almost the same, but the
average number of Newton iterations per time step becomes
larger and the solver time increases. This indicates that the
nonlinear algebraic system is harder to solve as A increases.

Fig. 5 Left: The epicardium (gray surface) of the undeformed left ven-
tricle is cut through the apexwith its left half removed. For the remaining
right half of the epicardium, its deformed shape is shown by the blue,
green, yellow and red surface for A = 4, 6, 8, 10×104 Pa, respectively.
Right: The bottom panel shows a neighborhood of the apex in the ref-
erence configuration, the upper panel shows the deformed shape of the
neighborhood for each value of A, respectively

Further, to see how the simulation result changes for dif-
ferent values of A, we display the shape of the deformed
epicardium. In Fig. 5, the original epicardium is plotted as
the gray surface, in which its left half is removed to reveal
the position of the apex (the purple ball at the bottom on
the gray surface). For the remaining right half of the epi-
cardium, when the active stress increases to the maximum
magnitude as prescribed in Fig. 4, it deforms into the surface
in blue (A = 4 × 104 Pa), green (A = 6 × 104 Pa), yellow
(A = 8 × 104 Pa) and red (A = 10 × 104 Pa), respectively.
The new location of the apex is marked by a purple ball on
the corresponding surface for each case. It can be seen that
all these (half) epicardial surfaces changes in a similar pat-
tern, and a larger A leads to a larger deformation as the final
position of the apex is further away from the original posi-
tion. Since the fibers actively contract with slight rotation
in their longitudinal direction and they all intersect at the
apex, one can see a rotation in the neighborhood of the apex
accordingly.

One expensive component of Algorithm 1 is the construc-
tion of the Jacobian matrix in Step 2.2. A popular approach
is to approximate the matrix using a multi-colored finite dif-
ference method, MCFD ( [6,15]), which is easy to program
by calling the nonlinear functions several times. However,
our experiments show that MCFD is very inefficient due to
the many nested functions calls. Instead of MCFD, we use
an analytically computed Jacobian matrix, as described in
Sect. 3.3. This scheme requires a lot of programming effort
but the total compute time is reduced considerably. A com-
parison of MCFD and the analytic Jacobian is provided in
Table 6. As we can see from the table the compute time is
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Table 5 Influence of the active
stress maximum magnitude A
(in 104 Pa) on the numerical
simulation results and solver
performance

A Apex Volume Cavity Area NI LI Time

4 15.33 59,093.20 31,106.64 4647.19 2.29 198.76 1443.03

6 17.11 56,792.59 27,458.45 4326.40 2.40 201.69 1533.83

8 18.57 54,778.98 24,880.89 4092.02 2.44 206.43 1581.19

10 19.78 52,989.12 22,880.37 3906.38 2.75 204.34 1768.23

Table 6 A comparison of MCFD and analytic Jacobian

Cores MCFD Jacobian Analytic Jacobian

NI LI Time NI LI Time

16 3 74.67 576.34 3 74.67 22.16

32 3 76.67 293.10 3 76.67 11.62

64 3 79.67 149.54 3 79.67 6.31

128 3 83.67 78.57 3 83.67 3.69

The results are for one time step using Meshc

Table 7 Impact of the mesh on the computed apex displacement, vol-
ume, internal cavity and endocardium area of the left ventricle

Mesh Apex Volume Cavity Area

Meshc 16.88 56984.80 27815.89 4343.75

Meshm 17.11 56792.59 27458.45 4326.40

Meshf 17.17 56736.28 27339.45 4329.18

reduced from 78.57 seconds to 3.69 seconds when we run
the code using 128 processor cores. The number of Newton
and GMRES iterations stay the same.

In the following, we determine the right mesh size for the
simulation. Three meshes described in Table 2 are consid-
ered. We use 24 cores for Meshc, 192 cores for Meshm, and
1536 cores for Meshf. Due to the complexity of the nonlin-
ear elastodynamic system (1) and the shape of the problem
domain, the analytical solution of this problem is impossible
to get. Hence we regard the result obtained on the finest mesh
(Meshf) as the reference solution. As shown in Table 7, com-
paringwith the reference, it is clear that the solution accuracy
is improved as the mesh size becomes finer: for example, the
error of the cavity is reduced form 476.44 mm3 for Meshc
to 119 mm3 for Meshm. To further understand the proposed
approach, we look at the fiber strain E f f = (Ef0) · f0 that
is often considered as an important physiological quantity in
some clinic applications. As shown in Fig. 6, the left ventricle
is cut vertically, and E f f is plotted on the cross section for
eachmesh. By comparing the results, especially in the region
close to the apex at the bottom, we find that themediummesh
is able to produce almost the same E f f distributions as the
fine mesh, but the results from Meshc include some notice-
able errors and artifacts.

Fig. 6 Influence of themesh size on E f f , the strain in thefiber direction.
The deformed left ventricle is cut vertically to reveal the distribution of
E f f on the cross section obtained from Meshc (top), Meshm (middle)
and Meshf (bottom), respectively

The time step size 
t is another important parameter
influencing the accuracy of the numerical simulation. In the
following,we show the impact of
t on the simulation results
and the solver performance. We only run the simulation in
the time interval [0 s, 0.2 s] with three values of 
t = 0.1
s, 0.01 s, and 0.001 s, respectively. The results are collected
in Table 8. It can be seen that the main features of the left
ventricle, such as the volume and the cavity, are not very
sensitive to 
t . Hence, if one is interested in these global
values then using a larger time step is reasonable. To under-
stand the influence of 
t more comprehensively, we track
the movement of the apex and three representative points on
the epicardium. As shown in Fig. 7, in the subfigures, the tra-
jectories are plotted in different colors for different choices
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Table 8 Influence of the time step size 
t on the numerical results of
patient specific left ventricle cardiac simulation, in terms of the displace-
ments of the apex, the volume, the internal cavity and the endocardium
area of the deformed left ventricle, at t = 0.1s and 0.2s, respectively

t 
t Apex Volume Cavity Area

0.1 0.1 13.78 60,570.58 34, 077.71 4907.27

0.01 14.05 60,542.76 34, 092.19 4901.45

0.001 13.09 60,662.18 33, 812.34 4917.49

0.2 0.1 17.09 56,873.52 27, 582.44 4336.41

0.01 17.08 56,874.85 27, 581.46 4336.60

0.001 15.64 56,877.98 27, 583.91 4336.77

Fig. 7 3D trajectories of the apex and three monitor points for t ∈
[0s, 0.2s]. In each subfigure, the white ball at the bottom right corner
denotes the original location of the apex or monitor point, which travels
from bottom to top. The red, green and blue curve represents the tra-
jectory obtained by setting 
t = 0.001s, 0.01s and 0.1s, respectively

of 
t (red for 0.001s, green for 0.01s, and blue for 0.1s).
The locations of these points at t = 0.1s and 0.2s are also
marked, as the small balls on the corresponding curves in the
same color. It is noticeable that the trajectories of different
monitor points share a similar geometrical shape when the
same 
t is adopted, and using a relatively large 
t is suffi-
cient to reveal the main features of the movement. These also
support the results in Table 8. On the other hand, it shows that
more detailed trajectory information with higher resolution
can be revealed as 
t is reduced. Hence a sufficiently small

t should be adopted if the detailed kinematical history is
of interest.

Next, we show the kinetic changes of the left ventricle
during the cardiac cycle. The calculation is carried out using

Fig. 8 Evolution of the patient-specific left ventricle during a cardiac
cycle. Left column: three representative slices inside the ventricle, the
blue arrow represents the moving direction at a monitor point. Right
column: perspective view of the deformed left ventricle colored in the
displacement magnitude. The snapshots from top to bottom are taken
at t = 0 s, 0.075 s, 0.1 s, 0.185 s (maximum active stress state), 0.4s
and 0.65 s, respectively
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Fig. 9 Evolution of the fiber on the endocardium (left column) and the
epicardium (right column) during a cardiac cycle, colored according
to the strain along the fiber direction, E f f . The snapshots from top to
bottom are taken at t = 0s, 0.075s, 0.1s, 0.185 s (maximum active stress
state), 0.4s and 0.65s, respectively

Table 9 Influence of the ILU fill-in level and overlapping size on the
performance of the solver

ILU Overlap NI LI Time

0 0,1,2 – – –

1 0 2.80 443.07 539.08

1 2.80 278.25 437.06

2 2.80 246.07 453.59

2 0 2.80 354.04 611.66

1 2.80 195.04 486.63

2 2.80 169.82 510.52

“−” indicates that GMRES fails to converge

Meshm. In Fig. 8, we show the deformation along three
representative slices. We observe that the left ventricle first
contracts due to the sustainably strengthening active stress.
When the active stress reaches the maximum magnitude at
t = 0.185 s, the fibers shrink to the extreme extent, and the
velocity at each monitor point reduces to almost zero. After
that, the left ventricle starts to expand as the active stress
reduces, and eventually restores to its original shape.Besides,
the evolutions of the fibers on the surfaces of the left ventri-
cle are shown in Fig. 9, in which the grey surfaces represent
the deformed endocardium (left column) and the epicardium
(right column), and the fibers are shown as streamlines that
are obtained by integrating the deformed fiber direction vec-
tor, Ff0/‖Ff0‖, on these surfaces. In addition, the fibers are
colored according to the fiber strain E f f , by which one can
see that the largest shrinking extent reaches to approximately
30% at the maximum active stress state.

To study the effectiveness and efficiency of the Schwarz
preconditioner, we consider two parameters: the ILU fill-in
level, and the overlapping size. These two parameters play
the key role in the RAS preconditioner, and affect the per-
formance of GMRES convergence significantly. Normally,
larger values of these two parameters shall reduce the number
of GMRES iterations, but would require more computations
and communications in each iteration. In the following, we
experiment with the fill-in level 0, 1, 2, and the overlapping
size 0, 1, 2, respectively. For each pair of the choices, we
record the performance of NKS in Table 9. Since the perfor-
mance for each time step is similar, the results in the table are
for the first 10 time steps. Through the experiments, we find
that the linear solver fails to converge when the ILU fill-in
level is 0, and the best results in terms of the total compute
time is achieved when the overlap is 1 and the level of fill-in
is also 1.

Two important parameters in the elastodynamicmodel are
the bulk stiffness C and the incompressibility penalty κ . In
Table 10, we show some results using four values of C and
four values of κ . As expected, a larger value of C leads to
smaller deformation, and a larger value of κ corresponds to
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Table 10 Influence of the bulk
stiffness C (in 103 Pa.) and the
incompressible penalty κ (in 105

Pa.) on the solver performance

C κ Apex Volume Cavity Area NI LI Time

0.5 0.5 18.06 58,454.49 26,766.97 4287.89 3.05 156.92 626.24

1.0 – – – – – – –

1.5 – – – – – – –

2.0 – – – – – – –

1.0 0.5 16.60 58,368.74 30,122.41 4539.45 2.85 140.89 534.05

1.0 15.34 61348.33 32,188.11 4748.75 2.95 307.56 996.62

1.5 – – – – – – –

2.0 – – – – – – –

2.0 0.5 14.48 58,462.41 34,281.68 4877.91 2.70 138.87 508.45

1.0 13.29 61,370.64 36,317.76 5080.36 2.85 204.28 701.03

1.5 12.83 62,480.90 37,150.73 5161.59 2.90 338.14 1063.59

2.0 – – – – – – –

5.0 0.5 10.70 59,001.82 41,416.47 5492.87 2.35 147.68 465.03

1.0 9.78 61,592.27 43,262.18 5668.96 2.40 190.90 563.56

1.5 9.41 62,613.04 44,019.14 5740.28 2.45 245.18 665.89

2.0 9.21 63,161.17 44,437.91 5779.37 2.65 335.23 863.93

“−” indicates that GMRES fails to converge

Table 11 Influence of the strain
energy weights b f , b f s , bt on
the solution accuracy and solver
performance

b f , b f s , bt Apex Volume Cavity Area NI LI Time

16, 4, 1 13.61 60,588.93 35,754.26 5024.78 2.90 219.22 751.81

8, 4, 2 13.29 61,370.64 36,317.76 5080.36 2.85 204.28 701.03

4, 4, 4 12.32 60,692.88 40,723.83 5430.51 2.80 197.29 671.98

smaller loss of the volume of the left ventricle. We remark
that reducing C and/or increasing κ increase numerical dif-
ficulties, as the number of GMRES iterations increases and
sometimes the linear solver fails to converge.

We also consider different values of the strain energy
weights b f , b f s, bt . By definition, these parameters deter-
mine how different normal and shear strain components
contribute to the strain energy, thus characterize the stiffness
of the material against shape changing in different directions
relative to the fiber. Histologically, it is observed that the fiber
is stiffer along its longitudinal direction than the transverse
direction, hence b f takes a larger value than b f s and bt in
the default setting. Here, we consider two situations: the first
is to enhance the fiber effect by increasing b f , the other is to
assume they have the same value, in which case the material
is isotropic. The results inTable 11 show that the performance
of the proposed method does not change significantly, indi-
cating the robustness of the proposed method with respect to
the strain energy weights.

Finally, we study the parallel scalability of the method.
The mesh used in this study has about 30 million cells. In
this test, the incompressibility parameter κ = 1 × 104 Pa
and the time step size 
t = 0.004 s, all other parameters are
the same as for the previous tests. We run the experiment by
using 1024, 2048, 4096, 8192 processor cores, respectively.

Table 12 Strong scalability of the numerical solver based on the first
10 time steps

Cores NI LI Time Speedup Efficiency (%)

1024 2.7 158.9 627.6 1.00 100

2048 2.6 161.5 323.7 1.94 96.9

4096 2.6 165.9 150.2 4.18 104.5

8192 2.6 168.9 105.5 5.95 74.4

The results are summarized in Table 12 and Fig. 10, in which
the parallel speedup and the efficiency are exhibited for each
case. It can be seen that the proposed method has a close to
linear scalability when the number of cores goes from 1024
to 4096, and maintains a parallel efficiency higher than 70%
with more than 8000 cores. These results are based on the
first 10 time steps.

5 Final remarks

In this paper, we investigated a domain decomposition based
parallel algorithm for the numerical simulation of the left
ventricle of a human heart by a hyperelastic fiber rein-
forced transversely isotropic model that is discretized by a
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Fig. 10 Parallel speedup and efficiency of the left ventricle cardiac
cycle simulation

fully implicit finite element method on a unstructured mesh.
At each time step, an Newton-Krylov-Schwarz method is
applied to solve the resulting nonlinear algebraic system, in
which an analytically computed Jacobianmatrix is employed
that makes the overall method more robust and efficient. The
proposedmethod is first verifiedon abenchmarkproblemand
then applied to a patient-specific left ventricle discretized on a
meshwithmore than 30million degrees of freedom.Numeri-
cal experiments show that the algorithm is robustwith respect
to the large deformation of the ventricle and also the mate-
rial parameters, such as the bulk stiffness, the strain energy
weights and the incompressible penalty, and it scales well on
a supercomputer with more than 8000 processor cores.
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