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Abstract
We consider numerical simulation of blood flows in the artery using multilevel
domain decomposition methods. Because of the complex geometry, the construction
and the solve of the coarse problem take a large percentage of the total compute time
in the multilevel method. In this paper, we introduce a one-dimensional central-line
model of the blood flow and use its stabilized finite element discretization to con-
struct a coarse preconditioner. With suitable restriction and extension operators, we
obtain a two-level additive Schwarz preconditioner for two- and three-dimensional
problems. We present some numerical experiments with different arteries to show the
efficiency and robustness of the new coarse preconditioner whose computational cost
is considerably lower than other coarse preconditioners constructed using the two- or
three-dimensional geometry of the artery.

Keywords Stokes problem · Blood flow in artery · Multilevel domain
decomposition · Central-line coarse space · Finite element
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1 Introduction

Computational fluid dynamics (CFD) is increasingly used to study blood flows in
human arteries. Such numerical simulations are important for the understanding of
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the flow behavior and also for the planning for surgery. However, the computation
is often time consuming; thus, large scale computers and multilevel algorithms are
necessary. In traditional multilevel domain decomposition methods, if the artery is
assumed to be in Rd (d = 2, 3), then the fine and coarse meshes are both in Rd ,
even if the number of coarse grid points is much smaller than the number of fine grid
points; the coarse problem may become expensive to solve for arteries with many
branches and for parallel computers with many processor cores. In this paper, we
take the advantage of the fact that the artery tree looks one-dimensional if we assume
the length is much longer than the cross-section and design a coarse space associated
with the one-dimensional central line of the artery. With proper restriction and inter-
polation, this one-dimensional coarse preconditioner can be integrated into a two-
and three-dimensional preconditioner easily. We focus on the linear Stokes problems
defined on an artery-like domain and develop a fully coupled multiscale overlapping
additive Schwarz domain decomposition method whose subdomain preconditioners
are in Rd , but the coarse preconditioner is in R1.

There are many numerical methods for solving Stokes problems. For example, A.
Klawonn et al. presented a block-diagonal preconditioner in [21] by fully decoupling
the velocity field and the pressure field. Subsequently, the authors showed a partially
coupled block-triangular preconditioner and a fully coupled additive Schwarz pre-
conditioner in [22, 23] and then provided a comparison of these preconditioners in
[24]. In [23], both the subdomain problems and coarse problem are derived from the
original saddle-point problem in overlapping subdomains with a fine mesh and the
original domain with a coarse mesh. The paper also showed that the fully coupled
approach is faster than the partially coupled and the fully decoupled approaches. For
the time-dependent Stokes problems with small time step size, L.F. Pavarino further
pointed out that the block-diagonal and block-triangular preconditioners do not work
as well as the fully coupled method [30]. Note that the coarse spaces of all the afore-
mentioned preconditioners are constructed in coarse meshes in Rd , where d is the
dimension of the original problem, which means that the coarse solve will become
very expensive for arteries with many branches. In addition, as shown in [25, 26],
such a coarse mesh needs to preserve the same geometry as the fine mesh on the
boundary, which is not easy for most existing coarsening algorithms. The same high
cost coarse preconditioning issue appears in other substructuring domain decomposi-
tion methods such as dual-primal FETI method [20, 28] and BDDC methods [29, 31].
We note that optimized Schwarz methods have been studied for circular or cylindrical
domains that can be viewed as an artery without branching [14–16]. We also mention
that there are other methods for solving saddle-point problems including Uzawa’s
methods [5, 9], multigrid methods [8, 40, 41], and Hermitian and skew-Hermitian
splitting methods [1–3]. Interested readers should refer to [4] for a comprehensive
introduction.

Not as a preconditioner, but as a cheap approximation of the full three-dimensional
model, the one-dimensional central-line model has been quite popular for studying
blood flows because of its lower computational cost [13, 32–34, 36–38]. The one-
dimensional model in compliant arteries whose wall deforms under the action of
the blood flow is derived by writing the basic conservation laws into integral forms
and then applying certain homogenization techniques across the axial section of the
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artery [13, 32]. This applies to non-bifurcating and also arterial networks with special
attention for the cross-sections near the bifurcations [11, 36]. The one-dimensional
models have been successfully used to investigate the effects on the blood flow of the
geometrical and mechanical arterial modification, due to the presence of stenoses,
or the placement of stents or prostheses [6, 12, 35]. N. Smith et al. applied the one-
dimensional model to the coronary arteries in [37] and later developed the model for
the coronary microvascular networks considering the change of the viscosity of blood
in [27]. A. Quarteroni et al. introduced the multiscale model of the entire circulatory
system by coupling the three-, one-, and zero-dimensional models together [10, 13,
33].

Compared with the one-dimensional models, two- and three-dimensional Stokes
or Navier-Stokes models provide higher physical fidelity but are computationally
much more expensive. In this paper, we consider the Stokes flows in arteries, and we
design a fully coupled two-level additive Schwarz preconditioner in which the coarse
preconditioner is constructed by a discretization of a one-dimensional model on the
central line. Very different from the classical coarse preconditioners defined using
the original model on a coarse mesh, the central-line coarse preconditioner maintains
nearly the same efficiency and robustness as high dimensional coarse preconditioners
but has a very low computational cost.

The paper layout is as follows. In Section 2, we show the model and its stabi-
lized finite element discretization. In Section 3, we introduce the one-dimensional
model for the Stokes problem in a single vessel domain, then present a multi-
scale two-level additive Schwarz preconditioner subdomain preconditioners defined
in Rd and coarse preconditioner in R1. In Section 4, we provide some analysis of
the condition number of the preconditioned matrix for elliptic problems defined on
artery-like domains. Finally, we show some numerical experiments for Stokes and
elliptic problems defined on several different arteries.

2 Model problems and their stabilized finite element discretizations

We first consider the steady-state Stokes problem [17] in Rd(d = 2, 3),
⎧
⎨

⎩

−ν�u + ∇p = f in �,

∇ · u = 0 in �,

u = g on �,

(1)

where u = (u1, u2, · · · , ud)T is the velocity, f = (f1, f2, · · · , fd)T is the source
force, and p is the pressure. We assume � ⊂ Rd is an artery-like domain (see Fig. 1)
with a polygonal boundary �. For the pressure variable, we impose the condition∫

�
pdx = 0 so that the solution is unique.
We use the stabilized finite element method to discretize (1) on a given conforming

triangular (d = 2) or tetrahedral (d = 3) mesh Th = {K}. For each element K , we
denote by hK as its diameter. Let Vh and Ph be a pair of finite element spaces for the
velocity and pressure given by

Vh =
{
v ∈ (C0(�) ∩ H 1(�))d : v|K ∈ P1(K)d, K ∈ Th

}
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Fig. 1 An artery-like computational domain and the central line is marked in red

and
Ph =

{
q ∈ C0(�) ∩ L2(�) : q|K ∈ P1(K), K ∈ Th

}
,

where C0(�) is the continuous function space, L2(�) and H 1(�) are standard
Sobolev spaces in the finite element literature [17], and P1(K) is the linear function
space in element K . Furthermore, we define some related spaces as follows

Vh,g = {v ∈ Vh : v|� = g} , Vh,0 = {v ∈ Vh : v|� = 0} ,

and

Ph,0 =
{

p ∈ Ph :
∫

�

pdx = 0

}

.

Following [7, 18, 19], the stabilized finite element method for the steady-state
Stokes problem is given as: Find (uh, ph) ∈ Vh,g × Ph,0, such that

B(uh, ph; v, q) = F(v, q) ∀(v, q) ∈ Vh,0 × Ph,0 (2)

with

B(u, p; v, q) = (ν∇u, ∇v) − (∇ · v, p) − (∇ · u, q)

−α
∑

K∈Th

h2
K(−ν�u + ∇p, εν�v + ∇q)K

and
F(v, q) = (f, v) − α

∑

K∈Th

h2
K(f, εν�v + ∇q)K .

Here, α > 0 is a stabilization parameter and ε = 0, 1, −1 correspond to SUPG [19],
DW [7], GLS [18] stabilized finite element methods, respectively. As shown in [7,
18, 19], (2) has a stable solution with optimal convergence for any choice of positive
α. We set α = 1 throughout this paper. Because uh|K, v|K ∈ P1(K)d , the terms �uh

and �v in B(u, p; v, q) and F(v, q) vanish. Let us denote the matrix form of (2) as

Ax = b, A =
(

Aν BT
div

Bdiv Mp

)

, (3)
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where Aν, Bdiv , and Mp are the matrix forms of the first, third, and fourth terms
of B(u, p; v, q), respectively. Note that the matrix A is symmetric but indefinite. In
this paper, we solve the linear system (3) by a right preconditioned Krylov subspace
method, i.e.,

AP −1y = b, with x = P −1y, (4)

where P −1 is a preconditioner to be defined in the following section.

3 Amultiscale two-level Schwarz preconditioner

In this section, we introduce a multiscale overlapping additive Schwarz precondi-
tioner. The additive preconditioner takes the form P −1 = P −1

c + P −1
s , where P −1

c is
a one-dimensional preconditioner defined on the central line of the artery and P −1

s is
the sum of all the subdomain preconditioners.

3.1 One-dimensional flowmodel in artery-like domains

In this subsection, we define the one-dimensional coarse preconditioner. Following
[32], we introduce some notations and assumptions about the artery-like computa-
tional domain (see Fig. 2) and also the Stokes equations.

(A1) The artery is axial symmetry with respect to the central line and its radius
r0 = r0(s) is a function along the axial direction s.

(A2) The wall is fixed or is not displaced with respect to the time. Therefore, the
radius r0 is independent of time t .

(A3) The pressure p is constant on each axial section Cs(s).
(A4) The velocity components orthogonal to the axial direction s are negligible

compared to the component along s. Let r be radial coordinate of the axial
section Cs(s). Then, the axial component us can be expressed as

us(t, r, s) = ūs(t, s)Vp

(
r

r0(s)

)

, (5)

where ūs is the mean velocity of us on axial section and Vp : R → R is a
velocity profile.

Denote the central line x(s) = (x1(s), · · · , xd(s)) as a parametric equation with
respect to the axial direction s. Let As = As(s) be the area of the axial section
Cs(s). Then, we have As = 2r0(s) for 2D and As = πr2

0 (s) for 3D from the above
assumptions. The mean velocity ūs is then given by

ūs = A−1
s

∫

Cs

usdσ .

Fig. 2 Vascular diagram and some notations and assumptions used for in the one-dimensional model
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The flux is defined as

Q =
∫

Cs

usdσ = Asūs .

From the definitions of us, ūs , and Q, it follows that

∫ 1

0
Vp(y)dy = 1 for 2D;

∫ 1

0
Vp(y)ydy = 1

2
for 3D.

In this paper, we choose the profile law as a parabolic profile and then obtain from
the above property

Vp(y) = 3

2
(1 − y2) for 2D; Vp(y) = 2(1 − y2) for 3D; y ∈ [0, 1]. (6)

Let τ(s) = (τ 1(s), · · · , τ d(s)) be the unit tangent vector of the central line and f be
the source force. Then, we denote by fcl = ∫

Cs
f · τdσ .

For the time-dependent 3D Navier-Stokes equations in a single compliant vessel,
the 1D model is delicately derived in [32] as

⎧
⎪⎨

⎪⎩

∂Q

∂t
+ α

∂

∂s

(
Q2

As

)

+ As

ρ

∂p

∂s
+ Kr

Q

As

= fcl,

∂As

∂t
+ ∂Q

∂s
= 0,

(7)

where As = As(t, s) is the time-dependent area, α = ∫

Cs
u2

s dσ/Asū
2
s =

∫

Cs
V 2

pdσ/As = 4/3 is the Coriolis coefficient, and Kr = −2πνV ′
p(1) = 8πν.

Remark 1 For the time-dependent 1D model, if we assume that the wall is elastic
with constant Young modulus E and Poisson ratio v, then a typical relationship (cf.
[13, 32]) between the pressure and the time-dependent vessel area As(t) is

p(t) = p(0) +
√

πh0E

(1 − v2)As(0)

(√
As(t) − √

As(0)
)

, (8)

where h0, p(0), and As(0) are the vessel thickness, the pressure, and the section area
at the initial time (the reference configuration), respectively.

Using a similar derivation and let ucl and pcl be the value of us and p on the central
line, respectively, we can obtain the 1D model of the steady-state Stokes equations in
a single vessel

⎧
⎪⎨

⎪⎩

Krucl + As

ρ

∂pcl

∂s
= fcl,

∂(Asucl)

∂s
= 0,

(9)

where Kr = −4

3

ν

r0
V ′

p(1) = 4ν

r0
for 2D and Kr = −πνV ′

p(1) = 4πν for 3D.
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Remark 2 Note that (9) is an ordinary differential equation for variable s. Therefore,
its solution is unique if the values of ucl and pcl are given at the end of the central
line.

For artery with bifurcation (see Fig. 3), we can consider it as a collection of single
vessels. For each inlet or outlet of each vessel, we assume there is a flow rate and a
pressure value that are either given (if it is a boundary) or as unknowns to be solved.
When defining the central-line preconditioner, there are two approaches. In the first
approach (see the left figure of Fig. 4), we treat each single vessel independently in
the discretization using the flow rate and pressure values at both inlet and outlet as
boundary conditions, and then by the conservation of the flux and the continuity of
the pressure, we have [11]

Q1 = Q2 + Q3, p1
cl = p2

cl = p3
cl .

Using the fact Qi = c0r
d−1
i ui

cl , we obtain

rd−1
1 u1

cl = rd−1
2 u2

cl + rd−1
3 u3

cl, p1
cl = p2

cl = p3
cl .

To solve (u2
cl, p

2
cl) and (u3

cl, p
3
cl), for a given (u1

cl, p
1
cl), we can use the relations

{
rd−1

2 u2
cl = ξ2r

d−1
1 u1

cl,

p2
cl = p1

cl,

{
rd−1

2 u3
cl = ξ3r

d−1
1 u1

cl,

p3
cl = p1

cl,
(10)

where ξ2 and ξ3 are nonnegative and satisfy ξ2 + ξ3 = 1. Similar relations hold
for artery with more generations of branches. In the second approach (see the right
figure of Fig. 4), the network of artery is not divided at the junctions. In such a way,
the bifurcation points become the internal points of the arterial networks, and hence,
the bifurcation conditions are not necessary. In the numerical experiments, we will
compare these two approaches, and it turns out they perform more or less the same
as a coarse preconditioner, and the first approach is often easier to implement. In the
next subsection, we will discuss a finite element discretization of (9) and also show
how to integrate it into a multilevel preconditioner in 2D and 3D.

Remark 3 In this paper, we only consider the case when the wall is rigid. The exten-
sion to the situation when the wall is deformable is, in theory, straightforward in the
sense that we only need to change the definition of the cross-section area As in the
algorithm, but the actual implementation could be complicated, and its effectiveness
needs to be studied.

Fig. 3 Notations for an artery with a bifurcation
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Fig. 4 An arterial network can be considered a collection of individual vessels with consistent inlet/outlet
conditions for the flow rate and pressure (left) or as a single network (right) that satisfies a differential
equation similar to (9)

3.2 A two-level additive Schwarz method with a central-line coarse
preconditioner

In this subsection, we briefly recall the classical additive Schwarz method and then
focus on the central-line coarse preconditioner. We first decompose the domain �

into N nonoverlapping subdomains {�i}Ni=1 or more precisely the finite element
mesh Th into Th,i . The overlapping subdomains {�δ

i }Ni=1 can be obtained by extend-
ing �i with δ layers of elements from neighboring subdomains. Sometimes, we use
T δ

h,i to denote the mesh on �δ
i . Then, we define the subdomain velocity and pressure

spaces as

V i
h =

{
v ∈ Vh ∩ (H 1(�δ

i ))
d : v = 0 on ∂�δ

i

}

P i
h =

{
p ∈ Ph ∩ L2(�δ

i ) : p = 0 on ∂�δ
i \ �

}
.

For simplicity, we extend all subdomain functions to the entire domain by zero such
that V i

h and P i
h are subspaces of the Vh and Ph, respectively. On the physical bound-

aries, we impose Dirichlet conditions according to the original (1). On the artificial
boundaries, we assume both u = 0 and p = 0.

Let Ri : Vh × Ph → V i
h × P i

h be a restriction operator which returns all degrees
of freedom associated with the subspace V i

h × P i
h. The extension operator RT

i can be
defined as the transpose of Ri . The subdomain matrix Ai can be obtained as Ai =
RiART

i or by discretizing the problem on the subdomain with approximate boundary
conditions. Now, the one-level additive Schwarz preconditioner in the matrix form
can be written as

P −1
1s =

N∑

i=1

RT
i A−1

i Ri .

Next, we define the coarse matrix Acl and the corresponding restriction opera-
tor Rcl and extension operator Ecl using the 1D flow model given in the previous
subsection .

Fig. 5 A single vessel domain with a quasi-unform subdomain partition
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Denote �cl as the central line of � and T cl
H as a one-dimensional finite element

mesh of �cl with mesh size H . As an extension of T cl
H , we introduce a coarse mesh

TH of � by extending each mesh point in T cl
H across or approximately across the

axial direction s and then joining these points by a delaunay triangulation.
Define the velocity and pressure spaces in TH and T cl

H as

VH =
{
v ∈ (C0(�) ∩ H 1(�))d : v|K ∈ P1(K)d, K ∈ TH

}
,

PH =
{
q ∈ C0(�) ∩ L2(�) : q|K ∈ P1(K), K ∈ TH

}
,

and

V cl
H =

{
v ∈ C0(�cl) ∩ H 1(�cl) : v|K ∈ P1(K), K ∈ T cl

H

}
,

P cl
H =

{
q ∈ C0(�cl) ∩ L2(�cl) : q|K ∈ P1(K), K ∈ T cl

H

}
.

As in the fine mesh case, we can also define the restriction and extension operators
Rc

f and R
f
c = (Rc

f )T for the coarse mesh TH . On the coarse mesh TH , we can define
finite element subspaces similar to the ones defined on the fine mesh, and discretize
the original Stokes problem to obtain a linear system of equations

A0x0 = b0.

The central-line coarse problem for the 1D model (9) reads as follows: Find
(ucl

H , pcl
H ) ∈ V cl

H × P cl
H , such that

Bcl(u
cl
H , pcl

H ; v, q) = Fcl(v, q) ∀(v, q) ∈ V cl
H × P cl

H (11)

with

Bcl(u
cl
H , pcl

H ; v, q) =
(
Kru

cl
H , v

)
+

(
As

ρ

∂pcl
H

∂s
, v

)

−
(

∂(Asu
cl
H )

∂s
, q

)

and
Fcl(v, q) = (fcl, v).

The equivalent matrix form of (11) can be written as

Aclxcl = bcl . (12)

We next define the restriction and extension operators Rcl and Ecl between the
one-dimensional central-line coarse finite element space V cl

H ×P cl
H and the fine mesh

finite element space Vh × Ph as follows. Let {φH
i (x), i = 1, · · · , m} be the finite

element basis functions on the coarse mesh TH , where m is the total number of coarse

Fig. 6 Three artery-like domains and the coarse mesh (blue) and the central-line coarse mesh (red). Left:
symmetric arterial network; middle: asymmetric arterial network; right: confluence artery

145Numerical Algorithms (2021) 87:137–160



mesh points in TH . Let E
f
c be the coarse finite element space VH × PH to the fine

mesh finite element space Vh × Ph interpolation operator

E
f
c = diag (E, · · · , E)

︸ ︷︷ ︸
d+1

, E = [E1, E2, · · · , Em]T (13)

and

Ei = [φH
i (x1), φ

H
i (x2), · · · , φH

i (xn)]T ,

where {xi}ni=1 is the collection of all mesh points of Th. The restriction operator Rc
f

can be defined as the transpose of E
f
c . Let {si}mcl

i=1 and {xc
j }mj=1 be the collections

of all mesh points of T cl
H and TH , respectively. For each si ∈ T cl

H , denote the cross
section of si as Cs(si). Then, from the definitions of T cl

H and TH , it is clear that

for any si ∈ T cl
H , there exists a xc

j ∈ TH , such that xc
j = x(si),

and

for any xc
j ∈ TH , there exists a si ∈ T cl

H , such that xc
j ∈ Cs(si).

Using the assumptions (A3) and (A4), we define the restriction from (vH , pH ) in
VH × PH to (vcl

H , pcl
H ) in V cl

H × P cl
H as

vcl
H (si) = 1

As(si)

∫

Cs(si )

vH (x)·τ(si)dσ, pcl
H (si) = 1

As(si)

∫

Cs(si )

pH (x)dσ (14)

for any si ∈ T cl
H and the extension from (vcl

H , pcl
H ) to (vH , pH ) as

vH (xc
j ) = vcl

H (si) · τ(si)Vp

( |xc
j − x(si)|
r0(si)

)

, pH (xc
j ) = pcl

H (si) (15)

for any xc
j ∈ TH , where Vp is given in (6) and si ∈ T cl

H in (15) corresponds to
xc
j ∈ Cs(si). The restriction and extension operators defined in (14)–(15) from the

central-line coarse space to the coarse space in Rd are not easily computable, below
we introduce Rcl

c and Ec
cl as a matrix form of the operators that are approximations

of (14) and (15), respectively. For simplicity, we only discuss the case d = 2. The
extension to d = 3 is trivial.
Denote by the tangent matrices as Tk := diag

(
τ k(s1), · · · , τ k(smcl

)
)

(k = 1, 2), the
restriction weighting coefficients {wr

i,j }mcl,m
i=1,j=1 as

wr
i,j =

⎧
⎨

⎩

1/2, xc
j = x(si)

1/4, xc
j ∈ Cs(si), x

c
j 
= x(si)

0, xc
j /∈ Cs(si)

and the extension weighting coefficients
{
w

e,u
i,j

}mcl,m

i=1,j=1
and

{
w

e,p
i,j

}mcl,m

i=1,j=1
for the

velocity and pressure, respectively, as

w
e,u
i,j =

{
1, xc

j = x(si)

0, xc
j 
= x(si)

, w
e,p
i,j =

{
1, xc

j ∈ Cs(si)

0, xc
j /∈ Cs(si)

.
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Then, we define the restriction matrix Rcl
c as

Rcl
c =

(
Wr

1 Wr
2 0

0 0 Wr

)

, Wr
k = TkW

r (k = 1, 2), Wr =
⎛

⎜
⎝

wr
1,1 · · · wr

1,m
...

. . .
...

wr
mcl,1

· · · wr
mcl,m

⎞

⎟
⎠

and the extension matrix Ecl
c as

Ec
cl =

(
W

e,u
1 W

e,u
2 0

0 0 We,p

)T

, W
e,u
k = TkW

e,u (k = 1, 2)

and

We,l =

⎛

⎜
⎜
⎝

w
e,l
1,1 · · · w

e,l
1,m

...
. . .

...
w

e,l
mcl ,1

· · · w
e,l
mcl ,m

⎞

⎟
⎟
⎠ (l = u, p).

Finally, we define Rcl : Vh × Ph → V cl
H × P cl

H and Ecl : V cl
H × P cl

H → Vh × Ph as

Rcl = Rcl
c Rc

f ; Ecl = E
f
c Ec

cl . (16)

With these multiscale restriction and extension operators, we have the multiscale
two-level additive Schwarz preconditioner

P −1
2s,cl = EclA

−1
cl Rcl +

N∑

i=1

RT
i A−1

i Ri . (17)

Remark 4 Instead of the finite element method discussed in the previous section, we
can use the parameterized or stabilized finite element method for the 1D model (9)
by replacing Bcl in (11) with

B
β,γ

cl (ucl
H , pcl

H ; v, q) =
(
Kru

cl
H , v

)
+

(
As

ρ

∂pcl
H

∂s
, v

)

− β

(
∂(Asu

cl
H )

∂s
, q

)

−γ
∑

e∈T cl
H

H 2
e

(

As

∂pcl
H

∂s
,
∂q

∂s

)

e

, (18)

where 0 < β ≤ 1 and γ ≥ 0. Here, the scaling factor β can be used to adjust
the convergence rate of the Krylov iteration but does not change the 1D model (9).
Because of the stabilization, the pressure part of the residual function on the fine
mesh is no longer zero, and therefore, we include a similar stabilization term in the
1D model with an adjustable parameter γ . More details about the choices of β and γ

will be discussed in the numerical experiments.
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4 Condition number estimates for the elliptic problems in artery-like
domain

To estimate the condition number of the proposed method theoretically for the Stokes
problem is difficult. In this section, we provide an estimate for the elliptic problems
defined on artery-like domains. We consider only the single vessel case. For the arte-
rial network case, we can decompose it into some single vessels and then obtain
similar results. In the following, we extend some basic inequalities [39] to the ves-
sel domain case where we assume that the diameter of the vessel is far less than the
length of the vessel. In this section, x � y and x ≈ y mean that there exists a positive
constants c that is independent of the mesh size, the number of subdomains, and the
aspect ratio of the domain such that x ≤ cy and x = cy, respectively. We consider
the elliptic equation in an artery-like domain � ⊂ Rd (d = 2, 3)

{−�u = f in �,

u = g on ∂�.
(19)

Let H 1
g (�) := {

v ∈ H 1(�) : v = g on ∂�
}

and H 1
0 (�) be the subspace of H 1(�)

and vanished on the boundary of �. Then, the weak formulation of (19) is written as:
Find u ∈ H 1

g (�) such that

a(u, v) = (f, v) ∀v ∈ H 1
0 (�)

with a(u, v) = ∫

�
∇u∇vdx and (f, v) = ∫

�
f vdx.

Denote by ||u||0,� as the L2 norm of the Sobolev space L2(�) and |u|1,� as the
H 1 seminorm of the Sobolev space H 1(�), respectively.

Lemma 1 Let � ⊂ Rd (d = 2, 3) be a single vessel with length L and diameter D

(D � L) (see Fig. 5). Then, for all u ∈ H 1(�)

||u||20,� � D2|u|21,� + D||u||20,�, (20)

where � ⊂ ∂� is the wall of � and it has a diameter of order L.

Proof We partition � into nonoverlapping subdomains {�i}mi=1 with the diameter
diam(�i) ≈ D and the volume (area) |�i | ≈ Dd . Then, for each subdomain �i ,
using Poincaré-Friedrichs inequality, we have

||u||20,�i
� D2|u|21,�i

+ D||u||20,�i
, (21)

where �i ⊂ ∂�i has a diameter of order D. Now summing all subregions �i, i =
1, · · · , m and using � := ∪m

i=1�i , we complete the proof.

Lemma 2 Let � be vessel domain with length L and diameter D, and {�i}Ni=1 be
a nonoverlapping partition of � along vessel direction with length Li and diameter
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Di = D. Denote by �ij = �̄i ∩ �̄j as the common edge of �i and �j . If Di � Li ,
then we have

||u||20,�ij
� Di |u|2

1,�
�ij
i

+ 1

Di
||u||2

0,�
�ij
i

, (22)

||u||20,�ij
� Dj |u|2

1,�
�ij
j

+ 1

Dj
||u||2

0,�
�ij
j

. (23)

Here, �
�ij

k := {
x ∈ �k : dist(x, �ij ) < diam(�ij )

}
for k = i, j .

Proof We obtain the results by a direct application of the trace inequality and the
scaling argument [39].

Lemma 3 Let � be vessel domain with length L and diameter D. Let
{
�δ

i

}N

i=1 be an
overlapping decomposition of � with overlapping size δ. �δ

i is obtained by extending
�i with the size δ along the vessel direction. Denote �δ

ij = �̄δ
i ∩ �̄δ

j . We assume that

Di ≈ Dj, Li ≈ Lj and δ � Di . If Di � Li , then we have

||u||2
0,�δ

ij

� δ2
(

1 + Di

δ

)(

|u|2
1,�

�ij
i

+ |u|2
1,�

�ij
j

)

+ δ

Di

(

||u||2
0,�

�ij
i

+ ||u||2
0,�

�ij
j

)

, (24)

where �
�ij

k , k = i, j is defined as in Lemma 2.

Proof Let �o
k = �δ

ij \ �k, k = i, j and then we have that �δ
ij = �o

i ∪ �o
j . Using

Lemma 1, we first have

||u||2
0,�δ

ij

= ||u||20,�o
i
+ ||u||20,�o

j
� δ2|u|21,�o

i
+ δ||u||20,�ij

+ δ2|u|21,�o
j
+ δ||u||20,�ij

.

Then, using δ � Di and Lemma 2, we obtain the desired estimate (24).

In the following, let Vh ⊂ H 1
0 (�) and V i

h ⊂ H 1
0 (�δ

i ) be the piecewise linear
continuous finite element spaces with mesh size h, Ih the standard interpolation oper-
ator associated with Vh, and ai(u, v) = ∫

�δ
i
∇u∇vdx for all u, v ∈ H 1

0 (�δ
i ) and

i ∈ {1, · · · , N}. Then, we have the stable decomposition result for the vessel domain.

Lemma 4 Let �, �i , and �δ
i be the same as in the previous lemma. Let {θi}Ni=1 be

the partition of unit that satisfies
∑N

i=1 θi = 1, 0 ≤ θi ≤ 1 and |∇θi | ≤ 1
δ
. For

u ∈ Vh, we set ui = Ih(θi(u)) ∈ V i
h . If Di � Li and Di ≈ D, then we have

u = ∑N
i=1 ui and

N∑

i=1

ai(ui, ui) �
(

1 + D

δ

)

a(u, u). (25)
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Proof The decomposition of u can be derived directly:

u = Ih

N∑

i=1

θi(u) =
N∑

i=1

ui . (26)

For the stability of the decomposition, using the properties of θi and Poincaré
inequality, we have

ai(ui, ui) = |Ih(θiu)|2
1,�δ

i

� |θiu|2
1,�δ

i

�
∫

�δ
i

|u∇θi |2 +
∫

�δ
i

|θi∇u|2

�
∫

�δ
ij

|u∇θi |2 +
∫

�δ
i

|∇u|2 � 1

δ2

∫

�δ
ij

|u|2 + |u|2
1,�δ

i

�
(

1 + Di

δ

)(

|u|2
1,�δ

i

+ |u|2
1,�δ

j

)

+ 1

δDi

(

||u||0,�
�ij

i

2 + ||u||0,�
�ij

j

2
)

�
(

1 + Di

δ

)(

|u|2
1,�δ

i

+ |u|2
1,�δ

j

)

+ Di

δ

(
|u|1,�δ

i

2 + |u|1,�δ
j

2
)

�
(

1 + Di

δ

)(
|u|2

1,�δ
i

+ |u|2
1,�δ

i

)
. (27)

Finally, summing over all subdomains, we have

N∑

i=1

ai(ui, ui) � max
i

(

1 + Di

δ

) N∑

i=1

|u|2
1,�δ

i

�
(

1 + D

δ

)

a(u, u). (28)

Remark 5 Consider the situation that � is an arterial network consisting of m con-
nected single vessels {�i}mi . For each vessel �i , we denote the length and the
diameter as Li and Di . If we partition each vessel �i into Ni overlapping subdomains
{�δ

ij }Ni

j=1 as in the previous discussion, then from Lemma 4, we obtain a similar result

m∑

i=1

Ni∑

j=1

aij (uij , uij ) � max
i

(

1 + Di

δ

)

a(u, u)

as in the single vessel case.

Fig. 7 Some simple nonoverlapping subdomains (left) and overlapping subdomains (right), and the
overlapping extensions are along the vessel direction(s)
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Fig. 8 The number of iterations of fully coupled (blue) and decoupled (red) Schwarz preconditioners
for Stokes problem in the single vessel (left) and the symmetric arterial network (right). Here P1s and
P

diag

1s correspond to the fully coupled and block-diagonal one-level Schwarz preconditioners, and P2s,const

and P
diag

2s,const correspond to the fully coupled and block-diagonal two-level Schwarz preconditioners with
piecewise constant coarse space, respectively

By Lemma 4, Remark 5, and the abstract Schwarz theory [39], we obtain the
following estimate of the condition number.

Theorem 1 Let A be the matrix form of a(u, v) and P −1
1s be the one-level additive

Schwarz preconditioner of A. If � is an artery-like domain, each subdomain has a
diameter that is less than or approximately equal to its length, then the condition
number of P −1

1s A satisfies

κ(P −1
1s A) ≤ O

(

1 + D

δ

)

,

where D = max
1≤i≤m

Di and the hidden constant does not depend on the mesh size, the

number of subdomains and the aspect ratio of the domain.
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Fig. 9 The number of iterations of the different preconditioners for the arterial network cases. Left:
symmetric arterial network; right: asymmetric arterial network
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Fig. 10 The number of iterations of the different preconditioners with finer mesh sizes for the symmetric
arterial network case. Left: h = 0.05, δ = 2h; right: h = 0.025, δ = 4h

Remark 6 For problems with the Dirichlet boundary condition, the coarse space is
not always necessary because the Poincaré inequality holds without requiring the
mean value of the function defined on all subdomains.

5 Numerical experiments

In this section, we present some numerical experiments to show the efficiency and
robustness of the central-line coarse preconditioner for Stokes problems in arteries.
In addition, we also study the scalability of the one-level additive Schwarz precon-
ditioner for elliptic problem. We consider several configurations including a single
vessel domain � = (0, 25) × (−0.5, 0.5) and arteries with different bifurcations
such as symmetric, asymmetric arterial networks and confluence artery (see Fig. 6).
We divide the artery � into N = mM nonoverlapping subdomains {�ij }m,M

i=1,j=1,
where m is the number of vessels without bifurcation {�i}mi=1 and M is the number

of nonoverlapping subdomains {�ij }Mj=1 of each vessel �i . Denote by {�δ
ij }m,M

i=1,j=1
as the overlapping partition of � (see Fig. 7). In the following experiments, denote
by h the fine mesh size and set the overlapping size δ = h, and we also set M = 100
for the single vessel and M = 20 for the arterial networks and also the confluence
artery.

Table 1 The number of iterations of the central-line coarse preconditioner with different parameter γ for
the single vessel case

β 1/5 1/10

γ 1 1/5 1/10 1/50 1/100 0 1 1/5 1/10 1/50 1/100 0

Iter 119 98 94 90 89 91 116 93 88 83 82 87
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Table 2 The number of iterations of the central-line coarse preconditioner with different parameter β for
the single vessel case

γ 1 0

β 1 1/2 1/5 1/10 1/20 1/50 1 1/2 1/5 1/10 1/20 1/50

Iter 136 127 119 116 113 110 114 103 91 87 96 120

5.1 The Stokes problem

In this subsection, we consider the Stokes problem (1). We assume the source func-
tion f = 0 and the boundary conditions are given as follows. For the velocity, we
assume the fluid is no-slip on the wall and satisfies some parabolic profiles on the
inlet and outlet(s). Note that the parabolic profile is determined uniquely by the value
at the center of the inlet or outlets, and the values are selected carefully to guarantee
the conservation of flux. For the pressure variable, we prescribe its value at the cen-
ter point of the inlet. We discretize the Stokes problem (1) with a stabilized P1 − P1
finite element method with h = 0.1 and then solve the resulting algebraic systems
using a right preconditioned GMRES method. The stopping condition for GMRES
is that the relative residual norm is less than 10−9 and the subdomain problems are
solved exactly.

For comparison, we also report some experiments with the regular coarse precon-
ditioner P −1

0 = E
f
c A−1

0 Rc
f introduced in Section 3.2, and the piecewise constant

coarse preconditioner P −1
const = EconstA

−1
constRconst , where Aconst = RconstAEconst

and Rconst satisfies

Rconst = diag (Z, · · · , Z)
︸ ︷︷ ︸

d+1

, Z = [
1�11 , · · · , 1�1M

, · · · , 1�m1, · · · , 1�mM

]T .
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Fig. 11 The streamline and the number of iterations of different preconditioners with and without the
stabilization term for the single vessel case
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Table 3 The number of iterations of the cental-line coarse preconditioner with different γ for the
symmetric arterial network case

γ 4 2 1 1/5 1/10 1/20 1/100 1/1000 0

Iter 81 78 76 77 78 80 82 83 102

Here, 1�ij
is a column vector whose values are ones for the fine mesh points in �ij

and zeros for others for all i and j and Econst is the transpose of Rconst . Then denote
by P −1

2s,const = P −1
const + P −1

1s and P −1
2s,linear = P −1

0 + P −1
1s as the corresponding

two-level preconditioners.
First, we compare the number of iterations of the fully coupled and the block-

diagonal (fully decoupled) additive Schwarz preconditioners in the single vessel and
the symmetric arterial network cases in Fig. 8. It is clear that the fully coupled one-
and two-level preconditioners are more effective than the block-diagonal precondi-
tioners [21]. Therefore, we only consider the fully coupled preconditioner in the rest
of the paper.

For the next set of experiments, we denote by P
−1 β,γ

2s,cl as the central-line coarse

preconditioner with parameters β and γ in B
β,γ

cl (18). In Fig. 9, we show the resid-
ual history of four methods including the one-level method, two two-level methods,
and the central-line method. In terms of the number of iterations, the two-level
method with the regular coarse space is the fastest which is also the most expen-
sive method in terms of the amount of arithmetics operations. The second best is
the central-line preconditioner which is the cheapest, and surprisingly, its number of
iterations is just a little larger than the regular coarse space. The piecewise constant
coarse method is not too far behind, and the one-level method is not competitive
with the other three. Fig. 10 shows the number of iterations for finer mesh sizes and
the results are similar, as long as the overlap is proportional to the diameter of the
subdomain.

To further understand the effect of the parameters β and γ for the central-line
coarse preconditioner, we summarize the results for the single vessel case in Tables 1
and 2. When β is fixed, we can see from Table 1 that a small γ or even zero (means
no stabilization term) produces the smallest number of iterations. Table 2 shows the
number of iterations with different β with fixed γ . Figure 11 provides a comparison
of the central-line coarse preconditioner with suitable parameters β and γ and the
other two coarse preconditioners for the single vessel case. For the arterial network
case, Table 3 shows that the impact of γ is not as big as β, γ = 1 is a good choice
for this case, as shown in Table 4 with different choices of β.

Table 4 The number of iterations of the central-line coarse preconditioner with different β for the
symmetric arterial network

β 1 1/2 1/4 1/6 1/8 1/10 1/20 1/100

Iter 76 62 53 51 50 51 59 78

154 Numerical Algorithms (2021) 87:137–160



U: 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

U: 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

U: -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0 20 40 60 80 100 120 140 160 180

The number of iterations

10-10

10-8

10-6

10-4

10-2

100

R
el

at
iv

e 
re

si
du

al
 n

or
m

P
1s

P
2s,const

P
2s,linear

P
2s,cl
1/10,1/5

0 20 40 60 80 100 120 140 160 180

The number of iterations

10-10

10-8

10-6

10-4

10-2

100

R
el

at
iv

e 
re

si
du

al
 n

or
m

P
1s

P
2s,const

P
2s,linear

P
2s,cl
1/10,1/5

0 20 40 60 80 100 120 140 160 180

The number of iterations

10-10

10-8

10-6

10-4

10-2

100

R
el

at
iv

e 
re

si
du

al
 n

or
m

P
1s

P
2s,const

P
2s,linear

P
2s,cl
1/10,1/5

Fig. 12 Three streamlines (left) and the corresponding number of iterations of different preconditioners
for the confluence artery case (right). Top: the clogged flow, middle: the confluence flow; bottom: the
divergence flow

Next, we consider the confluence artery (see the right figure of Fig. 6). Even
though the geometry involves a bifurcation, but we do not apply condition (10).
Instead, we simply discretize the 1D model (9) in entire confluence artery (see the
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right figure of Fig. 4). The geometry has three openings, and by assigning differ-
ent inlet/outlet, we can simulate a few different flow situations. In the left figures of
Fig. 12, we assign the top-left and right boundaries as the inlet and outlet, respec-
tively, and then consider three situations for the lower-left boundary: (1) the clogged
flow which assumes that the lower-left boundary is a non-flow boundary; (2) the
confluence flow which assumes that the lower-left boundary is an inlet; (3) the diver-
gence flow which assumes that the lower-left boundary is an outlet. In the right
figures of Fig. 12, we show the corresponding number of iterations of the central-line
coarse preconditioner and the other three preconditioners. The fluids are more com-
plex than the single vessel case, but the performance of the central-line preconditioner
is quite well for all these situations.

Furthermore, we consider the bifurcation condition (10). We compare two dis-
cretizations of the 1D model; one without using (10), and one using (10) with
ξ2 = 1/2, ξ3 = 1/2. We use subscripts “global” and “local” to represent these two
discretizations. The results are summarized in Fig. 13, and it shows that these two
discretizations offer roughly the same number of iterations; thus, we conclude that
(10) is not necessary. It shows that these two discretized ways result in nearly the
same number of iterations, which means that such an inexact solve for the 1D coarse
model in the bifurcation of the artery does not affect the efficiency of the central-line
coarse preconditioner.

Finally, we compare the dimension of different coarse spaces for the arterial net-
works with different number of junctions in Table 5. The dimension of the central-line
coarse space is much smaller than the dimension of the other two coarse spaces, espe-
cially the regular coarse space, which means that the central-line coarse precondi-
tioner requires less memory and CPU time in each iteration compared with the other
preconditioners, especially for the high-dimensional and realistic arterial networks
with many branches. We can also see in Table 5 and Fig. 14 that the number of itera-
tions of the central-line coarse preconditioner is a little larger than that of the regular
coarse preconditioner, but not for the piecewise constant coarse preconditioner.
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Fig. 13 The contour of x-axis component of velocity and the number of iterations of different precondi-
tioners for the symmetric arterial network case
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Table 5 The comparison of the dimension of different coarse spaces and its number of iterations (in
parentheses) for the arterial networks with different number of branches

Junctions P2s,const P2s,linear P2s,cl

20 − 1 300 909 202

(112) (94) (84)

22 − 1 420 1296 294

(80) (47) (51)

24 − 1 1860 5730 1302

(201) (68) (82)

5.2 The elliptic problem

In this subsection, we present some numerical experiments for the elliptic problem
(19) in artery-like domain �. We consider the following boundary condition and
right-hand side

g = sin(x)y + 10 on ∂�; f = −�(sin(x)y + 10) = sin(x)y in �.

For the symmetry and asymmetry arterial networks, the diameter Di and the length
Li of each vessel �i satisfy Di

Li
= 1

25 . We consider the one-level additive Schwarz

preconditioner P −1
1s and two two-level additive Schwarz preconditioners P −1

2s,const

and P −1
2s,linear . In Table 6, we show results for different values of M and N , and in

all the cases, we have 2
25 ≤ Dij

Lij
≤ 30

25 . The experiments show that the number of

iterations of the one-level Schwarz preconditioner does not change much for Dij �
Lij and it outperforms both two-level methods. For elliptic problems on arterial-
like domains, the coarse space preconditioner is not necessary, which is consistent
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Fig. 14 The number of iterations of the different preconditioners for the symmetric arterial network with
24 − 1 junctions and h = 0.03, δ = 4h
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Table 6 The number of iterations of the one- and two-level additive Schwarz preconditioners for the
elliptic problem with Dirichlet boundary condition in arterial networks

Artery type symmetry arterial network asymmetry arterial network

M 2 5 10 20 30 2 5 10 20 30

N 14 35 70 140 210 14 35 70 140 210

P1s 10 10 10 11 13 10 11 11 11 13

P2s,const 12 14 14 14 15 12 14 14 14 15

P2s,linear 12 12 13 13 13 12 13 13 13 13

with the theoretical result in Theorem 1, but this is not true for Stokes problems that
require a coarse preconditioner for the algorithm to be scalable.

6 Some final remarks

When simulating blood flows in arterial networks on parallel computers, a coarse
preconditioner is often necessary to couple the subproblems solved on different pro-
cessors in order to have the desired parallel scalability. When the geometry of the
artery becomes complex, a suitable coarse space is sometimes difficult to design and
the corresponding system is expensive to solve. In this paper, we take the advantage
of the fact the artery looks one-dimensional, and introduce a simple, but surprisingly
powerful, central-line coarse preconditioner that can be integrated into the regular
one-level additive Schwarz preconditioner via suitable multiscale interpolation and
restriction operators constructed by preserving the boundary geometry of the fine
mesh. The computational cost of the one-dimensional preconditioner is very low
compared with existing methods, and the number of iterations is almost the same
as the high dimensional coarse preconditioners. Only two-dimensional Stokes prob-
lems are considered in this paper. The extensions to three-dimensional Stokes and
Navier-Stokes equations in realistic arteries will be our next step.
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