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A MULTILAYER NONLINEAR ELIMINATION PRECONDITIONED
INEXACT NEWTON METHOD FOR STEADY-STATE

INCOMPRESSIBLE FLOW PROBLEMS IN THREE DIMENSIONS\ast 

LI LUO\dagger , XIAO-CHUAN CAI\ddagger , ZHENGZHENG YAN\S , LEI XU\S , AND DAVID E. KEYES\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We develop a multilayer nonlinear elimination preconditioned inexact Newton method
for a nonlinear algebraic system of equations, and a target application is the three-dimensional
steady-state incompressible Navier--Stokes equations at high Reynolds numbers. Nonlinear steady-
state problems are often more difficult to solve than time-dependent problems because the Jacobian
matrix is less diagonally dominant, and a good initial guess from the previous time step is not avail-
able. For such problems, Newton-like methods may suffer from slow convergence or stagnation even
with globalization techniques such as line search. In this paper, we introduce a cascadic multilayer
nonlinear elimination approach based on feedback from intermediate solutions to improve the conver-
gence of Newton iteration. Numerical experiments show that the proposed algorithm is superior to
the classical inexact Newton method and other single layer nonlinear elimination approaches in terms
of the robustness and efficiency. Using the proposed nonlinear preconditioner with a highly parallel
domain decomposition framework, we demonstrate that steady solutions of the Navier--Stokes equa-
tions with Reynolds numbers as large as 7,500 can be obtained for the lid-driven cavity flow problem
in three dimensions without the use of any continuation methods.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . steady-state incompressible flow, lid-driven cavity flow at high Reynolds numbers,
inexact Newton, multilayer preconditioning, domain decomposition, parallel processing
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1. Introduction. The Newton method and its variants [17] are frequently used
for the numerical solution of large nonlinear systems arising from the discretization
of partial differential equations, for example, the incompressible Navier--Stokes equa-
tions. Near quadratic convergence can be observed when the nonlinearities in the
system are well-balanced and a good initial guess is available. However, if some of the
equations have stronger nonlinearities than the others in the system, such methods
may suffer from slow convergence in the form of a long stagnation, or not converge
at all. These problems usually involve, for example, boundary layers, shock waves,
or corner singularities. In these situations, the convergence is rather sensitive to the
system parameters, e.g., the Reynolds number, the Mach number, the mesh size, and
sometimes the shape of the computational domain. To overcome this difficulty, many
continuation techniques have been studied for finding a good initial guess, includ-
ing parameter continuation [3], mesh sequencing [45], and pseudo-time-stepping [15].
Though they are easy to implement, the drawbacks of continuation are also obvious:
it is often difficult to guess the right value of the incremental parameters, or the op-
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MULTILAYER NONLINEAR ELIMINATION PRECONDITIONER B1405

timal size of an intermediate mesh, or the optimal choice of the time increment for
each iteration [34]. Recently, a new class of algorithms, namely, nonlinear precondi-
tioning, draws much attention from the scientific computing community for solving
these nonlinearly difficult problems.

Nonlinear preconditioning aims to balance the nonlinearities of the overall system
by removing local high nonlinearities that cause the Newton method to take small
updates, so that fast convergence can be realized. Similar to a linear preconditioner,
a nonlinear preconditioner can be applied on the left or on the right of the nonlinear
function. The idea of left preconditioning stems from the additive Schwarz precon-
ditioned inexact Newton method (ASPIN) [13], which changes the original nonlinear
system to a more balanced one, and then solve the new system using a Newton-like
method. ASPIN and its variants such as the multiplicative Schwarz version (MSPIN)
[46, 47, 48] and the restricted additive Schwarz version (RASPEN) [20] have been
applied successfully to two-dimensional problems including incompressible flows with
high Reynolds numbers [13, 34, 35], transonic compressible flows [36], and multiphase
flows in porous media [48]. In contrast, right preconditioning such as nonlinear elim-
ination (NE) [14] does not change the nonlinear function but modifies the unknown
variables of the original system, effectively abstracting subsets. The application of
NE can be viewed as a subspace correction step to provide a new starting point for
the Newton iteration. By using the theory of affine invariance, Gong and Cai [30]
provided some insight into why the use of NE can improve the convergence of New-
ton iterations. In addition, different strategies have been proposed to identify the
components of unknown variables that slow down the convergence. Hwang, Lin, and
Cai [36] and Hwang, Su, and Cai [37] used a physics-based approach for transonic
full potential problems. Huang, Yang, and Cai [33] and Yang and Hwang [62] ap-
plied a pointwise approach to eliminate the components associated with certain mesh
points that cause the local high nonlinearities for two-dimensional (2D) multicompo-
nent systems. Yang, Sun, and Yang [61] proposed a field-based approach to eliminate
the components associated with some field variables, i.e., the saturation field in reser-
voir simulation. More recently, Luo et al. [49] extended the NE preconditioner to
three-dimensional (3D) blood flow problems in a human artery with stenosis.

In this paper, we develop a multilayer NE preconditioned inexact Newton method
for steady-state incompressible flow problems, specifically, the challenging lid-driven
cavity flow problem in three dimensions at high Reynolds numbers. Nonlinear steady-
state problems are often more difficult to solve than time-dependent problems because
the Jacobian matrix is less diagonally dominant, and a good initial guess from the
previous time step is not available. The Newton-like methods may diverge even when
they are used with some globalization techniques such as line search, and linear subit-
erations may be slow to converge. To overcome the difficulty, we introduce an adaptive
multilayer NE approach based on the feedback from the intermediate solutions. We
show by numerical experiments that the proposed algorithm is superior to the clas-
sical inexact Newton method and other single layer NE approaches in terms of the
robustness and efficiency. In our implementation, we embed the nonlinear precondi-
tioning step into an overlapping domain decomposition framework [11, 40, 54] so that
the overall method can be used for problems defined on large meshes and on machines
with a large number of processor cores.

To evaluate the proposed algorithm we focus on the 3D incompressible lid-driven
cavity flow problem with highest Reynolds numbers for which the steady-state solution
still exists. The problem has attracted lots of attention for decades because of its rele-
vance to many industrial problems and its importance to the fundamental understand-
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ing of fluid dynamics. The simplicity of geometry and boundary conditions make it an
ideal benchmark case for validating numerical techniques and comparing results ob-
tained from experiments and computations. Since 2D calculations are significantly less
costly than the 3D cases, simulations at high Reynolds numbers of the 2D flow have
generated a large number of publications, and the main results are summarized in [28,
55]. Recent studies succeeded in computing steady solutions for 2D driven cavity flows
with Re \geq 10, 000 [7, 10, 22, 23, 32, 57]. Nonlinear preconditioning techniques have
been applied to improve the convergence of Newton type solvers for steady driven cav-
ity flows in two dimensions, and the mathematical model varies from lattice Boltzmann
equations [33] to incompressible Navier--Stokes equations in the velocity-pressure for-
mulation [34] or the velocity-vorticity formulation [13, 14, 62]. While these calculation
are of fundamental interest for benchmarking, they are less relevant for realistic flows.

Recent progress in parallel computing hardware and software makes it possible to
investigate 3D flow problems by solving the incompressible Navier--Stokes equations
discretized on fine meshes. The flow structure and topology, as well as some bench-
marking results were reported in [2, 5, 16, 19, 24, 25, 26, 27, 29, 38, 42, 43, 56]. The
most recent results for the driven cubical cavity flow were reviewed in [44]. In Deville,
L\^e, and Morchoisne [18], a series of benchmark tests for the 3D lid-driven cavity flow
were compared for Re = 3, 200. The results, however, remained inconclusive, since the
numerical solutions obtained by different methods and resolutions differ significantly.
An important view is the fact that endwall effects can, to some degree, suppress the
intrinsic 3D flow instabilities in the bulk of the cavity [1, 2]. Based on a linear stabil-
ity approach, Feldman and Gelfgat [24, 25] and Gelfgat [27] assumed that the steady
state of time-dependent flows can be computed accurately for Reynolds numbers below
3,000. In particular, using the laser-Doppler anemometer measurements, Koseff and
Street [41] and Prasad and Koseff [52] conducted a series of experiments in a rectan-
gular cavity with different spanwise aspect ratios (SARs) between 0.25:1 and 3:1. Ac-
cording to their observations, the flow for Reynolds numbers below 5, 000 is essentially
laminar and that transition to the turbulence regime takes place in the range of 6,000--
8,000. In the numerical experiment section of the present paper, we demonstrate that
using the proposed multilayer NE approach, steady solutions with Reynolds numbers
as high as 7,500 can be obtained for a rectangular driven cavity flow in three dimen-
sions. As far as we know this is the first time that such solutions are computed directly
without using any continuation methods. Our results are validated by a comparison
with experimental data and neutral-stability results of previous publications, as well
as steady-state solutions obtained from the commercial software CFX [4].

The paper is organized as follows. In section 2, the proposed NE preconditioned
inexact Newton method is presented in detail. In section 3, the system of steady-
state incompressible Navier--Stokes equations with a finite element discretization is
described. In section 4, some numerical experiments for the 3D lid-driven cavity
flows are provided, including the validation with experimental results, the comparison
with other nonlinear algorithms, and the performance of the parallel solver. Some
concluding remarks are given in section 5.

2. The NE preconditioned inexact Newton method. Consider F : Rn \rightarrow 
Rn. We aim to find x\ast \in Rn such that

F (x\ast ) = 0,(2.1)

starting from an initial guess x0 \in Rn, where F = (F1, . . . , Fn)
T , Fi = Fi(x), and

x = (x1, . . . , xn)
T . We first recall the inexact Newton algorithm with backtracking
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(INB). Assume xk is the current approximate solution. A new xk+1 can be computed
via

xk+1 = xk + \lambda ksk,(2.2)

where the inexact Newton direction sk satisfies

\| F \prime \bigl( xk
\bigr) 
sk + F

\bigl( 
xk

\bigr) 
\| \leq \eta k\| F

\bigl( 
xk

\bigr) 
\| .(2.3)

Here \eta k \in [0, 1) is a forcing term that determines how accurately the Jacobian system
needs to be solved. The step length \lambda k \in [0, 1] determined by line search [17] is the
largest value that satisfies

f(xk + \lambda ksk) \leq f(xk) + \alpha \lambda k\nabla f(xk)T sk,(2.4)

where the merit function f : Rn \rightarrow R is defined as \| F\| 2/2, and the parameter \alpha is
used to ensure that the reduction of f is sufficient. To enhance the robustness of INB,
the forcing term \eta k can be computed based on norms that are by-products of the
iteration, as suggested by Eisenstat and Walker [21]: start with any \eta 0 \in [0, 1); for
k = 1, 2, . . . , we choose

\eta k =

\bigm| \bigm| \| F \bigl( 
xk

\bigr) 
\|  - \| F \prime \bigl( xk - 1

\bigr) 
sk - 1 + F

\bigl( 
xk - 1

\bigr) 
)\| 
\bigm| \bigm| 

\| F (xk - 1) \| 
.(2.5)

The nonlinear iteration is stopped if

\| F
\bigl( 
xk

\bigr) 
\| \leq \gamma r\| F

\bigl( 
x0

\bigr) 
\| ,(2.6)

where \gamma r is a prescribed relative tolerance for the nonlinear solver.

Remark 2.1. We remark that \lambda k is a critically important parameter in INB. The
slow convergence of INB happens when the value of \lambda k is too small. In practice, the
value of \lambda k is often determined by a small number of components of F that are more
nonlinear than the others.

Remark 2.2. The objective of nonlinear preconditioning is to increase the value
of \lambda k by balancing the overall nonlinearities of the system so that a single search
direction sk can benefit all components of the residual function F .

Remark 2.3. During the INB process, the relative reduction of the residual \rho k =
\| F

\bigl( 
xk

\bigr) 
\| /\| F

\bigl( 
xk - 1

\bigr) 
\| can be used to measure the effectiveness of the kth Newton

solution xk. If \rho k is too large (i.e., \rho k > \rho 0, where 0 < \rho 0 < 1 is a preselected
parameter), a preconditioning step is then introduced to produce a different xk. In
the preconditioning step, the components of F that slow down the convergence are
identified and then eliminated approximately using some subspace Newton iterations,
that is known as a NE preconditioner.

Remark 2.4. For some really difficult problems, the number of slow components
can be large, and the subspace Newton iterations do not converge, thus the nonlin-
ear preconditioning step needs to be further preconditioned. This is the multilayer
preconditioning to be discussed below.

2.1. The multilayer NE preconditioner. The key assumption of the single
layer NE preconditioning is that the components of F can be decomposed into two
groups: a good group of components to be kept, and a bad group to be eliminated
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by a subspace INB. The method works well when the number of bad components
is relatively small and the subspace INB converges, but for applications that are of
interest in this paper, the bad space is too large for the subspace INB to converge.

As suggested in [36] the single layer NE algorithm can be used in a nested fashion,
i.e., NE can be used inside another NE when the subspace Newton fails to converge.
The idea is simple, but its application is quite difficult. In this paper, we propose a
multilayer NE method based on successive sweeping of nested subspace corrections in
a multiplicative manner. In contrast to the nested NE method where the elimination
restricts to smaller subsets of components as the number of level increases, we start
from a small portion of mesh points where the highest nonlinearities are located and
then extend this subset to a larger one by including the surrounding mesh points layer
by layer. The idea of multilayer is inspired from the cascadic multigrid algorithm [9]
that performs more iterations on coarser levels in order to use fewer iterations on the
finer levels. Denote Nl as the number of layers in NE; a high level description of the
multilayer INB-NE method is presented in Algorithm 2.1.

Algorithm 2.1 The multilayer NE preconditioned INB: Given absolute and relative
nonlinearity bounds \varepsilon and \rho 0.

Step 1 Start from the initial guess x0 and set k = 0, x - 1 = x0.
Step 2 Check convergence:

\bullet If the global stopping condition \| F (xk)\| \leq \gamma r\| F (x0)\| is satisfied, stop.
\bullet If \| F (xk)\| \geq \varepsilon and \| F (xk)\| /\| F (xk - 1)\| \geq \rho 0, go to Step 3; otherwise,
go to Step 4.

Step 3 The NE step: Perform a multilayer subspace correction:
\bullet Set x(0) = xk.
\bullet For l = 0, . . . , Nl  - 1:

(i) Identify the to-be-eliminated components on the lth layer.
(ii) Form and evaluate the nonlinear function \scrF (l)(x) for the inner New-

ton iteration.
(iii) Approximately solve \scrF (l)(x) = 0 using the classical inexact Newton

method with initial guess x(l).
(iv) If the inner Newton converges, take the solution as x(l+1); otherwise,

set x(l+1) = x(l), break.
(v) If \| F (x(l+1))\| /\| F (xk - 1)\| < \rho 0, break.

\bullet Set xk = x(l+1), go to Step 4.
Step 4 The global INB step:

\bullet Inexactly solve F \prime (xk)sk =  - F (xk).
\bullet Compute \lambda k using the cubic backtracking line search.
\bullet Update xk+1 = xk + \lambda ksk.
\bullet Set k = k + 1, go to Step 2.

We next focus on Step 3 of the algorithm, which is the nonlinear preconditioning
step. We assume F arises from the discretization of a PDE on a mesh and each mesh
point may have several variables. Note that each component of F involves various
operators in the PDE, such as Laplacian and gradient. The strong nonlinearities of
the system are often related to some critical features (e.g., boundary layers and local
singularities) that appear in certain local regions. In such a situation, F corresponding
to a small number of mesh points may contribute to a large percentage of \| F\| .
We consider a pointwise elimination approach [33, 62], that is, when one variable
is selected, all other variables corresponding to that mesh point are also eliminated.
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Fig. 1. An example for illustration of the bad subsets I
(l)
b on a 2D mesh, l = 0, . . . , 4.

Specifically, let I be an index set ofM mesh points, where each index corresponds tom
unknown components xic and m nonlinear residual components Fic , c = 0, . . . ,m - 1.

On the lth layer, we decompose I into a ``bad"" subset I
(l)
b with M

(l)
b mesh points

and a ``good"" subset I
(l)
g = I\setminus I(l)b with M  - M

(l)
b mesh points, where I

(l)
b and I

(l)
g

correspond to the variables that have strong and weak nonlinearities, respectively. We

denote the bad subset I
(l)
b as

I
(l)
b =

\Bigl\{ 
i | If maxc\{ | Fic(x

(0))| \} > \beta l\| F (x(0))\| \infty , c = 0, . . . ,m - 1
\Bigr\} 
,(2.7)

where the parameters \{ \beta l\} are a series of descending constants given by the user. As

l increases, more mesh points are included in I
(l)
b , i.e.,

I
(0)
b \subseteq I

(1)
b \subseteq \cdot \cdot \cdot \subseteq I

(Nl - 1)
b .(2.8)

An example for illustration of the bad subsets on a 2D mesh is shown in Figure 1.

With the subset I
(l)
b , we define two subspaces

V
(l)
b =

\Bigl\{ 
v | v = (v0, . . . , vn - 1)

T \in Rn, vic = 0 if i /\in I
(l)
b

\Bigr\} 
,(2.9)

V (l)
g =

\Bigl\{ 
v | v = (v0, . . . , vn - 1)

T \in Rn, vic = 0 if i \in I
(l)
b

\Bigr\} 
.(2.10)

The corresponding restriction operators are denoted as R
(l)
b and R

(l)
g , that map the

vectors from Rn to V
(l)
b and V

(l)
g , respectively. Then, the modified nonlinear function

\scrF (l) is defined as

\scrF (l)(x) = R(l)
g (x - x(l)) +R

(l)
b (F (x)).(2.11)

The nonlinear system \scrF (l)(x) = 0 is solved by using the classical INB algorithm

with the initial guess x(l). x
(l)
\ast is accepted as the approximate solution if the stopping

condition \| \scrF (l)(x
(l)
\ast )\| \leq \gamma ne

r \| \scrF (l)(x(l))\| is satisfied, where \gamma ne
r is the relative tolerance

for the nonlinear solver.
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Remark 2.5. For the implementation of the NE preconditioner, we replace the

equations corresponding to the good components by xic  - x
(l)
ic

= 0 and keep the
others unchanged, leading to an identity part of the inner Jacobian. Then, the solve
of \scrF (l)(x) = 0 can be performed in the whole space. This approach saves the memory
as well as the overhead to create inner solvers (with different sizes on different levels)
per outer iteration.

Remark 2.6. In (2.7), the selection of bad components depends on the magnitude
of the residual F . Scaling the nonlinear system with respect to some field variables
may affect the choice of \beta and the overall performance. We do not account for such
a scaling effect in this paper.

Remark 2.7. The multilayer partition of the residual function is adaptive in the
sense that it changes with k. On the other hand, the partition depends also on the
prescribed parameters \{ \beta l\} . As \beta l becomes smaller, the dimension of the space for
the bad components on the lth layer increases.

Remark 2.8. If the residual norm \| F (xk)\| is less than the given value of \varepsilon , the
intermediate numerical solution is considered to be close to the desired one, therefore,
the application of NE can be deactivated in order to save the overhead of the nonlinear
preconditioning.

Remark 2.9. For the purpose of efficiency, it is not necessary to perform elimina-
tion on all Nl layers. We consider two exiting mechanisms: (1) if the inner Newton
fails to converge on the lth layer, it might fail on the (l + 1)th layer too. Conse-
quently, one can stop the sweeping and return the intermediate solution x(l) to the
global update phase; (2) if the updated residual norm obtained on the current layer
is effectively reduced to a desired value, i.e., \| F (x(l+1))\| /\| F (xk - 1)\| < \rho 0, further
elimination on the rest layers is not needed and the sweeping can then be stopped.
In practice, the necessity of these exiting mechanisms are often problem dependent.
Removing one or more of them results in different variants of the algorithm.

Since the intermediate solution x(l+1) is not guaranteed to be smooth on or near
the interface points between the good and bad regions, new jumps may be produced in
the residual function F (x(l+1)) across the interface and this may lead to the relocation
of unbalanced nonlinearities. Unfortunately, such interfacial jump pollution cannot be
effectively reduced by the global update phase [62]. In [14], Cai and Li used a simple
one-dimensional nonlinear two-point boundary value problem to illustrate the issue.
The authors suggested that some mechanism must be taken to avoid such jumps.
For instance, one can choose carefully the stopping condition for the inner Newton
iteration to make sure that the jump is not too large or use a large enough overlap
to move the jump away from the interior of the bad region [33, 49, 50, 59]. In [62],
Yang and Hwang suggested identifying the particular field variable that dominates
the jump pollution and then including its auxiliary linearized subsystem in the elim-
ination process. In practice, this hybrid physical-algebraic approach requires extra
analysis from numerical results to determine which field variable is responsible for the
dominant part of the residual norm. We claim that these mechanisms are not needed
in the proposed multilayer method, since the potential new jumps on the lth layer
are smoothed out automatically by the (l + 1)th subspace correction step, and the
strength of the new jumps becomes smaller as l increases, which are evidenced in our
numerical experiments.
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2.2. The linear solver. A linear solver is required to solve the Jacobian systems
arising from both the outer Newton iteration and the NE process. Good candidates
include the class of Krylov subspace methods with effective linear preconditioners. In
this study, we use a restricted additive Schwarz (RAS) [12] preconditioned generalized
minimal residual (GMRES) method [53].

We rewrite the Jacobian system in the following general form:

JM - 1y = b with x = M - 1y,(2.12)

where J is the Jacobian matrix, M is the preconditioner, x is the solution, and b
is the right-hand side. Denoting by np the number of processor cores of the parallel
computer, we partition the computational domain (or more precisely the finite element
mesh) \Omega h into np nonoverlapping subdomains \Omega p (i.e., \Omega i \cap \Omega j = \emptyset \forall i \not = j) for
p = 1, . . . , np, such that \Omega h = \Omega 1 \cup \cdot \cdot \cdot \cup \Omega np. The subvector associated with \Omega p

is denoted as yp. We then extend \Omega p to overlap with its neighbors by \delta layers of
mesh elements and denote the overlapping subdomain as \Omega \delta 

p. On each overlapping

subdomain, we define the corresponding subvector y\delta p and the restriction operator R\delta 
p

that maps the global vector of unknowns in \Omega h to y\delta p, i.e.,

y\delta p = R\delta 
py = (I 0)

\biggl( 
y\delta p

y\setminus y\delta p

\biggr) 
.

We denote by R0
p the restriction operator that returns yp defined on the nonoverlap-

ping subdomain. Then, the RAS preconditioner [12] is defined as

M - 1
RAS =

np\sum 
p=1

\bigl( 
R0

p

\bigr) T
(Jp)

 - 1
R\delta 

p.(2.13)

In (2.13), (Jp)
 - 1

is understood as an approximate inverse of the subdomain Jacobian
matrix, its product with a vector is computed by solving a subdomain linear system
inexactly using a point-block incomplete LU (ILU) factorization of Jp.

3. The steady-state incompressible Navier--Stokes equations. Let \Omega be
a bounded domain in R3. We consider the steady-state incompressible Navier--Stokes
equations

(3.1)

\Biggl\{ 
\rho (u \cdot \nabla )u - \nabla \cdot \bfitsigma = \rho f in \Omega ,

\nabla \cdot u = 0 in \Omega .

Here u = (u, v, w)T is the velocity, \rho is the density, f is a given body force per unit
mass, and \bfitsigma =  - pI+\mu 

\bigl( 
\nabla u+\nabla uT

\bigr) 
is the Cauchy stress tensor, where I is an identity

matrix, p is the pressure, and \mu is the viscosity coefficient.
In this paper, we consider flows confined in the cavity domains with SARs 1:1 and

0.5:1, respectively, as depicted in Figure 2. The top surface \Gamma lid moves with velocity
U in the positive x-direction. On all walls we impose a no-slip and no-penetration
boundary condition u = uw with

(3.2) uw =

\Biggl\{ 
(U, 0, 0) on \Gamma lid,

0 on \partial \Omega \setminus \Gamma lid.

The flow pattern inside the cavity consists of several standing vortices with their
characteristics dominated by the Reynolds number Re = \rho UL/\mu .
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(a) SAR 1:1 (b) SAR 0.5:1

Fig. 2. Cavity domains with two SARs.

A P1-P1 stabilized finite element method is used for the discretization of (3.1)--
(3.2), which results in a nonlinear system F (x) = 0 to be solved. The trial function
spaces for the velocity and the pressure are defined as

V =
\bigl\{ 
u | u \in [H1(\Omega )]3,u = uw on \partial \Omega 

\bigr\} 
, P =

\biggl\{ 
p | p \in L2(\Omega ),

\int 
\Omega 

p d\Omega = 0

\biggr\} 
.

The weighting function space for the velocity is defined as

V0 =
\bigl\{ 
u | u \in [H1(\Omega )]3,u = 0 on \partial \Omega 

\bigr\} 
.

Following standard notations, the weak form reads: find (u, p) \in V\times P such that for
\forall (w, q) \in V0 \times P ,

B(u, p;w, q) = 0(3.3)

with

B(u, p;w, q) =

\int 
\Omega 

\rho (u \cdot \nabla )u \cdot wd\Omega +

\int 
\Omega 

\mu 
\bigl( 
\nabla u+\nabla uT

\bigr) 
: \nabla wd\Omega 

 - 
\int 
\Omega 

p\nabla \cdot wd\Omega +

\int 
\Omega 

(\nabla \cdot u) qd\Omega  - 
\int 
\Omega 

\rho f \cdot wd\Omega .(3.4)

Let \Omega h = \{ K\} be a quasi-uniform conforming tetrahedral mesh of \Omega with h the
diameter of the element K \in \Omega h; denote by (\cdot , \cdot )K the L2-inner product over element
K. We define the finite element subspaces Vh, Vh

0 , and Ph as the counterparts of
their infinite dimensional subspaces. Then, the discretized system of (3.3) is described
as follows: find (uh, ph) \in Vh \times Ph such that for \forall (wh, qh) \in Vh

0 \times Ph,

BS(uh, ph;wh, qh) = 0(3.5)

with

BS(uh, ph;wh, qh) =B(uh, ph;wh, qh) +
\sum 

K\in \Omega h

(\scrS h, \tau m ((uh \cdot \nabla )wh +\nabla qh))K

+
\sum 

K\in \Omega h

(\nabla \cdot uh, \tau c\nabla \cdot wh)K ,(3.6)
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MULTILAYER NONLINEAR ELIMINATION PRECONDITIONER B1413

where \scrS h, \tau m, and \tau c are defined as

\scrS h = \rho (uh \cdot \nabla )uh +\nabla ph  - \rho fh,

\tau m =
\Bigl( \sqrt{} 

uh \cdot G \cdot uh + 36\mu 2/\rho 2G : G
\Bigr)  - 1

,

\tau c = (8\tau mtr(G))
 - 1

.

Here (G)ij =
\sum 3

l=1
\partial \xi l
\partial xi

\partial \xi l
\partial xj

(i, j = 1, 2, 3) is the covariant metric tensor and \partial \xi 
\partial x refers

to the Jacobian of the mapping between the reference and the physical element. The
last two terms in (3.6) are added in order to satify the Ladyzenskaja--Babuska--Brezzi
inf-sup condition [8]. We refer to [58] for more details of the discretization scheme.

In accordance with the pointwise NE approach and the point-block ILU subdo-
main solver, here the components of velocity and pressure are ordered point by point,
for example,

x = (u0, v0, w0, p0, u1, v1, w1, p1, . . . , uM - 1, vM - 1, wM - 1, pM - 1)
T
.

We refer to this ordering as the point-block ordering, in which the unknowns associated
with each mesh point are always together in the same 4\times 4 block. Such an ordering
has a significant impact on the convergence properties of the algebraic solver and the
parallel scalability of the overall method [31].

4. Numerical experiments. In this section, we first validate the finite element
discretization and the proposed algorithm by comparing the velocity profiles of the
cavity flows with previous publications. Then, we study the performance of the pro-
posed algorithm and focus on (1) the robustness of the algorithm with respect to the
Reynolds numbers, the mesh size, and the preselected parameters; and (2) a compar-
ison of the numerical performance between the new method, the single layer NE, and
the classical INB method.

The algorithms are implemented using PETSc [6]. All computations are car-
ried out on the Shaheen2 supercomputer which has two 16-core Intel Haswell CPUs
and 128 GB local memory in each of its compute nodes. Quasi-uniform tetrahedral
meshes for the cavity domains are generated using CUBIT [51] and the partitions are
obtained using ParMETIS [39]. Figure 3 shows a sample partition of the mesh into
16 subdomains. Multilayer nonlinear preconditioning, being algebraic in nature, can
also be applied to problems on unstructured adaptive meshes lacking quasi-uniformity.
The single layer approach (i.e., Nl = 1) is applied on unstructured meshes with lo-
cal refinement in [49, 50], including the driven cavity flow at low Reynolds numbers
where the mesh is locally refined near the moving lid. For the higher Reynolds num-
ber considered in this paper, we find that a globally refined mesh better captures the
steady-state solution, because there are eddies with diminishing sizes near the bottom
corners of the cavity, and flow separation appears in the core region.

In the Navier--Stokes equations, the body force is ignored for all experiments.
A zero vector is used as the initial guess, i.e., x0 = 0. The length of the cavity is
L = 1 m. A fluid with density \rho = 1 kg/m3 is driven by the wall at y = L with a
constant velocity U = 1 m/s in the positive x-direction. We vary the viscosity \mu to
test different Reynolds numbers. The Jacobian matrices arising from both the outer
Newton iteration and the NE step are computed analytically.

We use the following parameters in our solvers if they are not specifically stated.
A sufficiently small relative tolerance \gamma r = 10 - 15 is used for the global nonlinear
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Fig. 3. A sample partition of the mesh into 16 subdomains. Different colors refer to different
partitions.

Table 1
The mesh information for the test cases of cavity flows with different Re's.

h \#elements \#nodes Re np
SAR=1:1

1/100 6,000,000 1,030,301 100--1,000 1,024
1/160 24,576,000 4,173,281 1,500--1,900 2,048

SAR=0.5:1
1/40 192,000 35,301 3,200 32
1/80 1,536,000 269,001 3,200 512
1/160 12,288,000 2,099,601 3,200 1,024
1/256 50,331,648 8,520,321 1,000--7,500 4,096

solver to ensure the convergence. The relative tolerance for the nonlinear solver in
the subspace correction step is \gamma ne

r = 10 - 1. The application of NE is deactivated if
the residual norm is less than \varepsilon = 10 - 6. The restart value of GMRES is fixed at 400.
The size of overlap in the linear RAS preconditioner is fixed to \delta = 2. A point-block
ILU factorization with 3 fill-in levels is used to solve the subdomain linear systems.
For the NE preconditioner, we set the preselected parameter \rho 0 to be 0.8 for judging
if the residual is reduced slowly.

In the rest of this paper, ``np"" denotes the number of processor cores used for the
test; ``NIg"" denotes the number of global Newton iterations, ``LIg"" denotes the aver-
aged number of GMRES iterations per global Newton iteration, ``Nne"" is the number
of applications of the NE preconditioner, ``NIsub"" refers to the averaged number of
Newton iterations per subspace correction step, ``LIsub"" is the averaged number of
GMRES iterations per Newton in the subspace correction, ``Tne(s)"" is the compute
time in seconds for all NE applications, and ``Tt(s)"" is the total compute time in
seconds for the overall nonlinear solver.

4.1. Validation of the proposed numerical method. We first validate the
finite element discretization and the proposed solver by comparing our results for
benchmark problems with experimental and numerical data in previous literature. A
sequence of refined meshes ranging from 192,000 to 50,331,648 elements are used for
the tests, as summarized in Table 1.
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Ding et al.
Jiang et al.
Albensoeder and Kuhlmann
Feldman and Gelfgat
INB-NE

(a) u(1/2, y, 1/2)
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1
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Ding et al.
Albensoeder and Kuhlmann
Feldman and Gelfgat
INB-NE

(b) v(x, 1/2, 1/2)

Fig. 4. Velocity profiles of the cavity flow with SAR 1 : 1 at different Re on the midplane
z = 1/2. Note that the profiles are shifted for visual comparison. (a) u, from left to right: Re = 100,
400, 1, 000, 1, 500, and 1, 900; (b) v, from bottom to top: Re = 100, 400, 1, 000, 1, 500, and 1, 900.

Table 2
Case configuration for the cavity flow with SAR 0.5 : 1. \Delta t is the time step size in LBM.

Method Model Mesh h \Delta t Re Stopping condition

INB-NE Steady-state Tetrahedral 1/256 1,000--7,500 \| F (xk)\| /\| F (x0)\| \leq 10 - 15

CFX Steady-state Cartesian 1/256 1,000--3,200

\sqrt{}    n\sum 
i=1

(xk
i  - xk - 1

i )2/n \leq 10 - 8

1/200 1/200 3,200
LBM Time-dependent Cartesian 1/400 1/400 5,000 \| xn  - xn - 1\| \infty \leq 10 - 7

1/800 1/800 7,500

Figure 4 shows the two velocity components u and v along the vertical and hor-
izontal centerlines on the midplane of the cavity with SAR 1:1. The results obtained
using INB-NE for cases Re = 100, 400, 1,000, 1,500, and 1,900 show excellent agree-
ment with the results of Albensoeder and Kuhlmann [2], Ding et al. [19], and Feldman
and Gelfgat [26]. Note that their results are obtained by solving time-dependent equa-
tions until the steady states are reached. Based on computational studies, Gelfgat
concluded in the recent publication [27] that the critical Reynolds number of the
steady-oscillatory transition for the case SAR 1:1 is around 2,000, in other words, our
proposed solver resolves the problem well by solving the steady-state equation directly.

For the case with SAR 0.5:1, the drag effect of the end walls is expected to
be stronger than the case SAR 1:1, causing the flow structure to become more or-
ganized. Due to the lack of numerical results for this case to date, we compare the
results of INB-NE with steady-state solutions obtained using the commercial software
ANSYS-CFX (CFX), neutral-stability solutions obtained using an in-house code for
solving the time-dependent lattice Boltzmann equations (LBM), as well as the mean
velocities measured by laboratory experiments in Prasad and Koseff [52]. CFX uses
an element-based finite volume method with a high resolution scheme [4] in space
for the steady-state simulation. LBM uses a second-order finite different method for
spatial discretization and an explicit Euler scheme for temporal discretization. The
Smagorinsky's algebraic eddy viscosity approach is incorporated into LBM for large-
eddy simulation of high Reynolds number flows [63]. Details of the case configuration
are listed in Table 2. Figure 5 shows the two velocity components u and v along
the vertical and horizontal centerlines on the midplane of the cavity. We note that
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Steady-state, CFX
Neutral-stability, LBM

(a) u(1/2, y, 1/4)
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Steady-state, CFX
Neutral-stability, LBM

(b) v(x, 1/2, 1/4)

Fig. 5. Velocity profiles of the cavity flow with SAR 0.5 : 1 at different Re on the midplane z =
1/4. Note that the profiles are shifted for visual comparison. (a) u, from left to right: Re = 1, 000,
2, 000, 3, 200, 5, 000, and 7, 500; (b) v, from bottom to top: Re = 1, 000, 2, 000, 3, 200, 5, 000, and
7, 500.
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Experiment, Re=7500
Steady-state, INB-NE
t=2500, LBM
t=2562.5, LBM
t=2625, LBM
t=2687.5, LBM

(a) u(1/2, y, 1/4)
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Experiment, Re=7500
Steady-state, INB-NE
t=2500, LBM
t=2562.5, LBM
t=2625, LBM
t=2687.5, LBM

(b) v(x, 1/2, 1/4)

Fig. 6. Velocity profiles of the cavity flow with SAR 0.5 : 1 at Re = 7, 500 on the midplane
z = 1/4.

LBM fails to meet the stopping condition at Re = 7, 500 due to oscillation of the so-
lution when it reaches \| xn  - xn - 1\| \infty < 10 - 4, where xn is the solution of LBM at the
nth time step. Therefore, we take the solution at a snapshot t = 2562.5 for this case.
Overall, a good agreement is achieved among the methods. The results obtained using
INB-NE for cases Re = 1, 000, 2, 000, and 3,200 match very well with those obtained
using CFX, but the latter fails to converge when Re > 3, 200. The results of INB-NE
and LBM coincide with the experimental data at high Reynolds numbers, except for
a part of v(x, 1/2, 1/4) nearby the upstream wall at Re = 7, 500. To investigate the
reason for such deviation, we plot several snapshots of the LBM solution at different
times in Figure 6. It is found that the velocity profiles change with time, indicating
certain unstable perturbations for the time-dependent LBM solution. It is interesting
to note that two of the snapshots t = 2, 500 and t = 2, 687.5 coincide with the experi-
mental data of v(x, 1/2, 1/4), while the other two coincide with the results of INB-NE,
which implies some underlying relationship between the steady-state method and the
time-dependent method. However, a thorough investigation of the problem is beyond
the scope of this paper.
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(a) Re = 1, 000 (b) Re = 3, 200

(c) Re = 5, 000 (d) Re = 7, 500

Fig. 7. Slice view of streamlines on the midplane z = 1/4 for the cavity flow with SAR 0.5 : 1.
The mesh size is h = 1/256.

Figures 7--8 show the slice view of streamlines on the midplane z = 1/4 and
x = 1/2 for the cavity flow with SAR 0.5:1, respectively. The mesh size is h = 1/256.
The midplane z = 1/4 shows clearly the primary and secondary vortices, while the
midplane x = 1/2 shows a symmetric pattern, demonstrating strong 3D characteristic
of the flow. As Re increases, a sequence of eddies with diminishing size are observed
at the corner of the cavity, at the same time, flow separation appears symmetrically
perpendicular to the driving direction of the lid. In short, for the case SAR 0.5:1,
the proposed approach is able to capture the steady-state solutions at high Reynolds
numbers. For the rest of the paper, we will use this case as a benchmark to compare
various algorithms.

4.2. Comparison of INB and INB-NE. As Re increases, the nonlinear sys-
tem becomes harder to solve. Figure 9 shows the history of nonlinear residuals ob-
tained using INB and INB-NE for the cavity flow with SAR 0.5:1 and different Re's.
The mesh size is h = 1/256. For INB-NE, the maximum number of layers is set to be
Nl = 6, and the preselected parameters are given as \beta l = 0.25\times 10 - l, l = 0, . . . , Nl - 1.
The linear solve in the classical INB diverges at the 8th, 6th, 6th, and 6th global
Newton step for Re = 2, 000, 3,200, 5,000, and 7,500, respectively. In contrast, the
proposed INB-NE converges well for all cases with Re = 1, 000--7, 500. Note that we
use a zero vector as the initial guess, i.e., x0 = 0, the first global Newton step is able to
compute an approximate solution that satisfies the boundary condition (enforcing the
speed of the lid), hence, a significant decrease of the residual norm is observed at this
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(a) Re = 1, 000 (b) Re = 3, 200

(c) Re = 5, 000 (d) Re = 7, 500

Fig. 8. Slice view of streamlines on the midplane x = 1/2 for the cavity flow with SAR 0.5 : 1.
The mesh size is h = 1/256.
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Global nonlinear step
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INB-NELinear solve diverges in INB for

Re=2x103, 3.2x103, 5x103, and 7.5x103

Re=103
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Re=103 Re=3.2x103

Re=2x103

Fig. 9. Nonlinear residual history obtained using INB and INB-NE for the cavity flow with
SAR 0.5 : 1. The mesh size is h = 1/256. Nl = 6, \beta l = 0.25\times 10 - l, l = 0, . . . , Nl  - 1.

step either by INB or INB-NE. A detailed comparison for the numbers of iterations
and the total compute times between the two methods are shown in Table 3. We note
that the maximum Reynolds number for which INB converges is Re = 1, 739.5. INB
requires less compute time than INB-NE for the case with a small Reynolds number
Re = 1, 000, however, as Re increases, it needs more nonlinear and linear iterations
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Table 3
The numbers of iterations and compute times obtained using INB and INB-NE for the cavity

flow with SAR 0.5 : 1. The mesh size is h = 1/256. Nl = 6, \beta l = 0.25\times 10 - l, l = 0, . . . , Nl  - 1.

Re NIg LIg Tt(s) Nne NIsub LIsub Tne(s)
INB

1,000 16 210.3 350.87
1,739.5 18 683.3 853.44

INB-NE
1,000 12 202.3 674.84 3 4.3 11.6 416.88
1,739.5 14 215.4 742.06 2 5.0 14.5 433.51
2,000 13 190.9 975.65 3 4.9 9.8 707.12
3,200 14 200.0 1,419.64 3 4.4 6.6 1,026.90
5,000 20 295.3 1,559.65 7 3.6 12.9 1,026.26
7,500 29 308.5 3,014.03 12 4.1 49.0 2,210.31
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Linear solve diverges in INB
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(b)

Fig. 10. Convergence test using different mesh sizes for the cavity flow with SAR 0.5 : 1 at
Re = 3, 200. (a) Enlarged view for the velocity profiles of v(x, 1/2, 1/4). (b) Nonlinear residual
history obtained using INB and INB-NE. Nl = 6, \beta l = 0.25\times 10 - l, l = 0, . . . , Nl  - 1.

to converge. For Re = 1, 739.5, INB-NE performs better than INB in terms of the
numbers of global iterations and the total compute time. It can also be observed that,
with further increase of Re, more applications of NE are required in the new algo-
rithm, thus more compute time is spent on the NE preconditioner, which is about 2/3
of the total compute time. The efficiency can be improved with dynamic load balanc-
ing, since the selection of bad components varies on different layers and at different
global Newton iterations. A strategy to dynamically partition and redistribute the
bad subset among all the processor cores so that each processor core owns comparable
numbers of bad components will be investigated in future implementations.

Next, we conduct a convergence test using different mesh sizes for the cavity flow
at Re = 3, 200, and study the robustness of the proposed method with respect to the
mesh size. Results are shown in Figure 10. It is clear from Figure 10(a) that mesh-
independent results are achieved when h \leq 1/160. From Figure 10(b) we see that the
convergence of INB is sensitive to the mesh size; on the other hand, the proposed INB-
NE converges for all cases with the number of nonlinear iterations almost independent
of the mesh size.

To see how the multilayer NE preconditioner improves the convergence of the
global Newton iteration, we show in Figures 11--12 the residual contours of the u-
component of the velocity obtained using the classical INB and the proposed INB-NE
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(a) 3rd global Newton step using INB (b) 4th global Newton step using INB

(c) 3rd global Newton step using mul-
tilayer INB-NE

(d) 4th global Newton step using mul-
tilayer INB-NE

Fig. 11. Slice view for residual contour of the u-component obtained using the classical INB
and the multilayer INB-NE for the cavity flow with SAR 0.5 : 1 at Re = 3, 200. The mesh size is
h = 1/80.

for the cavity flow with h = 1/80 at Re = 3, 200, respectively. We can see from
Figures 11(a)--(b) that a single global Newton step (the 3rd step) in INB barely
changes the distribution and strength of the local high nonlinearities characterized by
large value of | Fi| . In comparison, with the use of the multilayer NE preconditioner
(Figures 11(c)--(d)), the overall nonlinearities after the same Newton step are balanced
sufficiently and that leads to the convergence of the global Newton iteration. Figure 12
shows the bad subsets colored in red and the residual contours after the subspace
correction of NE on the lth layer. We see clearly that the bad subset starts from a
small number of mesh points near the top upstream and downstream corners where
the highest nonlinearities are located. As l increases, the bad subset is extended to
include more surrounding mesh points layer by layer. After the subspace correction
is performed, the local high nonlinearities on the lth layer are effectively removed. It
can also be observed from the residual contours that some new jumps are produced
across the boundary of the bad subset; as expected, they are removed by the next
subspace correction step and the strength becomes smaller as evidenced in the figure.
The isolated bad components come to the fore because the strongest nonlinearities
have already been removed by lower layers. They are scattered due to the complex
structure of the 3D cavity flow. However, they can be eliminated effectively layer by
layer without degrading the convergence of the outer Newton iteration.
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(a) l = 1 (b) l = 1

(c) l = 2 (d) l = 2

(e) l = 3 (f) l = 3

(g) l = 4 (h) l = 4

Fig. 12. Slice view on the lth layer at the 3rd global Newton step obtained using the multilayer
INB-NE for the cavity flow with SAR 0.5 : 1 at Re = 3, 200. (a), (c), (e), (g): bad subsets colored in
red; (b), (d), (f), (h): residual contours of the u-component after the subspace correction. The mesh
size is h = 1/80. Nl = 6, \beta l = 0.5\times 10 - l, l = 0, . . . , Nl.
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Table 4
The numbers of iterations and compute times obtained using INB-NE with different preselected

parameters for the cavity flow with SAR 0.5 : 1 at Re = 3, 200. The mesh size is h = 1/256.
\beta l = \beta \times 10 - l, l = 0, . . . , Nl  - 1. ``--"" indicates that the case fails to converge.

\beta 0.75 0.5 0.25 0.1 0.75 0.5 0.25 0.1
Nl = 5 Nl = 6

NIg 21 23 19 20 -- 20 14 15
LIg 242.9 345.5 242.7 206.9 -- 192.6 200.0 215.0
Tt(s) 1,369.92 1,402.32 1,236.33 1,022.27 -- 863.79 1,419.64 1,021.98
Nne 13 6 4 3 -- 4 3 3
NIsub 2.2 3.0 4.0 4.4 -- 3.4 4.4 4.5
LIsub 3.3 9.9 5.6 6.9 -- 9.6 6.6 5.7
Tne(s) 869.85 740.36 791.02 585.09 -- 448.20 1,026.90 680.24

Nl = 7 Nl = 8
NIg -- 14 16 13 22 14 16 13
LIg -- 183.0 230.7 313.6 353.5 183.0 230.7 313.6
Tt(s) -- 772.69 831.75 774.04 2,095.96 779.31 829.2 778.98
Nne -- 3 3 2 5 3 3 2
NIsub -- 4.0 3.8 4.3 4.1 4.0 3.8 4.3
LIsub -- 11.8 9.2 8.7 7.7 11.8 9.2 8.7
Tne(s) -- 489.36 466.77 419.66 1,442.49 494.53 465.14 423.23

4.3. Performance with respect to the preselected parameters. To under-
stand the impact of the parameters on the performance of the NE preconditioner, we
test the case SAR 0.5:1 with h = 1/256 at Re = 3, 200 using different values of Nl and
\beta l. For simplicity, we use \beta l = \beta \times 10 - l and change the value of \beta in the tests. The
resulting numbers of iterations and the compute times are shown in Table 4. When
Nl increases, more subspace correction steps may be performed in the NE precondi-
tioner, which results in fewer global Newton iterations. Moreover, the time spent on
the overall NE preconditioner decreases because the number of NE steps is reduced.
On the other hand, the performance of NE depends also on the choice of \beta l, which
controls the dimension of the subspace problem on each layer. From the table we
find that the pair of values (Nl, \beta l) = (7, 0.5\times 10 - l) is suitable to minimize the total
compute time and guarantees the convergence of the overall algorithm. We remark
that the choice of these parameters depends on the value of Reynolds number and the
mesh size used for the problem.

4.4. Comparison of the single layer approach and the multilayer ap-
proach. If only one subspace correction step is performed in Step 3 of Algorithm
2.1, the multilayer NE preconditioner reduces to the classical pointwise approach.
In this paper, we call this approach ``single layer INB-NE"" and compare it with the
proposed multilayer approach in terms of the robustness and efficiency. In the single
layer approach, the bad subset of mesh points Ikb is defined as

Ikb =
\bigl\{ 
i | If maxc\{ | Fic(x

k)| \} > \beta 0\| F (xk)\| \infty , c = 0, . . . ,m - 1
\bigr\} 
.(4.1)

Following the idea of restricted elimination, we define the restricted bad subset Ik,\varepsilon b

by excluding some mesh points near the boundary of Ikb , such that

Ik,\varepsilon b =
\bigl\{ 
i | If maxc\{ | Fic(x

k)| \} > (\beta 0 + \varepsilon 0)\| F (xk)\| \infty , c = 0, . . . ,m - 1
\bigr\} 
,(4.2)

where \varepsilon 0 is a preselected constant. We refer to [33, 50, 62] for more details of the
single layer approach. Table 5 shows the numbers of iterations and compute times
obtained using INB-NE with the single layer approach and the multilayer approach
for the cavity flow with SAR 0.5:1 and different Re's. The residual histories are
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Table 5
The numbers of iterations and compute times obtained using INB-NE with the single layer

approach and the multilayer approach for the cavity flow with SAR 0.5 : 1. The mesh size is
h = 1/256.

Re NIg LIg Tt(s) Nne NIsub LIsub Tne(s)
Single layer INB-NE

2,000 17 195.5 667.33 5 5.0 8.9 306.52
3,200 21 218.4 854.04 7 4.4 6.8 376.47

Multilayer INB-NE
2,000 11 241.4 691.80 2 3.9 9.3 434.44
3,200 14 183.0 772.69 3 4.0 11.8 489.36
5,000 16 273.9 1,379.15 4 4.4 6.3 970.27
7,500 29 308.5 3,014.03 12 4.1 49.0 2,210.31
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Global nonlinear step
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Single-layer INB-NE
Multi-layer INB-NE
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Re=2x103

Re=3.2x103

Re=2x103

Fig. 13. Nonlinear residual history obtained using INB-NE with the single layer approach and
the multilayer approach for the cavity flow with SAR 0.5 : 1. The mesh size is h = 1/256.

plotted in Figure 13. The mesh size is h = 1/256. Optimal parameters are used for
different cases. For the single layer approach, we choose \beta 0 = \varepsilon 0 = 0.5\times 10 - 3; for the
multilayer approach, (Nl, \beta l)=(7, 0.5\times 10 - l) is used for the case Re = 2, 000 and 3,200,
(Nl, \beta l)=(7, 0.25\times 10 - l) is used for the case Re = 5, 000, and (Nl, \beta l)=(6, 0.25\times 10 - l)
is used for the case Re = 7, 500, l = 0, . . . , Nl - 1. The multilayer approach is expected
to have a stronger elimination effect on the overall nonlinearities, at the cost of more
compute time for each NE step. It is seen from the table that the multilayer approach
results in fewer NE steps and fewer global Newton steps than the single layer approach.
For a small Reynolds number Re = 2, 000, the single layer approach is slightly better
in terms of the total compute time; however, as RE increases, it requires more total
compute time to converge and even diverges for cases Re > 3, 200. In contrast, the
multilayer approach requires a smaller total compute time at Re = 3, 200 and ensures
the convergence for cases Re = 5, 000 and Re = 7, 500.

Figure 14 shows the step length \lambda k with respect to the global Newton step k. The
application of multilayer NE results in \lambda k = 1 for almost every Newton step, except for
the most difficult case Re = 7, 500. The ability to restore the full step length along the
Newton direction sk implies fast convergence of the Newton iteration. From Table 5
and Figures 13--14, we see that the proposed multilayer approach is superior to the
single layer approach in terms of the robustness and efficiency for cases with high
Reynolds numbers. We also remark that the field-based approach [59, 60, 61] fails to
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(a) Re = 2, 000
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(b) Re = 3, 200
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(c) Re = 5, 000
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(d) Re = 7, 500

Fig. 14. Step length \lambda k obtained using INB and INB-NE with the single layer approach and
the multilayer approach for the cavity flow with SAR 0.5 : 1. The mesh size is h = 1/256.

converge for all these cases by choosing either the velocity or the pressure as the field
to eliminate.

4.5. Study of the parallel scalability. Finally, we report the parallel perfor-
mance of the proposed multilayer INB-NE method in this subsection. The cavity
flow with SAR 0.5:1 at Re = 2, 000 is tested using two fixed mesh sizes h = 1/160
and h = 1/256. To obtain the best performance, we choose (Nl, \beta l)=(7, 0.5 \times 10 - l),
l = 0, . . . , Nl  - 1, and use ILU(2) as the subdomain solver. The relative tolerance for
the global nonlinear solver is given as \gamma r = 10 - 12. We consider two scalability tests
with the change of the number of processor cores np: (1) the strong scalability where
the overall problem size is fixed; and (2) the weak scalability where the number of
unknowns per processor core is fixed. Table 6 shows the scalability results in detail.
Figure 15 shows the change of total compute times with respect to np. We see that as
np increases, the numbers of global Newton and GMRES iterations remain stable, and
the total compute times decrease correspondingly. The results show reasonably good
performance in terms of the strong scalability. On the other hand, when fixing the
number of unknowns per processor core (i.e., when np = 256 for the case h = 1/160
and np = 1, 024 for the case h = 1/256), the total compute times are kept essentially
unchanged as np has a fourfold increase, resulting in good performance in terms of
the weak scalability.
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Table 6
Scalability results of the multilayer INB-NE for the cavity flow with SAR 0.5 : 1 at Re = 2, 000.

Nl = 7, \beta l = 0.5 \times 10 - l, l = 0, . . . , Nl  - 1. ILU(2) is used as the subdomain solver. The relative
tolerance for the global nonlinear solver is \gamma r = 10 - 12.

np NIg LIg Tt(s) Nne NIsub LIsub Tne(s)
h = 1/160, \#unknowns=8,398,404

256 10 74.9 1,557.11 2 4.4 3.7 1,258.8
512 12 72.0 878.91 3 3.8 4.7 686.98
1,024 10 86.0 516.86 2 4.4 4.1 423.61
2,048 11 101.5 339.33 3 4.0 5.3 273.42

h = 1/256, \#unknowns=34,081,284
1,024 13 123.4 1,595.51 2 3.9 22.9 1,051.51
2,048 10 151.7 828.89 2 3.9 8.7 579.18
4,096 10 153.4 518.84 2 4.1 12.7 374.65
8,192 11 183.2 356.69 2 3.8 12.2 248.21

256 512 1024 2048 4096 8192

Number of cores

200
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800
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INB-NE
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Fig. 15. Scalability results of the multilayer INB-NE for the cavity flow with SAR 0.5 : 1 at
Re = 2, 000. Nl = 7, \beta l = 0.5 \times 10 - l, l = 0, . . . , Nl  - 1. ILU(2) is used as the subdomain solver.
The relative tolerance for the global nonlinear solver is \gamma r = 10 - 12.

5. Concluding remarks. The 3D steady-state driven cavity flow problem is
defined on a simple computational domain, but it is actually one of the most difficult
problems for algebraic solvers when the Reynolds number is high. When a classi-
cal INB is used to solve the resulting nonlinear system, it fails to converge when
Re is larger than 1,739.5. When a single layer INB-NE is used it converges well for
Re \leq 3, 200. In this paper, we proposed a multilayer NE preconditioner. The key
idea is to perform sweeps of subspace corrections in a cascadic manner to remove
the local high nonlinearities that cause difficulty for the convergence of the inexact
Newton method. We tested the algorithm using rectangular cavities with two SARs.
Results of numerical experiments show that the proposed method is more robust
and faster than the classical INB and the single layer INB-NE with respect to high
Reynolds numbers (3, 200 \leq Re \leq 7, 500), and is scalable on a supercomputer with
over 8,000 processor cores. The focus of the paper was on the driven cavity flow
problems, but the algorithm is expected to work for other highly nonlinear prob-
lems.
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