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NONLINEAR PRECONDITIONING STRATEGIES FOR
TWO-PHASE FLOWS IN POROUS MEDIA DISCRETIZED BY A

FULLY IMPLICIT DISCONTINUOUS GALERKIN METHOD\ast 

LI LUO\dagger , XIAO-CHUAN CAI\ddagger , AND DAVID E. KEYES\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We consider numerical simulation of two-phase flows in porous media using implicit
methods. Because of the complex features involving heterogeneous permeability and nonlinear capil-
lary effects, the nonlinear algebraic systems arising from the discretization are very difficult to solve.
The traditional Newton method suffers from slow convergence in the form of a long stagnation or
sometimes does not converge at all. In this paper, we develop nonlinear preconditioning strategies
for the system of two-phase flows discretized by a fully implicit discontinuous Galerkin method.
The preconditioners identify and approximately eliminate the local high nonlinearities that cause
the Newton method to take small updates. Specifically, we propose two elimination strategies: one
is based on exploring the unbalanced nonlinearities of the pressure and the saturation fields, and
the other is based on identifying certain elements of the finite element space that have much higher
nonlinearities than the rest of the elements. We compare the performance and robustness of the pro-
posed algorithms with an existing single-field elimination approach and the classical inexact Newton
method with respect to some physical and numerical parameters. Experiments on three-dimensional
porous media applications show that the proposed algorithms are superior to other methods in terms
of robustness and parallel efficiency.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . two-phase flow in porous media, inexact Newton, nonlinear preconditioning, fully
implicit, discontinuous Galerkin, parallel computing
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1. Introduction. Simulation of two-phase flows in porous media plays a vi-
tal role in hydrology and petroleum reservoir engineering. The mathematical model
addressing the problem is a coupled system of time-dependent nonlinear partial dif-
ferential equations (PDEs), including Darcy's law, the equation of mass conservation
for each phase, constraint of the saturations, and dependency of capillary pressure on
the wetting saturation. The complexity of this model lies in the interaction of vari-
ous modeling features, particularly, the heterogeneous permeability of high contrast,
strong nonlinearity of relative permeability functions, and spatially varying capillary
pressure [47]. Additional difficulties are introduced by complex geometry, faults, chan-
nels, and voids. For general reservoir models with such complexities, it is important
to design accurate, fast, and robust solution algorithms to obtain reliable simulation
results.

A large number of numerical methods have been developed to model two-phase
flows in heterogeneous media. One popular solution algorithm used in practice is
IMPES (implicit pressure and explicit saturation) [8, 9] in which the pressure equa-
tion is first solved and then the saturation is updated by an explicit time-stepping
scheme. Since the saturation often changes faster than the pressure, in general, sev-
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eral small time steps are performed for the saturation equation immediately after a
large time step for the pressure equation. Enhanced versions of IMPES have been
studied in [1, 10, 28, 43] to improve accuracy and stability by using a semi-implicit
scheme for the saturation equation or by introducing a number of iterations in a single
pressure-saturation time step. It is believed that the most stable scheme for multi-
phase flows is the fully implicit method in which all coupled nonlinear equations are
solved simultaneously in a single time step [3, 12, 15, 39]. Theoretically, the fully
implicit method yields unconditional stability so that it often allows using a much
larger time step size than the IMPES-type methods [29, 39, 47, 48, 50]. In our work,
we introduce a fully implicit discontinuous Galerkin finite element scheme for the dis-
cretization of the two-phase flow problem. The discontinuous Galerkin (DG) method
[40, 43] is attractive because of its flexibility in describing unstructured domains by
using higher-order approximation functions, which generally provides higher resolu-
tion in the vicinity of sharp fronts of the saturation compared to lower-order methods,
such as the cell-centered finite volume method [38]. Other advantages of DG include
robustness for equations with discontinuous coefficients and the local mass conserva-
tion property. We refer the reader to [3, 15, 36] for more details of the fully implicit
DG discretization for modeling two-phase flows in porous media.

The cost of using a fully implicit method is that a large sparse nonlinear sys-
tem of equations has to be solved at each time step. Hence, it is challenging and
crucial to design robust and efficient nonlinear solvers for the resultant algebraic sys-
tems. Efforts have been made to employ Newton's method and its variants to solve
two-phase flow problems [12, 39, 47, 48, 49]. The family of inexact Newton methods
[14] is popular and has a rapid local convergence rate under certain conditions. A
straightforward application of an inexact Newton method to the fully implicit simu-
lation of two-phase flows works well for relatively simple problems [45], but for many
practical problems it results in problematic convergence. The difficulty arises from
the unbalanced nonlinearities generated by issues such as discontinuity of permeabil-
ity coefficients, wide variation in fluid properties, strong capillary effects with limited
spatial extent, complex source terms, and corner/fault/void singularities. In such
cases, some of the equations are more difficult to solve than others in the system, and
an inexact Newton method may suffer from slow convergence in the form of a long
stagnation or may not converge at all. To overcome these difficulties, a conventional
treatment is to reduce the time step size substantially, but this detracts from the
natural merit of fully implicit methods, especially for long time simulation at large
scales.

Recently, a new class of algorithms, called nonlinear preconditioning, has been
shown to be useful in enhancing robustness and efficiency of a Newton-like method.
The idea of nonlinear preconditioning is to balance the nonlinearities of the overall
system by removing local high nonlinearities that cause the Newton method to take
small updates, so that fast convergence can be realized. Similar to linear precondi-
tioning, nonlinear preconditioning is naturally classified as either ``left"" or ``right.""
Left nonlinear preconditioners introduce a set of small nonlinear problems that are
less nonlinearly stiff than the original problem but still offer good convergence to
the solution. The additive Schwarz preconditioned inexact Newton (ASPIN) algo-
rithm [6, 21, 22, 23] belongs to this class, where solutions of nonlinear subdomain
problems are solved and then combined using an additive Schwarz framework. A
multiplicative Schwarz version of ASPIN, named MSPIN, was introduced in [31, 33]
for two-dimensional (2D) incompressible flows and two-phase flows in porous media
[34].

Left nonlinear preconditioning changes the original nonlinear system to a more
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balanced one and then solves the new system using a Newton-like method. In con-
trast, right nonlinear preconditioning, such as nonlinear elimination (NE) [7], does not
change the nonlinear function but modifies the unknown variables of the original sys-
tem, which can be viewed as an inner correction step to provide a new starting point
for the Newton iteration. Therefore, right preconditioning is more implementation-
friendly compared to the left version. The NE algorithm is applied in the intermediate
Newton solution to remove or reduce local high nonlinearities such that a high-quality
Newton direction is obtained for the new iteration. How to identify the bad compo-
nents in the nonlinear system is critical to the success of the NE preconditioner.
Several strategies have been proposed recently. Hwang et al. [23, 24] used a physics-
based approach for transonic full potential problems. Huang, Yang, and Cai [20] and
Yang and Hwang [49] applied a pointwise approach to eliminate the components as-
sociated with certain mesh points that produce the local high nonlinearities for 2D
multicomponent systems. Yang et al. [47, 48, 50] proposed a field-based component-
wise approach to eliminate the components associated with some field variables, i.e.,
the saturation field in two-phase flows. More recently, Luo et al. [35, 37] extended
the NE preconditioner to incompressible flow problems in three dimensions.

In practice, designing effective elimination strategies for the time-dependent two-
phase flow problem is not trivial, since the saturation interacts with the pressure, and
the dynamics of saturation is significantly affected by the heterogeneous media. In
this paper, considering a system of two-phase flows discretized by the fully implicit
DG finite element scheme, we propose two new elimination strategies, respectively, a
multiplicative field-split approach and a coupled element-block approach, to acceler-
ate the Newton iteration. We compare numerically the robustness and efficiency of
the proposed methods with the field-based componentwise method [47, 48] and the
classical inexact Newton method for some nonlinearly difficult problems. In our im-
plementation, we embed the nonlinear preconditioning step in an overlapping domain
decomposition framework [4, 27, 42] so that the overall method can be parallelized on
machines with a large number of processor cores.

The paper is organized as follows. In section 2, the system of incompressible
two-phase flow in porous media is presented and followed by a fully implicit DG finite
element discretization. In section 3, the NE preconditioned inexact Newton method
with different elimination strategies is presented in detail. Numerical experiments for
two-phase flows in homogeneous and heterogeneous media are provided in section 4.
The robustness and efficiency of the proposed methods are comprehensively studied
and compared in this section. Concluding remarks are given in section 5.

2. Mathematical model and discretization.

2.1. Governing equations. Let \Omega be a bounded porous medium in \BbbR 3. The
flow of the wetting phase (i.e., water) and nonwetting phase (i.e., oil) in \Omega is governed
by Darcy's law and the equation of mass conservation for each phase. We denote by
the subscripts \alpha = w and \alpha = n the wetting and nonwetting phase, respectively. The
Darcy velocity for each phase is determined by

u\alpha =  - \lambda \alpha K(\nabla p\alpha  - \rho \alpha g\nabla D), \alpha = w, n,(2.1)

and the saturation equation for each phase satisfying the mass conservation is given
by

\phi 
\partial s\alpha 
\partial t

+\nabla \cdot u\alpha = q\alpha , \alpha = w, n,(2.2)
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S320 LI LUO, XIAO-CHUAN CAI, AND DAVID E. KEYES

where u\alpha , s\alpha , p\alpha , \rho \alpha , q\alpha are, respectively, the velocity, saturation, pressure, density,
and source of phase \alpha . \phi is the porosity of the porous media, and K is the absolute
permeability tensor. For heterogeneous porous media, \phi and K can vary over several
orders of magnitude and be discontinuous in space. g is the gravitational acceleration
constant, and D is the depth at position (x, y, z). The mobility function \lambda \alpha is a ratio
of the relative permeability kr\alpha (sw) and the viscosity \mu \alpha ,

\lambda \alpha =
kr\alpha (sw)

\mu \alpha 
, \alpha = w, n.

The saturations of the two phases are constrained by

sw + sn = 1.(2.3)

The relation between the wetting and nonwetting phase pressures is described by the
capillary pressure [9, 19],

pc(sw) = pn  - pw.(2.4)

Substituting (2.1), (2.3), and (2.4) into (2.2), the two-phase conservative formulation
reads

 - \phi \partial sw
\partial t

 - \nabla \cdot (\lambda nK(\nabla pw +\nabla pc  - \rho ng\nabla D)) = qn in \Omega ,(2.5)

\phi 
\partial sw
\partial t

 - \nabla \cdot (\lambda wK(\nabla pw  - \rho wg\nabla D)) = qw in \Omega .(2.6)

Boundary conditions and an initial condition are required to close the system. Let
\partial \Omega = \Gamma in \cup \Gamma out \cup \Gamma 0, where \Gamma in denotes the inlet boundary, \Gamma out denotes the outlet
boundary, and \Gamma in \cap \Gamma out = \emptyset . \Gamma 0 = \partial \Omega \setminus \{ \Gamma in \cup \Gamma out\} is the impermeable boundary.
The boundary conditions are stated as

uw \cdot n = f inw , un \cdot n = f inn on \Gamma in,

pw = poutw , \lambda nK\nabla pc \cdot n = 0 on \Gamma out,

uw \cdot n = 0, un \cdot n = 0 on \Gamma 0,

where n is the unit outward normal vector, and f inw and f inn are given flow rates at
the inlet. The initial condition is given by

sw| t=0 = s0w in \Omega .(2.7)

The equations are coupled nonlinearly through the relative permeability and the
capillary pressure, which are given by [19]

krw(sw) = s\beta e , krn(sw) = (1 - se)
\beta , pc(sw) =  - \=Bclog(se),(2.8)

where \beta , \=Bc are positive parameters, and se is the effective saturation defined as
se = (sw  - srw) / (1 - srw  - srn). Here srw and srn are residual saturations for the
wetting and nonwetting phases.
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2.2. Fully implicit discontinuous Galerkin finite element discretization.
In this paper, we solve the system of (2.5) and (2.6) simultaneously using a fully
coupled approach. The discretization is based on a backward Euler scheme in time
and an upwind nonsymmetric interior penalty Galerkin (NIPG) [15, 36] finite element
method in space.

Let \Omega h = \{ E\} be a quasi-uniform mesh of \Omega consisting of NE elements. We
denote by \Gamma h the set of faces in \Omega h and by e the face shared by two elements Ea and
Eb (or e \in \partial \Omega h). We associate with e a unit normal vector ne directed from Ea to
Eb (a > b). Then, we define the jump and average of a function f on e as

[f ] = (f | Ea
) | e  - (f | Eb

) | e, \{ f\} =
1

2
((f | Ea

) | e + (f | Eb
) | e) .(2.9)

If e \in \partial \Omega h, the above jump and average of f on e reduce to [f ] = \{ f\} = (f | E) | e, and
the normal vector ne coincides with the outward normal n.

Given an integer m \geq 0, the discontinuous finite element space is

\scrD m =
\bigl\{ 
\psi \in L2(\Omega ); \psi | E \in \scrP m(E) \forall E \in \Omega h

\bigr\} 
,

where \scrP m(E) is the space of polynomials of maximum degree m. Let us denote by pnw
and snw the approximation of pw and sw at the nth time step, respectively, and by \Delta t
the time step size. To simplify the derivations, we ignore the effect of gravity (g = 0).
Denote by (\cdot , \cdot )E the L2(E)-inner product and by \langle \cdot , \cdot \rangle e the L2(e)-inner product.
Then, the fully implicit DG discretization of the coupled equations (2.5) and (2.6) is
described as follows: Given (pnw, s

n
w) \in \scrD mp

\times \scrD ms
, find

\bigl( 
pn+1
w , sn+1

w

\bigr) 
\in \scrD mp

\times \scrD ms
,

such that \forall (\psi p, \psi s) \in \scrD mp
\times \scrD ms

,

Fp
\bigl( 
pn+1
w , sn+1

w

\bigr) 
= 0,(2.10)

Fs
\bigl( 
pn+1
w , sn+1

w

\bigr) 
= 0,(2.11)

where

Fp
\bigl( 
pn+1
w , sn+1

w

\bigr) 
= Bp + F 1

p + F 2
p + F 3

p ,(2.12)

Fs
\bigl( 
pn+1
w , sn+1

w

\bigr) 
= Bs + F 1

s + F 2
s + F 3

s .(2.13)

In (2.12)--(2.13), Bp and Bs are bulk integrals obtained from integration by parts:

Bp =
\sum 

E\in \Omega h

\biggl( 
\phi 

\Delta t
(snw  - sn+1

w ) - qn, \psi p

\biggr) 
E

+
\sum 

E\in \Omega h

\bigl( 
\lambda n(s

n+1
w )\bfK \nabla 

\bigl( 
pn+1
w + pc(s

n+1
w )

\bigr) 
,\nabla \psi p

\bigr) 
E
,

Bs =
\sum 

E\in \Omega h

\biggl( 
\phi 

\Delta t
(sn+1

w  - snw) - qw, \psi s

\biggr) 
E

+
\sum 

E\in \Omega h

\bigl( 
\lambda w(s

n+1
w )\bfK \nabla pn+1

w ,\nabla \psi s

\bigr) 
E
.

F 1
p and F 1

s are jump terms corresponding to face integrals obtained by using the
regularity of the exact solution and the boundary conditions [15]:

F 1
p =

\sum 
e\in \Gamma h\setminus (\Gamma in\cup \Gamma 0)

\Bigl\langle 
 - 
\bigl( 
\lambda n(s

n+1
w )\bfK 

\bigr) up \bigl\{ \nabla pn+1
w \cdot \bfn e

\bigr\} 
, [\psi p]

\Bigr\rangle 
e
+

\sum 
e\in \Gamma in

\Bigl\langle 
f in
n , \psi p

\Bigr\rangle 
e

+
\sum 

e\in \Gamma h\setminus (\Gamma in\cup \Gamma out\cup \Gamma 0)

\Bigl\langle 
 - 
\bigl( 
\lambda n(s

n+1
w )\bfK 

\bigr) up \bigl\{ \nabla pc(sn+1
w ) \cdot \bfn e

\bigr\} 
, [\psi p]

\Bigr\rangle 
e
,

F 1
s =

\sum 
e\in \Gamma h\setminus (\Gamma in\cup \Gamma 0)

\Bigl\langle 
 - 
\bigl( 
\lambda w(s

n+1
w )\bfK 

\bigr) up \bigl\{ \nabla pn+1
w \cdot \bfn e

\bigr\} 
, [\psi s]

\Bigr\rangle 
e
+

\sum 
e\in \Gamma in

\Bigl\langle 
f in
w , \psi s

\Bigr\rangle 
e
.
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F 2
p and F 2

s are additional terms for the purpose of stabilization; they vanish for the
exact solution:

F 2
p =

\sum 
e\in \Gamma h\setminus (\Gamma in\cup \Gamma 0)

\Bigl\langle \bigl( 
\lambda n(s

n+1
w )\bfK 

\bigr) up \{ \nabla \psi p \cdot \bfn e\} ,
\bigl[ 
pn+1
w

\bigr] \Bigr\rangle 
e
 - 

\sum 
e\in \Gamma out

\bigl\langle 
\lambda n(s

n+1
w )\bfK \nabla \psi p \cdot \bfn e, p

out
w

\bigr\rangle 
e

+
\sum 

e\in \Gamma h\setminus (\Gamma in\cup \Gamma out\cup \Gamma 0)

\Bigl\langle \bigl( 
\lambda n(s

n+1
w )\bfK 

\bigr) up \{ \nabla \psi p \cdot \bfn e\} ,
\bigl[ 
pc(s

n+1
w )

\bigr] \Bigr\rangle 
e
,

F 2
s =

\sum 
e\in \Gamma h\setminus (\Gamma in\cup \Gamma 0)

\Bigl\langle \bigl( 
\lambda w(s

n+1
w )\bfK 

\bigr) up \{ \nabla \psi s \cdot \bfn e\} ,
\bigl[ 
pn+1
w

\bigr] \Bigr\rangle 
e
 - 

\sum 
e\in \Gamma out

\bigl\langle 
\lambda w(s

n+1
w )\bfK \nabla \psi s \cdot \bfn e, p

out
w

\bigr\rangle 
e
.

Lastly, F 3
p and F 3

s are penalty terms used to constrain the weak continuity of the
pressure:

F 3
p =

\sum 
e\in \Gamma h\setminus (\Gamma in\cup \Gamma 0)

\gamma \| 
\bigl( 
\lambda n(s

n+1
w )\bfK 

\bigr) up \| \infty \bigl\langle \bigl[ 
pn+1
w

\bigr] 
, [\psi p]

\bigr\rangle 
e

 - 
\sum 

e\in \Gamma out

\gamma \| 
\bigl( 
\lambda n(s

n+1
w )\bfK 

\bigr) up \| \infty \bigl\langle 
poutw , \psi p

\bigr\rangle 
e

+
\sum 

e\in \Gamma h\setminus (\Gamma in\cup \Gamma out\cup \Gamma 0)

\gamma \| 
\bigl( 
\lambda n(s

n+1
w )\bfK 

\bigr) up \| \infty \bigl\langle \bigl[ 
pc(s

n+1
w )

\bigr] 
, [\psi p]

\bigr\rangle 
e
,

F 3
s =

\sum 
e\in \Gamma h\setminus (\Gamma in\cup \Gamma 0)

\gamma \| 
\bigl( 
\lambda w(s

n+1
w )\bfK 

\bigr) up \| \infty \bigl\langle \bigl[ 
pn+1
w

\bigr] 
, [\psi s]

\bigr\rangle 
e

 - 
\sum 

e\in \Gamma out

\gamma \| 
\bigl( 
\lambda w(s

n+1
w )\bfK 

\bigr) up \| \infty \bigl\langle 
poutw , \psi s

\bigr\rangle 
e
.

Here, (\cdot )up means that the quantities are upwinded. The penalty factor \gamma is an
important parameter for the performance of the method. We consider the definition
in [3] that accounts for the space dimension d, polynomial degree \~m = min (mp,ms),
and the element size, as follows:

\gamma =

\left\{       
\sigma 
\~m( \~m+ d - 1)| e| 
min(| Ea| , | Eb| )

on \Gamma h \setminus (\Gamma in \cup \Gamma out \cup \Gamma 0),

\sigma 
\~m( \~m+ d - 1)| e| 

| E| 
on \Gamma h \cap \Gamma out,

where \sigma is a user-defined parameter. For general problems with heterogeneous porous
media, \gamma is effectively scaled by the magnitude of the permeability. In this work, we
adopt \| 

\bigl( 
\lambda \alpha (s

n+1
w )K

\bigr) up \| \infty (\alpha = w, n) for scaling \gamma as suggested in [16].
The fully implicit DG discretization results in a nonlinear algebraic system

F (X) = 0(2.14)

to be solved at each time step, where X is the vector of unknowns. We note that F is a
highly nonlinear function, where the nonlinearities come from the relative permeability
kr\alpha (sw) and the capillary pressure function pc(sw). Additional difficulties in solving
(2.14) are introduced by the heterogeneity of \phi and K.

3. Nonlinearly preconditioned inexact Newton algorithms. In this sec-
tion, we describe a class of nonlinearly preconditioned inexact Newton algorithms for
solving (2.14). We first recall the inexact Newton method with backtracking (INB)
[13, 14] as the outer iterative process: Take the solution of the previous time step or
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the initial condition as the initial guess X0 = Xn; then the next approximate solution
Xk+1 is obtained by

Xk+1 = Xk + \lambda kSk, k = 0, 1, . . . ,(3.1)

where the inexact Newton direction Sk satisfies

\| JkSk + F (Xk)\| \leq \eta k\| F (Xk)\| .(3.2)

Here Jk = F \prime (Xk) is the Jacobian matrix. The step length \lambda k \in [0, 1] is determined
by a line search procedure [13]. \eta k \in [0, 1) is a forcing term that determines how
accurately the Jacobian system needs to be solved. To enhance the robustness of
INB, \eta k can be computed based on norms that are by-products of the iteration, as
suggested by Eisenstat and Walker [14]. The nonlinear iteration is stopped if

\| F (Xk) \| \leq \gamma r\| F (X0) \| ,(3.3)

where \gamma r is a prescribed relative tolerance for the nonlinear solver.
Slow convergence of INB occurs when the value of \lambda k is small. To accelerate the

convergence, nonlinear preconditioning is introduced to balance the overall nonlinear-
ities of the system so that a single search direction Sk can benefit all components of
the residual function F .

The key idea of NE preconditioning is to first identify the part of F responsible
for slow convergence and then approximately eliminate it using an inner iteration. We
partition the components of F into ``good"" and ``bad"" groups labeled with superscripts
g and b,

F (X) =

\biggl[ 
F b

\bigl( 
Xb, Xg

\bigr) 
F g

\bigl( 
Xb, Xg

\bigr) \biggr] 
,(3.4)

and X = (Xb, Xg). Similarly, as in Gaussian elimination for linear problems we need

a nonsingular block as the pivot. Here we assume that \partial F b

\partial Xb is nonsingular for any Xg

in a projection set \{ Xg | (Xb, Xg) \in \BbbR N\} . Based on the implicit function theorem of
calculus, there exists a function g(Xg) such that

F b (g(Xg), Xg) = 0.(3.5)

We call G(X) = (g(Xg), Xg) the cut-extension of X that keeps the good part of X
and replaces the bad part of X by a subspace vector that satisfies a subset of the
nonlinear system. The modified system reads as follows: Find Y = G(X) such that

F (Y ) =

\biggl[ 
F b (g(Xg), Xg)
F g (g(Xg), Xg)

\biggr] 
=

\biggl[ 
0

F g (g(Xg), Xg)

\biggr] 
= 0,(3.6)

which will be solved by INB described in the beginning of this section. System (3.6)
is often written as

F (G(X)) = 0(3.7)

and is called a right-preconditioned nonlinear system. By using the theory of affine
invariance, Gong and Cai [17] discussed criteria for choosing the to-be-eliminated
components under certain conditions so that NE improves convergence of Newton
iterations. We refer the reader to details in that reference.
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S324 LI LUO, XIAO-CHUAN CAI, AND DAVID E. KEYES

During the outer INB process, the relative reduction of the residual

\rho k =
\| F (Xk) \| 

\| F (Xk - 1) \| 
(3.8)

can be used to measure the effectiveness of the kth Newton solution Xk. If \rho k is
too large (i.e., \rho k > \rho 0, where 0 < \rho 0 < 1 is a preselected parameter), the NE
preconditioner is then introduced to produce a different Newton solution X\ast 

k . On
the other hand, if \rho k is small, then we proceed with the classical INB without any
nonlinear preconditioning for this Newton step. In the NE preconditioner, we solve
the nonlinear system

\scrF k(X) \equiv 
\biggl[ 
F b

\bigl( 
Xb, Xg

\bigr) 
Xg  - Xg

k

\biggr] 
= 0(3.9)

by using INB with the initial guess Xk. X
\ast 
k is accepted as the approximate solution if

the stopping condition \| \scrF k(X\ast 
k)\| \leq \gamma NE

r \| \scrF k(Xk)\| is satisfied, where \gamma NE
r is the rela-

tive tolerance for the nonlinear solver. Here the ``inverse"" of \scrF k(X) = 0 is considered
as a nonlinear preconditioner of F , that is, X\ast 

k = G(Xk).
In the modified nonlinear system (3.9), F b is simply a restriction of F to a subset

of equations, while the replacement for the good components Xg  - Xg
k = 0 is trivial,

which results in an identity part of the inner Jacobian. Therefore, the modified
nonlinear system is often better conditioned. In addition, the modified nonlinear
system does not need to be solved exactly; a relatively large tolerance (i.e., \gamma NE

r =
10 - 1) is sufficient for the inner Newton to return an updated solution that results
in more balanced nonlinearities. Hence, solving (3.9) is often easier than solving the
original problem.

A high level description of the INB-NE algorithm for solving (2.14) at each time
step is presented in Algorithm 3.1.

In Step 2, if the residual norm \| F (Xk)\| is less than the given value of \varepsilon , the
intermediate solution is considered to be close to the desired one, and therefore the
NE step can be skipped in order to save the overhead of the nonlinear preconditioning.

In Step 3, a subspace Newton method is performed to remove subspace high non-
linearities before applying a global nonlinear update, so it is essential to effectively
identify the bad components to be eliminated in the nonlinear system. Below we intro-
duce the saturation componentwise approach proposed in [48] as a basis for discussing
how to construct the subspace nonlinear function \scrF k(X).

3.1. A strategy based on the pointwise value of saturation. This ap-
proach is based on a hybrid physical-algebraic partition of the residual function, where
the bad components are selected only from the saturation field, whose residual val-
ues often dominate those from the pressure field. We first introduce some notation.
Let \scrS = \{ s1, s2, . . . , sNs\} be an index set with respect to the saturation components,
where each index corresponds to an unknown component Xk,si and a nonlinear func-
tion Fsi , and Ns is the number of elements of \scrS . We note that \scrS is a subset of the
index set \scrN = \{ 1, . . . , N\} . At the kth Newton iteration, the index set is decomposed
into two parts, \scrS bk and \scrS gk , such that \scrS gk = \scrS \setminus \scrS bk, where \scrS bk and \scrS gk correspond to the
components that have strong and weak nonlinearities, respectively. Let F\scrS \in \BbbR Ns be
the vector of residual function with respect to the saturation components (i.e., the
wetting phase part of F ); then the bad subset \scrS bk is determined as follows:

\scrS bk = \{ si | If | Fsi(Xk)| > \varrho \| F\scrS (Xk)\| \infty , i = 1, . . . , Ns, si \in S\} ,(3.10)
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Algorithm 3.1. The nonlinear elimination preconditioned inexact Newton algorithm
with backtracking (INB-NE): given absolute and relative nonlinearity bounds \varepsilon and
\rho 0.

Step 1 Take the solution of the previous time step or the initial condition as the
initial guess X0 = Xn. Set k = 0, X - 1 = X0.

Step 2 Check convergence:
\bullet If the global stopping condition \| F (Xk) \| \leq \gamma r\| F (X0) \| is satisfied,
stop and update Xn+1 = Xk.

\bullet If \| F (Xk)\| \geq \varepsilon and \| F (Xk)\| /\| F (Xk - 1)\| \geq \rho 0, go to Step 3; otherwise,
go to Step 4.

Step 3 The NE step: perform the subspace correction:
\bullet Identify the to-be-eliminated components.
\bullet Form and evaluate the nonlinear function \scrF k(X) in (3.9).
\bullet Approximately solve \scrF k(X) = 0 using the classical INB with initial
guess Xk.

\bullet Take the solution of the inner Newton iteration as X\ast 
k and update Xk =

X\ast 
k .

Step 4 The global INB step:
\bullet Analytically construct the global Jacobian matrix Jk = F \prime (Xk).
\bullet Inexactly solve JkSk =  - F (Xk).
\bullet Compute \lambda k using the cubic backtracking line search.
\bullet Update Xk+1 = Xk + \lambda kSk.
\bullet Set k = k + 1, go to Step 2.

where \varrho is a preselected parameter. With this partition, one can define two subspaces

\scrV bk =
\Bigl\{ 
V | V = (V1, . . . , VN )

T \in \BbbR N , Vn = 0 if n /\in \scrS bk, n = 1, . . . , N
\Bigr\} 
,

\scrV gk =
\Bigl\{ 
V | V = (V1, . . . , VN )

T \in \BbbR N , Vn = 0 if n \in \scrS bk, n = 1, . . . , N
\Bigr\} 
,

respectively. The corresponding restriction operators are denoted as \scrR b
k and \scrR g

k that
are subidentity matrices mapping the vectors from \BbbR N to \scrV bk and \scrV gk , respectively.
Then, the subspace nonlinear function in the NE step is defined as

\scrF k(X) \equiv \scrR b
k (F (X)) +\scrR g

k (X  - Xk) .(3.11)

Remark 3.1. The saturation componentwise approach is adaptive in the sense
that the subspace nonlinear system \scrF k(X) = 0 may be different for different time
steps.

In this approach, only the dominant residual components of the saturation field
are identified and eliminated. In practice, such a single-field elimination strategy may
cause stagnation or even failure for the inner Newton iteration when the subspace
system involves locally stiff coefficients or a highly nonlinear capillary effect. For
such cases, the difficulty is often caused by the strongly coupled physical phenomena
arising from the interaction between the pressure and the saturation in a heteroge-
neous medium of high contrast. To overcome this difficulty, we propose two new
elimination strategies, respectively, a multiplicative field-split approach and a coupled
element-block approach.
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3.2. A strategy based on the field-splitting of pressure and satura-
tion. This strategy is a right version of left multiplicative nonlinear preconditioning,
namely, the multiplicative Schwarz preconditioned inexact Newton (MSPIN) method
[31, 33], where the subproblems with respect to different physical variables are solved
sequentially, similar to a Gauss--Seidel iteration. In the NE context, we perform the
subspace correction step (Step 3 in Algorithm 3) in two stages to eliminate alternately
the pressure saturation components. We call this strategy a multiplicative field-split
approach. Specifically, at the first stage, we define two subspaces

\scrV b1 =
\Bigl\{ 
V | V = (V1, . . . , VN )

T \in \BbbR N , Vn = 0 if n \in \scrS , n = 1, . . . , N
\Bigr\} 
,

\scrV g1 =
\Bigl\{ 
V | V = (V1, . . . , VN )

T \in \BbbR N , Vn = 0 if n /\in \scrS , n = 1, . . . , N
\Bigr\} 
.

The corresponding restriction operators are denoted as \scrR b
1 and \scrR g

1, respectively.
Then, we solve the following subspace nonlinear system with the initial guess Xk:

\scrF 1(X) \equiv \scrR b
1 (F (X)) +\scrR g

1 (X  - Xk) = 0.(3.12)

We denote \~Xk as the approximate solution for the first stage. At the second stage,
we define two counterpart subspaces

\scrV b2 =
\Bigl\{ 
V | V = (V1, . . . , VN )

T \in \BbbR N , Vn = 0 if n /\in \scrS , n = 1, . . . , N
\Bigr\} 
,

\scrV g2 =
\Bigl\{ 
V | V = (V1, . . . , VN )

T \in \BbbR N , Vn = 0 if n \in \scrS , n = 1, . . . , N
\Bigr\} 
.

The corresponding restriction operators are denoted as \scrR b
2 and \scrR g

2, respectively.
Then, we solve the following subspace nonlinear system with the initial guess \~Xk:

\scrF 2(X) \equiv \scrR b
2 (F (X)) +\scrR g

2(X  - \~Xk) = 0.(3.13)

Finally, we take the approximate solution of (3.13) as X\ast 
k .

Remark 3.2. Denote G1(X) and G2(X) as the ``inverses"" of (3.12) and (3.13),
respectively; then we have the composite formulation of the right nonlinear precondi-
tioner

X\ast 
k = G(Xk) = G2(G1(Xk)).

Remark 3.3. The multiplicative field-split approach is static in the sense that the
selection of bad components does not change with k.

Remark 3.4. A linear two-stage preconditioner widely used in the community of
reservoir simulation, the constrained pressure residual (CPR) method, is based on
subblocks of the Jacobian matrix and uses an approximate pressure solve, such as
algebraic multigrid (AMG), to constrain the residual of the full system [18, 32]. Com-
pared to CPR-AMG, the multiplicative field-split approach does not require derivation
or assembly of an elliptic pressure equation to make use of AMG. It is applied directly
to the nonlinear system to reduce the nonlinear stiffness.

In general, it may be time-consuming to eliminate alternately all components of
different physical fields per NE application. One variant of the multiplicative field-
split approach is to identify and eliminate only the dominant residual components
of each field using an algebraic criterion similar to (3.10). However, in our numeri-
cal experiments, we observe that the full field approach is efficient for the problems
addressed in this paper.
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3.3. A strategy based on the field-coupling of pressure and saturation.
The strong nonlinearities of the system are often related to certain critical features
(e.g., discontinuity of permeability coefficients, spatial variation of capillary effects,
complex source terms, and corner/fault/void singularities) that appear in certain local
regions. In such a situation, a small number of components defined in the local regions,
or nearby elements, may contribute to a large percentage of \| F\| . On the other hand,
the DG finite element discretization used in this work leads to a tight coupling of the
unknown variables within an element. Based on these two observations, we devise a
coupled element-block approach; that is, when one component defined on a particular
element is selected to be eliminated, all other components associated with this element
are also eliminated.

Specifically, let n\psi p
and n\psi s

be the numbers of basis functions for the pressure
and saturation in element E, respectively. Then, each element has a total of n\psi =
n\psi p

+ n\psi s
degrees of freedom with respect to the two variables. We denote \{ Ec : c =

1, . . . , n\psi \} as the index set that collects the indices corresponding to the degrees of
freedom defined on element E (i.e., n\psi unknown components Xk,Ec and n\psi nonlinear
residual components FEc

). At the kth Newton iteration, we decompose \Omega h into a
``bad"" subset \scrE bk and a ``good"" subset \scrE gk , such that \scrE gk = \Omega h\setminus \scrE bk. The bad subset \scrE bk
is defined as

\scrE bk = \{ E | If maxc\{ | FEc
(Xk)| \} > \varrho \| F (Xk)\| \infty , c = 1, . . . , n\psi , E \in \Omega h\} .(3.14)

For the DG finite element discretization in space, the calculation of F involves the
unknowns and derivatives from two neighboring elements; thus new jumps may be
produced in the residual function across the interface between the good and bad
regions [7, 46, 49]. To avoid such jumps, we extend \scrE bk to a larger subset \scrE b,\delta k by
including \delta n layers of neighboring elements so that the interface is far away from the
local high nonlinearities. An example of the bad region on a 2D mesh is shown in
Figure 1.

Fig. 1. An example for illustration of the bad region on a 2D mesh.

With the subset \scrE b,\delta k , we define two subspaces

\scrV b,\delta k =
\Bigl\{ 
V | V = (V1, . . . , VN )

T \in \BbbR N , VEc
= 0 if E /\in \scrE b,\delta k , c = 1, . . . , n\psi 

\Bigr\} 
,

\scrV g,\delta k =
\Bigl\{ 
V | V = (V1, . . . , VN )

T \in \BbbR N , VEc
= 0 if E \in \scrE b,\delta k , c = 1, . . . , n\psi 

\Bigr\} 
.

The corresponding restriction operators are denoted as \scrR b
k and \scrR g

k, respectively.
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Then, the subspace nonlinear function \scrF k(X) in the NE step can be defined in the
same way as (3.11).

The coupled element-block approach is based on a decomposition of the mesh \Omega h,
which can be viewed as an extension of the pointwise approach [20, 49] that has been
used successfully for multicomponent systems. However, the pointwise approach is not
suitable for our work since we use mixed-order polynomials for different variables in
the DG scheme. On the other hand, the coupled element-block approach generalizes
the saturation componentwise approach [48] by including the continuous subdomain
(the associated element and its neighbors) in the bad subset where the change of
physical variables may be abrupt. A performance comparison of these approaches is
presented in the numerical experiments.

3.4. Linear solver. A linear solver is required to solve the Jacobian systems
arising from both the global Newton iteration and the nonlinear elimination process.
Good candidates include the class of Krylov subspace methods with effective linear
preconditioners. In this study, we use a restricted additive Schwarz (RAS) [5] precon-
ditioned generalized minimal residual (GMRES) method [41] to solve the Jacobian
systems.

We rewrite the Jacobian system in the general form

JM - 1y = b, with x =M - 1y,(3.15)

where J is the Jacobian matrix,M is the preconditioner, x is the solution, and b is the
right-hand side. Denote by np the number of processor cores of the parallel computer.
We partition the finite element mesh \Omega h into np nonoverlapping subdomains \Omega l (i.e.,
\Omega i \cap \Omega j = \emptyset \forall i \not = j) for l = 1, . . . , np, such that \Omega h = \Omega 1 \cup \cdot \cdot \cdot \cup \Omega np. The subvector
associated with \Omega l is denoted as yl. We then extend \Omega l to overlap with its neighbors
by \delta l layers of mesh elements and denote the overlapping subdomain as \Omega \delta l . On each
overlapping subdomain, we define the corresponding subvector y\delta l and the restriction
operator R\delta l that maps the global vector of unknowns in \Omega h to y\delta l , i.e.,

y\delta l = R\delta l y = (I 0)

\biggl( 
y\delta l
y\setminus y\delta l

\biggr) 
.

Figure 2 shows a sample partition of a mesh into eight subdomains (left) and an
example of an overlapping subdomain (right).

Fig. 2. Left: A sample partition of a mesh into eight subdomains. Right: A nonoverlapping
subdomain colored in red and one layer of overlap colored in yellow. (See online version for color.)
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We denote by R0
l the restriction operator that returns yl defined on the nonover-

lapping subdomain. Then, the RAS preconditioner [5] is defined as

M - 1
RAS =

np\sum 
l=1

\bigl( 
R0
l

\bigr) T
(Jl)

 - 1
R\delta l .(3.16)

In (3.16), (Jl)
 - 1

is understood as an approximate inverse of the subdomain Jacobian
matrix, and its product with a vector is computed by solving a subdomain linear
system inexactly using an incomplete LU (ILU) factorization of Jl.

Remark 3.5. The Jacobian matrix J is a key component in Newton-type methods.
In this study, we choose to analytically compute J using the chain rule since the exact
Jacobian matrix brings added robustness. We refer the reader to [36] for more details
on the construction of J .

Remark 3.6. In general, the subspace Jacobian system is better conditioned than
the global Jacobian system. For the purpose of efficiency, the subspace Jacobian
matrix and the subspace preconditioner do not need to be recomputed for every inner
Newton iteration. Later, we show by numerical tests that reusing these subspace
operators helps to save the total compute time.

4. Numerical experiments. In this section, we provide some examples to il-
lustrate the robustness and efficiency of the proposed methods. We first validate
our discretization scheme and the fully implicit solver using a benchmark problem
in homogeneous porous media. Then, we study the performance of various INB-NE
methods for heterogeneous porous media and focus on (1) robustness with respect to
physical and numerical parameters, and (2) comparison of performance between INB
and INB-NE.

The algorithms are implemented using libMesh [26] for the finite element assembly
and PETSc [2] for the inexact Newton--Krylov solver. All computations are carried
out on the Shaheen2 supercomputer, which has two 16-core Intel Haswell CPUs and
128GB local memory in each of its compute nodes. We use piecewise quadratic poly-
nomials for the pressure and piecewise linear polynomials for the saturation: mp = 2,
ms = 1 [15]. The user-defined penalty parameter in the NIPG scheme is given as
\sigma = 10 for all the tests. We use the following parameters in our solvers if they are
not specifically stated. The relative tolerance for the global Newton iteration is set to
be \gamma r = 10 - 5. The relative tolerance for the inner Newton iteration is \gamma NE

r = 10 - 1.
The inner Newton iteration is also stopped by a maximum number of iterations 15.
The subspace Jacobian and preconditioner are evaluated only once at the first inner
Newton iteration and are then reused for the rest of the computation. The restart
value of GMRES is fixed at 100. The size of overlap in the linear RAS preconditioner
is fixed to \delta l = 1. An ILU factorization with two fill-in levels is used to solve the
subdomain linear systems. In all cases, the effect of gravity is neglected (g = 0) for
simplicity, and the void of the media is initially fully saturated with oil, i.e., s0w = 0.
Except for the first example, we consider injection and production well sources in the
simulation. The wetting-phase fluid is injected with a constant rate at the injector.
A Peaceman well model [9] is used for the producer with well radius rw, skin factor
sk, and bottom hole pressure pbh given specifically in the examples.

For the implementation of NE, we perform two steps to assemble the modified
nonlinear system (3.9). The first step is to identify the to-be-eliminated components
and the counterpart good components. In the second step, we reuse the routines
to assemble Jacobians and residuals for the global Newton solver, then replace the
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equations corresponding to the good components by (X - Xk)n = 0. Here (\cdot )n means
the nth component of the vector. Then, the solve of \scrF k(X) = 0 can be performed in
the whole space. The inner Newton solver shares the same framework and the same
number of parallel processes with the global solver; thus standard nonlinear solver
software packages can be used with some slight modification. This implementation
saves memory as well as overhead to create inner solvers per outer iteration. The effi-
ciency of the proposed method can be further improved if some dynamic load balance
technique is used. One strategy would be to dynamically partition and redistribute
the bad subset among all the processor cores so that each core owns an almost equal
number of bad components.

In the rest of this paper, NIg denotes the averaged number of global Newton
iterations per time step, LIg denotes the averaged number of GMRES iterations per
global Newton iteration, NNE is the averaged number of subspace correction steps
in NE per time step, NINE refers to the averaged number of Newton iterations per
subspace correction in NE, LINE is the averaged number of GMRES iterations per
Newton iteration in NE, TNE is the compute time in seconds for all NE applications
per time step, and Tt is the total compute time in seconds per time step. The
numbers reported in the tests are obtained by taking average for 10 time steps. We
also denote by Lag (= 1, 2, . . . ,\infty ) the recomputed frequency of the subspace Jacobian
and preconditioner in the NE step.

4.1. Example 1: The Buckley--Leverett problem. We first consider the
Buckley--Leverett problem in 1D homogeneous porous media, which has a well-known
analytical solution for cases with different fluid properties and zero capillary pressure
[19]. In the test, water (wetting-phase) is injected with a constant flow rate at one
end (\Gamma in) to displace oil to the other end (\Gamma out). The pressure is kept constant at the
production end, and the capillary pressure is neglected. The absolute permeability
tensor is taken as K = KI, where I is the identity matrix, and K is a positive real
number. The relevant data for this problem are provided in Table 1. The mesh size
is 100×1×1. The classical INB is used for the simulation with the time step size
\Delta t = 1 day. The simulations are carried out using 10 processor cores. We compare
the results of our fully implicit DG scheme with an IMPES based two-point flux-
approximation (TPFA) scheme offered by the open source code MRST (MATLAB
Reservoir Simulation Toolbox) [30]. Numerical and analytical solutions of wetting
saturation are plotted in Figure 3. It is observed that the profiles of our scheme capture
the discontinuities well with less numerical dispersion than the MRST solution, due
to its higher-order (linear) approximation. Figure 4 shows a convergence test using
different mesh sizes for our scheme. We see from the figure that the saturation profiles
are stable and converge as the mesh is refined.

Table 1
Relevant parameters for Example 1.

Domain dimensions 300 m×1 m×1 m
Rock properties \phi = 0.2, K = 1 mD
Fluid properties \mu w = 2 cP, \mu n = 3 cP

\rho w = \rho n = 1000 kg/m3

Relative permeabilities \beta = 2 in (2.8)
Capillary pressure \=Bc = 0 in (2.8)
Residual saturations srw = 0, srn = 0.2
Injection rate 5\times 10 - 4 PV/day
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Fig. 3. Wetting saturation of the Buckley--Leverett problem. The mesh size is 100\times 1\times 1.

Fig. 4. Wetting saturation of the Buckley--Leverett problem at 900 days obtained using the fully
implicit DG scheme with different mesh sizes.

4.2. Example 2: A square horizontal domain with obstacles. By this
example, we test the INB-NE methods for oil displacement driven by diagonal well
sources in a square horizontal domain with specific geometry setup. In the test, an
injector is located in the middle of the domain, and two producers are located on
two diagonal corners, respectively. We design two rectangular obstacles near the left
bottom corner that exert an impedance on the flow movement, as shown in Figure
5(a). All boundaries are impermeable (\Gamma 0). An unstructured mesh consisting of 2,436
elements is used for the test, leading to 85,260 degrees of freedom. Other relevant
parameters are provided in Table 2. In the heterogeneous media cases, the random
porosity and permeability fields are generated by MRST. The coupled element-block
INB-NE method is used for the simulation, and the preselected parameters are given
as \rho 0 = 0.25, \varepsilon = 5 \times 10 - 4, \varrho = 0.05, and \delta n = 1. The simulations are carried out
using 256 processor cores. Figure 6 shows the wetting saturation at t = 500 days for
cases with different viscosity ratios and different capillary strengths in a homogeneous
or heterogeneous medium. As the simulation moves forward, the injecting fluid pushes
the interface to the two diagonal wells correspondingly. The two obstacles significantly
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(a) Unstructured mesh with 2,436 elements

(b) Porosity (c) Permeability (log10K)

Fig. 5. Example 2: A square horizontal domain with obstacles.

Table 2
Relevant parameters for Example 2.

Domain dimensions 250 m×250 m×5 m
Rock properties homogeneous: \phi = 0.2, K = 100 mD

heterogeneous: \phi \in [0.01, 0.48], K \in [0.00177, 718.69] mD
Fluid properties \mu w (cP)/\mu n (cP) = 1/1, 1/2, 1/4

\rho w = 1025 kg/m3, \rho n = 849 kg/m3

Relative permeabilities \beta = 2 in (2.8)

Capillary pressure \=Bc = Bc/
\surd 
K in (2.8), Bc = 0 -- 18 bar\cdot mD1/2

Residual saturations srw = 0, srn = 0
Injection rate 43.2 m3/day
Production well rw = 0.1 m, sk = 0, pbh = 1 bar [9]

change the flow path in the left bottom part of the domain. In Figure 6(b), the
combination of viscosity differences and permeability heterogeneity introduces the
viscous fingering effects [30]. For Figure 6(c),(d), a significant effect of the capillary
pressure function results in a more diffusive solution.

For cases with high contrast of permeability heterogeneity and capillary effect, the
classical INB may diverge due to the failure of line search. We present a comparison
of INB and the proposed INB-NE methods for the heterogeneous media cases in Table
3. The saturation componentwise approach [48] is also examined in the test where
the prescribed parameter \varrho in (3.10) is selected for optimal performance. The time
step size is \Delta t = 1 day for all cases. For cases with zero capillary pressure function
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(a) Homogeneous media, \mu w
\mu n

= 1
2
, Bc = 0 (b) Heterogeneous media, \mu w

\mu n
= 1

2
, Bc = 0

(c) Heterogeneous media, \mu w
\mu n

= 1
2
, Bc = 8 (d) Heterogeneous media, \mu w

\mu n
= 1

4
, Bc = 10

Fig. 6. Wetting saturation at t = 500 days in Example 2.

(Bc = 0), all methods successfully resolve the evolution of the two-phase flow. When
the capillary effect is involved, the classical INB diverges in Case 3 and Case 5, while
the saturation componentwise INB-NE diverges in Case 5 though a minimum value of
\varrho is used, and the subspace Jacobian and preconditioner are recomputed every inner
Newton iteration. In contrast, the proposed multiplicative field-split INB-NE and
coupled element-block INB-NE converge well for all cases, yielding better robustness
with respect to the strong capillary effect. Compared to INB, the application of NE
significantly reduces the number of global Newton iterations. This saves the total
compute time even though it costs time to solve a subspace nonlinear system. From
the table we see that the compute times for the NE preconditioner are about 40--60\%
of the total compute times. Among the tested methods, the multiplicative field-split
INB-NE results in the smallest number of global Newton iterations and generally the
least total compute time. For the multiplicative field-split approach, the percentage of
eliminated components in each stage is fixed for all NE applications. The percentage
for the coupled element-block approach is greater than the saturation componentwise
approach because its bad subset includes more degrees of freedom of both variables
in the associated elements and neighbors so that they can be eliminated together to
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Table 3
The average numbers of iterations and compute times obtained using INB and INB-NE for

the heterogeneous media cases in Example 2 with different viscosity ratios and different capillary
strengths. ``--"" indicates that the case diverges for all time steps. ``†"" means that the case diverges
for the first time step. ``Pct."" denotes the mean percentage of the eliminated components per NE
application.

Case \mu w/\mu n Bc \varrho Lag NIg LIg Tt NNE NINE LINE TNE Pct.
INB

1 1/1 0 22.8 7.9 4.44
2 1/2 0 23.6 8.8 4.47
3 1/2 8 -- -- --
4 1/4 10 22.9 9.6 4.58
5 1/4 18 -- -- --

INB-NE (saturation componentwise [48])
1† 1/1 0 0.005 \infty 9.3 12.7 3.44 2.9 5.7 6.7 1.60 0.17\%
2† 1/2 0 0.005 \infty 10.5 12.0 3.30 2.7 5.1 6.5 1.31 0.18\%
3† 1/2 8 0 \infty 11.7 11.2 4.46 2.8 5.3 5.9 1.45 1.7\%
4 1/4 10 0 2 8.2 14.0 3.73 3.0 4.8 8.4 2.06 1.8\%
5 1/4 18 0 1 -- -- -- -- -- -- -- --

INB-NE (multiplicative field-split)
1 1/1 0 \infty 6.2 9.2 3.07 3.5 5.6 5.6 1.81 77.1\%\setminus 22.9\%
2 1/2 0 \infty 7.9 12.1 3.35 3.5 5.7 5.7 1.80 77.1\%\setminus 22.9\%
3 1/2 8 \infty 5.9 11.7 3.11 3.6 5.8 5.4 1.90 77.1\%\setminus 22.9\%
4 1/4 10 4 7.9 15.6 3.41 3.2 5.0 5.7 1.78 77.1\%\setminus 22.9\%
5 1/4 18 2 7.2 12.1 5.20 3.8 6.9 7.0 3.69 77.1\%\setminus 22.9\%

INB-NE (coupled element-block)
1 1/1 0 0.05 \infty 8.6 13.3 3.40 3.0 4.6 2.4 1.34 9.7\%
2 1/2 0 0.05 \infty 8.9 13.4 3.24 3.0 4.6 2.3 1.39 9.6\%
3 1/2 8 0.01 \infty 10.4 12.2 3.58 3.1 5.4 2.8 1.49 30.8\%
4 1/4 10 0.01 4 10.1 15.2 3.68 3.0 5.1 3.2 1.63 32.1\%
5 1/4 18 0.01 2 14.7 13.1 5.83 3.1 6.5 3.1 2.74 35.4\%
a\setminus b means that Pct. for the first stage is a and for the second stage is b.

obtain a better updated solution.
Figure 7 shows the nonlinear residual history for global Newton iteration at dif-

ferent time steps obtained using INB and INB-NE for Case 2 (Bc = 0) and Case 3
(Bc = 8). It is seen that for Case 2, INB stagnates and takes a long time to reach the
convergence criteria, while the INB-NE methods converge quickly with fewer than 10
Newton iterations. When the capillary effect is taken into account, the nonlinearity
of the system increases. The classical INB fails in line search ever since the first time
step. Comparatively, the INB-NE methods are more robust, and the convergence rate
does not decrease much from the case without capillary effect. Figure 8 shows the
step length \lambda k at the first time step obtained using INB and INB-NE for Case 3 and
Case 5. We note that INB and saturation componentwise INB-NE diverge for both
cases with \lambda k less than 0.1, while the proposed INB-NE methods result in mostly full
step \lambda k = 1, which implies fast convergence of the Newton iteration. To study the
performance of inner Newton iteration for different approaches, we show the nonlinear
residual history for the first application of NE for Case 5 in Figure 9. The saturation
componentwise approach fails in line search at the third inner Newton step. On the
other hand, the proposed approaches succeed at reducing the residual by a factor of
10, which is sufficient for the subspace correction.

To see how the proposed NE preconditioners improve the convergence of the global
Newton iteration, we show in Figure 10 the residual surface plots of the saturation
components (left) and the pressure components (right) obtained using different INB-
NE methods for Case 5. Note that the data range is reset in Figure 10(e)--(h) for better

D
ow

nl
oa

de
d 

08
/2

4/
21

 to
 1

98
.1

1.
30

.1
86

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NONLINEAR PRECONDITIONING FOR TWO-PHASE FLOWS S335

0 5 10 15 20 25
Global Newton iteration

10-5

10-4

10-3

10-2

10-1

1

10

R
es

id
u

al

INB
INB-NE(Saturation component-wise)
INB-NE(Multiplicative field-split)
INB-NE(Coupled element-block)

(a) Case 2 (\mu w/\mu n = 1/2, Bc = 0)
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(b) Case 3 (\mu w/\mu n = 1/2, Bc = 8)

Fig. 7. Nonlinear residual history for global Newton iteration at the first, fifth, and tenth time
steps obtained using INB and INB-NE in Example 2.
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(a) Case 3 (\mu w/\mu n = 1/2, Bc = 8)
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(b) Case 5 (\mu w/\mu n = 1/4, Bc = 18)

Fig. 8. Step length \lambda k at the first time step obtained using INB and INB-NE in Example 2.

visualization. We plot the residuals before and after the first application of NE where
the saturation componentwise approach fails to converge for the inner Newton. At
this moment, the high nonlinearities are confined to the vicinity of the injector before
NE. For the saturation componentwise approach, the saturation residuals remain the
same order of magnitude after NE, while the pressure residuals barely change. For
the proposed NE approaches, these high nonlinearities are effectively reduced by a
factor of nearly 100 as shown in Figure 10(e)--(h). Hence, the overall nonlinearities
of the system are balanced properly, and that leads to the convergence of the global
Newton iteration.

Next, we study the distribution of the bad components during the time step-
ping. Figure 11 shows the dynamics of the saturation and the corresponding residual
surface plots at two different time steps obtained using the coupled element-block
INB-NE method for Case 2. It is observed from Figure 11(c),(d) that the major bad
components appear at the advancing fronts and change with the propagation of the
displacing fluid. As expected, the local high nonlinearities are identified and removed
adaptively by the proposed NE preconditioner.

4.3. Example 3: A modified SPE tenth case. In this example, a typical
reservoir simulation process, the SPE tenth case [11], is modified and simulated by
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Fig. 9. Nonlinear residual history for inner Newton iteration in the first application of NE
obtained using different approaches for Case 5 in Example 2.

using the proposed INB-NE methods. The data sets of porosity and absolute perme-
ability K = diag(Kxx,Kyy,Kzz) of the problem are highly heterogeneous, as shown
in Figure 12. An injector is located in the middle of the domain, and four producers
are located on the four corners, respectively. All boundaries are impermeable (\Gamma 0). A
uniform mesh consisting of 16×56×22 elements is used for the test, leading to 689,920
degrees of freedom. We load the rock data to the mesh points and adjust the zero
porosity to the minimum positive one. Other relevant parameters are provided in
Table 4. The coupled element-block INB-NE method is used for the simulation, and
the preselected parameters are given as \rho 0 = 0.5, \varepsilon = 10 - 4, \varrho = 0.05, and \delta n = 1. An
adaptive time step size is used, where \Delta t is rescaled by 0.8 if the global Newton does
not converge within 15 iterations and is rescaled by 1.1 if the global Newton converges
within seven iterations. \Delta t is also limited by a maximum time step size \Delta tmax = 2
day. The initial time step size is one day. The simulation is carried out using 1,024
processor cores. Figure 13 shows the wetting saturation at t = 850 days for the top
and bottom layers of the porous media. The two layers display different main flow
directions due to the heterogeneity of the rock data.

To understand the impact of the parameters on the performance of the NE pre-
conditioner, we test the coupled element-block approach with different values of \varrho ,
\delta n, \gamma 

NE
r , as well as different recomputed frequencies for the subspace Jacobian and

preconditioner. The time step size is fixed to \Delta t = 1 day. In Table 5, we show the
effect of these parameters on the number of nonlinear and linear iterations and on
the compute time. When \varrho decreases or \delta n increases, the number of bad components
increases; in general, the time it takes to solve subspace nonlinear problems also in-
creases. This increased time helps reduce the number of global Newton iterations. We
find from Table 5 that the pair of values (\varrho , \delta n)=(0.05, 1) is preferable to minimize
the total compute time. On the other hand, the relative tolerance \gamma NE

r is used to
determine how accurately the subspace nonlinear problem is solved. The results indi-
cate that using a smaller \gamma NE

r slightly reduces the number of global Newton iterations,
but the total compute time increases considerably. For the inner Newton iteration,
we can reuse the subspace Jacobian and preconditioner for several iterations in order
to reduce the inner compute time. This is confirmed when we increase the lagging
number from 1 to \infty , and the total compute time can be saved too. Note that the
lagging in inner Newton barely changes the number of global Newton iterations.

We further compare the performance of INB and INB-NE with different flow rates.
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(a) Before NE (b) Before NE

(c) After the saturation componentwise NE (d) After the saturation componentwise NE

(e) After the multiplicative field-split NE (f) After the multiplicative field-split NE

(g) After the coupled element-block NE (h) After the coupled element-block NE

Fig. 10. Results at the second global Newton iteration at the first time step obtained using
INB-NE for Case 5 in Example 2. Left: Residual of saturation components. Right: Residual of
pressure components. Note that the data range is reset in (e)--(h) for better visualization.

The above optimal parameters are used for the coupled element-block approach. For
comparison, we use the same values for the common parameters in the other two
NE approaches, and a different value of \varrho = 0.01 for the saturation componentwise
approach to obtain optimal performance. Table 6 summarizes the results obtained
using a fixed time step size \Delta t = 1 day. Figure 14 shows the nonlinear residual history
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(a) Wetting saturation (b) Wetting saturation

(c) Bad subset (d) Bad subset

(e) Residual before NE (f) Residual before NE

(g) Residual after NE (h) Residual after NE

Fig. 11. Results at the second global Newton iteration at the 200th time step (left) and the 400th
time step (right) obtained using the coupled element-block INB-NE method for Case 2 in Example
2. In (c) and (d), the bad subset \scrE b

k is composed of the elements fully inside the red region. (e)--(h)
Residual of saturation components. (See online version for color.)
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Table 4
Relevant parameters for Example 3.

Domain dimensions 365.76 m×670.56 m×51.816 m
Rock properties \phi \in [10 - 6, 0.5], Kzz \in [7.7×10 - 8, 6×103] mD

Kxx = Kyy \in [7.7×10 - 4, 2×104] mD
Fluid properties \mu w = 0.3 cP, \mu n = 3 cP

\rho w = 1025 kg/m3, \rho n = 849 kg/m3

Relative permeabilities \beta = 2 in (2.8)
Capillary pressure \=Bc = 0 in (2.8)
Residual saturations srw = 0.2, srn = 0.2
Injection rate 61.6 m3/day
Production well rw = 0.125 m, sk = 0, pbh = 4000 psi [9]

(a) Porosity (b) Permeability (log10Kyy)

Fig. 12. Example 3: Porosity and the y-direction permeability in a modified SPE tenth case.

for different time steps. From the table and the figure, we see that the number of
global Newton iterations and the total compute time obtained using INB increase
notably with the increase of the flow rate. Using the NE preconditioner significantly
improves the robustness and efficiency of INB. Specifically, the multiplicative field-
split approach results in the smallest number of global Newton iterations, while the
coupled element-block approach results in the least total compute time. One distinct
feature among the approaches is that the coupled element-block approach requires
fewer linear iterations in the NE step than the other two field-split approaches; such
a result is also observed in Example 2. The physically coupled approach groups all
variables associated with an element into a subsystem and solves them simultaneously.
As demonstrated in [25, 44], this usually yields better linear convergence when the
subsystems involve locally stiff coefficients or the physical variables change abruptly
in the local region.

In the following, we study the parallel performance of INB and INB-NE for Ex-
ample 3. In the tests, the problem size is fixed to 689,920 degrees of freedom, and
we vary the number of processor cores from 256 to 2,048. To obtain the best perfor-
mance, we use the above optimal parameters for various approaches. For the linear
solver in both the global and subspace Jacobian systems, the size of overlap is \delta l = 1
and the subdomain solver is ILU(2). The flow rate is fixed to 61.6 m3/day and the
time step size is \Delta t = 1 day. Table 7 lists the scalability results in detail. Figure
15 shows the change in total compute time with respect to the number of processor
cores. As np increases, the numbers of global and inner Newton iterations remain sta-
ble, while the total compute times and the compute times for the NE preconditioner
decrease correspondingly. A superlinear speedup is observed when np = 512 for the
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(a) Top layer (b) Bottom layer

Fig. 13. Slice view of wetting saturation at t = 850 days in Example 3.

Table 5
Impact of preselected parameters on the coupled element-block INB-NE method in Example 3.

The flow rate is 61.6 m3/day. The time step size is \Delta t = 1 day.

\varrho \delta n \gamma NE
r Lag NIg LIg Tt NNE NINE LINE TNE

Impact of \varrho 
0.2 1 10 - 1 \infty 8.5 294.7 22.29 2.4 5.3 2.5 3.70
0.1 1 10 - 1 \infty 7.7 174.5 18.98 2.3 4.5 3.8 3.80
0.05 1 10 - 1 \infty 7.0 182.5 15.79 2.4 4.0 5.3 3.59
0.025 1 10 - 1 \infty 5.8 213.5 22.65 2.5 3.9 7.1 4.09

Impact of \delta n
0.05 0 10 - 1 \infty 7.2 214.6 24.24 2.5 4.6 3.8 5.32
0.05 2 10 - 1 \infty 6.1 193.5 22.90 2.4 4.0 5.9 3.99
0.05 3 10 - 1 \infty 5.8 198.1 26.64 2.6 4.0 5.4 4.84

Impact of \gamma NE
r

0.05 1 10 - 2 \infty 5.7 223.1 16.77 1.6 6.4 8.0 3.93
0.05 1 10 - 3 \infty 5.0 346.8 20.43 1.4 9.9 7.2 4.11
0.05 1 10 - 4 \infty 4.7 333.6 25.89 1.1 10.9 9.7 5.81

Impact of lagging subspace Jacobian and preconditioner
0.05 1 10 - 1 1 6.5 201.9 19.47 2.4 4.2 5.2 7.43
0.05 1 10 - 1 2 6.8 207.2 17.03 2.3 3.8 6.0 4.48
0.05 1 10 - 1 4 6.7 212.0 16.52 2.4 3.1 6.4 3.62

Table 6
The average numbers of iterations and compute times obtained using INB and INB-NE with

different flow rates in Example 3. The time step size is \Delta t = 1 day.

Flow rate NIg LIg Tt NNE NINE LINE TNE

(m3/day) INB
41.1 9.5 248.7 17.82
61.6 23.2 185.4 31.29

INB-NE (saturation componentwise [48])
41.1 5.2 384.7 17.83 1.4 2.9 67.5 3.62
61.6 5.9 217.5 20.43 2.3 5.4 60.1 8.60

INB-NE (multiplicative field-split)
41.1 3.1 377.0 15.34 2.6 3.3 56.8 6.66
61.6 3.5 230.3 18.62 3.3 6.2 48.0 11.95

INB-NE (coupled element-block)
41.1 5.0 272.4 13.62 1.5 2.7 6.6 1.97
61.6 7.0 182.5 15.79 2.4 4.0 5.3 3.59
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Fig. 14. Nonlinear residual history for global Newton iteration at the sixth, eighth, and tenth
time steps obtained using INB and INB-NE in Example 3. The time step size is \Delta t = 1 day.

Table 7
Scalability results of INB and INB-NE for Example 3 with flow rate 61.6 m3/day. The system

has 689,920 degrees of freedom. The size of overlap is \delta l = 1 and the subdomain solver is ILU(2).
The time step size is \Delta t = 1 day.

np NIg LIg Tt NNE NINE LINE TNE

INB
256 23.4 91.6 154.64
512 23.7 136.9 51.26
1,024 23.2 185.4 31.29
2,048 24.6 194.7 21.82

INB-NE (saturation componentwise [48])
256 6.2 145.9 68.02 1.9 4.3 45.3 20.05
512 6.1 251.0 35.37 2.4 5.4 48.5 13.14
1,024 5.9 217.5 20.43 2.3 5.4 60.1 8.60
2,048 6.8 206.7 13.72 2.4 5.4 57.2 5.67

INB-NE (multiplicative field-split)
256 4.0 114.1 65.04 3.2 6.4 30.8 35.99
512 3.7 150.5 28.64 3.2 7.2 34.7 18.42
1,024 3.5 230.3 18.62 3.3 6.2 48.0 11.95
2,048 3.9 311.2 12.10 2.9 5.8 40.6 6.25

INB-NE (coupled element-block)
256 6.8 130.7 65.23 2.2 4.0 4.6 15.11
512 6.1 177.7 23.38 2.3 3.7 4.6 5.26
1,024 7.0 182.5 15.79 2.4 4.0 5.3 3.59
2,048 6.6 295.2 11.65 2.0 4.3 5.2 2.07

classical INB and the proposed INB-NE methods. The final speedup of the proposed
INB-NE methods reaches roughly 5.6× when np is eightfold, which shows reasonably
good scalability. We note that the total compute times for the proposed INB-NE are
essentially half those of the classical INB.

5. Concluding remarks. We develop a class of nonlinearly preconditioned in-
exact Newton methods for the simulation of two-phase flows in porous media of high
contrast. The model of two-phase flow is discretized by a fully implicit discontinu-
ous Galerkin (DG) finite element method. When a classical inexact Newton method
with backtracking is used to solve the resulting nonlinear system, it often suffers from
slow convergence or failure in line search. In this work, we propose two nonlinear
elimination preconditioning strategies to handle this issue. The key idea is to perform
subspace correction to remove the local high nonlinearities that cause difficulty for the
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Fig. 15. Parallel performance of INB and INB-NE for Example 3 with flow rate 61.6 m3/day.
The system has 689,920 degrees of freedom. The size of overlap is \delta l = 1 and the subdomain solver
is ILU(2). The time step size is \Delta t = 1 day.

convergence. One strategy is based on the field-splitting of pressure and saturation;
the other strategy is based on the field-coupling of the two variables. We test the
algorithms using several nonlinearly difficult flow problems in heterogeneous media.
Numerical experiments show that the proposed methods are more robust and faster
than existing methods with respect to some physical and numerical parameters and
are scalable on a supercomputer with thousands of processor cores. Although the
discussion of the paper is restricted to two-phase flow problems, the algorithms are
expected to work well for other nonlinear models in reservoir simulation.
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