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We discuss our preliminary experiences with several parallel two�level additive Schwarz
type domain decomposition methods for the simulation of three�dimensional transonic
compressible �ows� The focus is on the implementation of the parallel coarse mesh solver
which is used to reduce the computational cost and speed up the convergence of the
linear algebraic solvers� Results of a local two�level and a global two�level algorithm
on a multiprocessor computer will be presented for computing steady �ows around a
NACA��	
 airfoil using the Euler equations discretized on unstructured meshes�

�� INTRODUCTION

We are interested in the numerical simulation of three�dimensional inviscid steady�state
compressible �ows using two�level Schwarz type domain decomposition algorithms� The
class of overlapping Schwarz methods has been studied extensively in the literature �		��
especially� the single level version of the method ����� It is well�known� at least in theory�
that the coarse space plays a very important role in the fast and scalable convergence of
the algorithms� Direct methods are often used to solve the coarse mesh problem either
redundantly on all processors or on a subset of processors ���� This presents a major
di�culty in a fully parallel implementation for �D problems� especially when the number
of processors is large� In this paper� we propose several techniques to solve the coarse
mesh problem in parallel� together with the local �ne mesh problems� using two nested
layers of preconditioned iterative methods�
The construction of the coarse mesh is an interesting issue by itself� We take a di�erent

approach than what is commonly used in the algebraic multigrid methods in which the
coarse mesh is obtained from the given �ne mesh � not the given geometry� In our two�
level methods to be presented in this paper� we construct both the coarse and the �ne
mesh from the given geometry� To better �t the boundary geometry� the �ne mesh nodes
may not be on the faces of the coarse mesh tetrahedrons� In other words� the coarse space
and �ne space are not nested� This does not present a problem as long as the proper
interpolation is de�ned �
��
As a test case� we consider a symmetric nonlifting �ow over a NACA��	
 airfoil in



a three�dimensional setting� In the presented approach� we construct the �ne mesh by
re�ning an existing coarse mesh and updating the nodes of the �ne mesh according to the
boundary geometry of the given physical domain� Such approach is easy to implement
since the same computer code can be used on both the �ne and the coarse level� and only a
minimal additional programming is required to construct the restriction and prolongation
operators� Moreover� it gives a natural partition of the �ne mesh from the partition of the
coarse mesh� In the tests� the system of Euler equations is discretized using the backward
di�erence approximation in the pseudo�temporal variable and a �nite volume method in
the spatial variables� The resulting system of nonlinear algebraic equations is linearized
using the Defect Correction �DeC� scheme� At each pseudo�temporal level� the linear
system is solved by a restricted additive Schwarz preconditioned FGMRES method �	���
and the coarse mesh problem is solved with an inner level of restricted additive Schwarz
preconditioned FGMRES method�

�� GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Let � � R� be a bounded �ow domain with the boundary consisting of two parts� a
wall boundary �w and an in�nity boundary ��� Let � be the density� �u � �u� v� w�T

the velocity vector� e the total energy per unit volume� and p the pressure� We consider
�� �u� e and p as the unknowns at point �x� y� z�� and the pseudo�temporal variable t�

Set U � ��� �u� �v� �w� e�T � �r �
�

�
�x
� �
�y
� �
�z

�T
� An inviscid compressible �ow in � is

described by the Euler equations

Ut � �r � �F � �� �	�

where �F � �F� G� H�T is the �ux vector with the Cartesian components de�ned as on
page �� of ���� The equation �	� is closed by the equation of state for a perfect gas
p � ���	� �e� �k�uk���
�� where � is the ratio of speci�c heats and k �k� is the 
�norm in
R�� We specify the initial condition U jt�� � U�� where U� is an initial approximation to a
steady�state solution� and the following boundary conditions� On the wall boundary �w�
we impose a no�slip condition for the velocity �u � �n � �� where �n is the outward normal
vector to the wall boundary� On the in�nity boundary ��� we impose uniform free stream
conditions � � ��� �u � �u�� and p� � 	���M�

�
�� where M� is the free stream Mach

number� We seek a steady�state solution� that is� the limits of �� �u� e and p as t���

�� DISCRETIZATION

In this section� we present an outline of the discretization of the Euler equations� for
more details� see ���� Let �h be a tetrahedral mesh in �� and N be the number of mesh
points� For the pseudo�temporal discretization� we use a �rst�order backward di�erence
scheme� For the spatial discretization of �	�� we use a �nite volume scheme in which
control volumes are centered on the vertices of the mesh� For upwinding� we use Roe�s
approximate Riemann solver which has the �rst order spatial accuracy� Second order ac�
curacy is achieved by the MUSCL technique �	�� which uses piecewise linear interpolation
at the interface between control volumes�
For i � 	� 
� � � � � N and n � �� 	 � � � � let Un

i denote the value of the discrete solution
at point �xi� yi� zi� and at the pseudo�temporal level n and set Un

h � �Un
� � U

n
� � � � � � U

n
N �

T �



Let U�
i � U��xi� yi� zi� and �h �Uh� � ��� �Uh� � � � � � �N �Uh��

T � where �i �Uh� denotes

the described second order approximation of convective �uxes �r � �F at point �xi� yi� zi��
We de�ne the local time step size by

�tni � CCFL hi��Ci � k�uni k���

where CCFL � � is a preselected number� �i is a control volume centered at node i� hi is its
characteristic size� Ci is the sound speed and �uni is the velocity vector at node i� Then�
the proposed scheme has a general form

�Un��
i � Un

i ���t
n
i ��i�U

n��
h � � �� i � 	� 
� � � � � N� n � �� 	� � � � � �
�

We note� the �nite volume scheme �
� has the �rst order approximation in the pseudo�
temporal variable and the second order approximation in the spatial variable� On �w�
no�slip boundary condition is enforced� On ��� a non�re�ective version of the �ux splitting
of Steger and Warming �	
� is used�
We apply a DeC�Krylov�Schwarz type method to solve �
�� that is� we use the Defect

Correction scheme as a nonlinear solver� the restarted FGMRES algorithm as a linear
solver� and the restricted additive Schwarz algorithm as the preconditioner�
At each pseudo�temporal level n� the equation �
� represents a system of nonlinear

equations for the unknown variable Un��
h � This nonlinear system is linearized by the

Defect Correction �DeC� scheme �	� formulated as follows� Let ��h�Uh� be the �rst�order

approximation of convective �uxes �r � �F obtained in way similar to that of �h�Uh�� and
let � ��h�Uh� denote its Jacobian� Suppose that� for �xed n� an initial guess Un����

h is given
�say Un����

h � Un
h �� For s � �� 	� � � � � solve for Un���s��

h the following linear system

�
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whereDn
h � diag �	��tn� � � � � � 	��t

n
N� is a diagonalmatrix� The DeC scheme ��� preserves

the second�order approximation in the spatial variable of �
�� In our implementation� we
carry out only one DeC iteration at each pseudo�temporal iteration� that is� we use the
scheme

�
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�� LINEAR SOLVER AND PRECONDITIONING

Let the nonlinear iteration n be �xed and denote

A � Dn
h � � ��h

�
�Un
h

�
� ���

Matrix A is nonsymmetric and inde�nite in general� To solve ���� we use two nested levels
of restarted FGMRES methods �	��� one at the �ne mesh level and one at the coarse mesh
level inside the additive Schwarz preconditioner �AS� to be discussed below�



���� One�level AS preconditioner

To accelerate the convergence of linear iterations in the FGMRES algorithm� we use
an additive Schwarz preconditioner� The method splits the original linear system into a
collection of independent smaller linear systems which could be solved in parallel�
Let �h be subdivided into k non�overlapping subregions �h��� �h��� � � � � �h�k� Let �

�

h���
��h��� � � � � �

�

h�k be overlapping extensions of �h��� �h��� � � � � �h�k� respectively� and be
also subsets of �h� The size of overlap is assumed to be small� usually one mesh layer�
The node ordering in �h determines the node orderings in the extended subregions� For
i � 	� 
� � � � � k� let Ri be a global�to�local restriction matrix that corresponds to the
extended subregion ��h�i� and let Ai be a  part! of matrix A that corresponds to ��h�i� The
AS preconditioner is de�ned by

M��
AS �

kX
i��

RT
i A

��
i Ri�

For certain matrices arising from the discretizations of elliptic partial di�erential op�
erators� an AS preconditioner is spectrally equivalent to the matrix of a linear system
with the equivalence constants independent of the mesh step size h� although� the lower
spectral equivalence constant has a factor 	�H� where H is the subdomain size� For some
problems� adding a coarse space to the AS preconditioner removes the dependency on
	�H� hence� the number of subdomains �		��

���� One�level RAS preconditioner

It is easy to see that� in a distributed memory implementation� multiplications by
matrices RT

i and Ri involve communication overheads between neighboring subregions�
It was recently observed ��� that a slight modi�cation of RT

i allows to save half of such
communications� Moreover� the resulting preconditioner� called the restricted AS �RAS�
preconditioner� provides faster than the original AS preconditioner convergence for some
problems� The RAS preconditioner has the form

M��
RAS �

kX
i��

R�

i
T
A��i Ri�

where R�

i
T corresponds to the extrapolation from �h�i� Since it is too costly to solve linear

systems with matrices Ai� we use the following modi�cation of the RAS preconditioner�

M��
� �

kX
i��

R�

i
T
B��
i Ri� ���

where Bi corresponds to the ILU��� decomposition of Ai� We call M� the one�level RAS
preconditioner �ILU��� modi�ed��

���� Two�level RAS preconditioners

Let �H be a coarse mesh in �� and let R� be a �ne�to�coarse restriction matrix� Let
A� be a coarse mesh version of matrix A de�ned by ���� Adding a scaled coarse mesh
component to ���� we obtain

M��
� � �	� 	�

kX
i��

R�

i
T
B��
i Ri � 	R�

TA��� R�� ��



where 	 � ��� 	� is a scaling parameter� We call M� the global two�level RAS precondi�

tioner �ILU��� modi�ed�� Preconditioning by M� requires solving a linear system with
matrix A�� which is still computationally costly if the linear system is solved directly and
redundantly� In fact� the approximation to the coarse mesh solution could be su�cient for
a better preconditioning� Therefore� we solve the coarse mesh problem in parallel using
again a restarted FGMRES algorithm� which we call the coarse mesh FGMRES� with a
modi�ed RAS preconditioner�
Let �H be divided into k subregions �H��� �H��� � � � � �H�k with the extented counterparts

��H��� �
�

H��� � � � � �
�

H�k� To solve the coarse mesh problem� we use FGMRES with the one�
level ILU��� modi�ed RAS preconditioner

M��
��� �

kX
i��

�R�

��i�
TB��

��iR��i� ���

where� for i � 	� 
� � � � � N � R��i is a global�to�local coarse mesh restriction matrix� �R�

��i�
T

is a matrix that corresponds to the extrapolation from �H�i� and B��i is the ILU���
decomposition of matrix A��i� a part of A� that corresponds to the subregion ��H�i� After

r coarse mesh FGMRES iterations� A��� in �� is approximated by �A��� � polyl�M
��
���A��

with some l � r� where polyl�x� is a polynomial of degree l� and its explicit form is often
not known� We note� l maybe di�erent at di�erent �ne mesh FGMRES iterations� and
it depends on a stopping condition� Therefore� FGMRES is more appropriate than the
regular GMRES� Thus� the actual preconditioner for A has the form

�M��
� � �	� 	�

kX
i��

R�

i
T
B��
i Ri � 	R�

T �A��� R�� ���

For the �ne mesh linear system� we also use a preconditioner obtained by replacing A���
in �� with M��

��� de�ned by ����

M��
� �

kX
i��

�
�	� 	�R�

i
T
B��
i Ri � 	R�

T �R�

��i�
TB��

��iR��iR�

�
� ���

We callM� a local two�level RAS preconditioner �ILU��� modi�ed� since the coarse mesh
problems are solved locally� and there is no global information exchange among the subre�
gions� We expect that M� works better than M� and that �M� does better than M�� Since
no theoretical results are available at the present� we test the described preconditioners
M�� �M�� and M� numerically�

�� NUMERICAL EXPERIMENTS

We computed a compressible �ow over a NACA��	
 airfoil on the computational do�
main with the nonnested coarse and �ne meshes� First� we constructed an unstructured
coarse mesh �H� then� the �ne mesh �h was obtained by re�ning the coarse mesh twice�
At each re�nement step� each coarse mesh tetrahedron was subdivided into � tetrahe�
drons� After each re�nement� the boundary nodes of the �ne mesh were adjusted to the
geometry of the domain� Sizes of the coarse and �ne meshes are given in Table 	�



Table 	
Coarse and �ne mesh sizes

Coarse Fine Fine"coarse ratio
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��� 		���
� ����
Tetrahedrons ����� ����
�� �
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Figure 	� Comparison of the one�level� local two�level� and global two�level RAS pre�
conditioners in terms of the total numbers of linear iterations�left picture� and nonlinear
iterations �right picture�� The mesh has �
 subregions�

For parallel processing� the coarse mesh was divided� using METIS ���� into 	 or �

submeshes with nearly the same number of tetrahedrons� The �ne mesh partition was
obtained directly from the corresponding coarse mesh partition� The size of overlap both
in the coarse and the �ne mesh partition was set to one� that is� two neighboring extended
subregions share a single layer of tetrahedrons� In ��� and ���� RT

� was set to a matrix of a
piecewise linear interpolation� Multiplications by RT

� and R�� solving linear systems with
M�� �M�� andM�� and both the �ne and the coarse FGMRES algorithm were implemented
in parallel� The experiments were carried out on an IBM SP
�
We tested convergence properties of the preconditioners de�ned in ���� ���� and ��� with

	 � Nc�Nf � where Nc and Nf are the numbers of nodes in the coarse and �ne meshes�
respectively� We studied a transonic case with M� set to ���� Some of the computation
results are presented in Figures 	 and 
�
The left picture in Figure 	 shows residual reduction in terms of total numbers of linear

iterations� We see that the algorithms with two�level RAS preconditioners give signi�cant
improvements compared to the algorithm with the one�level RAS preconditioner� The
improvement in using the global two�level RAS preconditioner compared to the local two�
level RAS preconditioner is not very much� Recall� that in the former case the inner
FGMRES is used which could increase the CPU time� In Table 
� we present a summary
from the �gure� We see that the reduction percentages in the numbers of linear iterations
drop with the decrease of the nonlinear residual �or with the increase of the nonlinear
iteration number�� This is seen even more clear in the right picture in Figure 	� After



Table 

Total numbers of linear iterations and the reduction percentages compared to the algo�
rithm with the one�level RAS preconditioner ��
 subregions��

One�level RAS Local two�level RAS Global two�level RAS
Residual Iterations Iterations Reduction Iterations Reduction
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Figure 
� Comparison of the one�level RAS preconditioner with the local two�level RAS
�left picture� and the global two�level RAS preconditioner �right picture� on the meshes
with 	 and �
 subregions�

approximately �� nonlinear iterations� the three algorithms give basically the same number
of linear iterations at each nonlinear iteration� This suggests that the coarse mesh may
not be needed after some number of initial nonlinear iterations�
In Figure 
� we compare the algorithms on the meshes with di�erent numbers of subre�

gions� 	 and �
� The left picture shows that the algorithms with the one�level and local
two�level RAS preconditioners initially increase the total numbers of linear iterations as
the number of subregions was increased from 	 to �
� On the other hand� we see in the
right picture in Figure 
 that the the increase in the number of subregions almost did
not a�ect the convergence of the algorithm with the global two�level RAS preconditioner�
These results suggest that the algorithm with the global two�level RAS preconditioner is
well scalable to the number of subregions �processors� while the other two are not� In
both pictures we observe the decrease in the total number of linear iterations to the end
of computations� This is due to the fact that only � or � linear iterations were carried out
at each nonlinear iteration in both cases� with 	 and �
 subregions �see the right picture
in Figure 	�� with linear systems in the case of �
 subregions solved just one iteration
faster than the linear systems in the case of 	 subregions�



�� CONCLUSIONS

When both the �ne and the coarse mesh is constructed from the domain geometry� it is
fairly easy to incorporate a coarse mesh component into a one�level RAS preconditioner�
The applications of the two�level RAS preconditioners give a signi�cant reduction in total
numbers of linear iterations� For our test cases� the coarse mesh component seems not
needed after some initial number of nonliner iterations� The algorithm with the global
two�level RAS preconditioner is scalable to the number of subregions �processors�� Sizes
of �ne and coarse meshes should be well balanced� that is� if a coarse mesh is not coarse
enough� the application of a coarse mesh component could result in the CPU time increase�
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