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Abstract

In this paper, we consider the solution of linear systems of algebraic equations
that arise from parabolic finite element problems. We introduce three additive
Schwarz type domain decomposition methods for general, not necessarily selfad-
joint, linear, second order, parabolic partial differential equations and also study
the convergence rates of these algorithms. The resulting preconditioned linear sys-
tem of equations is solved by the generalized minimal residual method. Numerical
results are also reported.
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1 Introduction

Domain decomposition techniques are powerful iterative methods for solving linear
systems of equations that arise from discretizing partial differential equations. A sys-
tematic theory has been developed for elliptic finite element problems in the past few
years, see [2, 3,4, 5,6,7,8,9,12, 13, 21] etc. In this paper, we are interested in solving
the finite element parabolic convection-diffusion problems, obtained by using implicit
schemes, such as the backward Euler scheme and the Crank-Nicolson scheme, in the
time variable, and Galerkin approximation in the space variables. At a fixed time level,
the resulting equation is equivalent to an elliptic problem which depends on a time step
parameter. This suggests that we might apply the methods, originally proposed for
elliptic equations, to the parabolic cases. The central mathematical question is then
to estimate how the convergence rate depends on the space mesh and the time step
parameters, especially in the case when the latter parameter is relatively large. Other
domain decomposition methods for parabolic problems can be found in [11, 17, 20] and
references therein.
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The outline of this paper is as follows. In the remainder of this section, we present
the continuous and the discrete parabolic convection-diffusion equation, and also dis-
cuss some of their basic properties. In section 2, we outline an abstract additive Schwarz
theory; cf. [8], without providing any detailed analysis. In section 3, we introduce three
additive Schwarz type algorithms, which are instances of the abstract theory. The first
one is an straightforward generalization of the additive Schwarz method for elliptic
equation [9, 13], the second one is obtained by eliminating the coarse mesh space and
using only local function spaces to take the advantage of the existance of a time step
parameter. This algorithm is therefore more suitable for parallel computers than the
first one. The third one is an non-overlapping domain decomposition method, but nev-
ertheless fits into our general theory of additive Schwarz methods. Finally, in section
4, we report on some of our numerical experiments.

Throughout this paper, c and C', with or without subscripts, denote generic, strictly
positive constants. Their values may be different at different occurrences, but are
independent of the mesh parameters H, h and 7, which will be introduced later.

1.1 A parabolic convection-diffusion problem

We consider the following parabolic convection-diffusion problem: Find wu(x,t), such

that
ou/ot + Lu = f in Qx]0,7],

u(z,t) = 0 on 00 x 0,7, (1)

u(z,0) = wo(zr) in Q

where Q € R?, d = 2 or 3, is a polygonal domain with boundary 9. L is a strongly
elliptic operator, which has the following form

. d
Lu=— Z aii(aij(m)g;)—i—;b( )gxz + el

1,j=1

All coefficients are sufficiently smooth and a;;(z) = aj;(x) for all 4, j and x.
A weak formulation of equation (1) is: Find u(z,t) € H}(Q), u(z,0) = ug(z) in Q,

such that
ou

(2 )
The bilinear form B(-,-) is defined as

d ou Ov
:ijz:l/ ”8 o ~—dx —I—Z/b ~—vdx —i—/cuvdx

and the linear functional
) = / fudax.
Q

+ B(u,v) = (f,v), Yv e H(Q), Vt €[0,T].



We assume that the bilinear form is
(1) bounded, i.e. | B(u,v) |< CH“HH&(Q)H”HH&(Q)’ Vu,v € H (), and
(2) elliptic, i.e. | B(u,u) [> cHqul(Q), Vu € H} ().

The existence and uniqueness0 of the solution of the weak parabolic convection-
diffusion equation present no problems, see [19]. We use two types of time discretization,
namely, a backward Euler scheme and a Crank-Nicolson scheme. Let At, be the nt”"
time step, M the number of steps and Zanl At, = T. For the first scheme, the time
discrete problem is

n_ ,n—l1
(“——v) + B,v) = (fv), Vo€ H)(Q),
Aty,
with u%(z,t) = ug(z) and n = 1,---, M. For the second scheme, we have
u — un—l u™ + un—l 1
(Tyv) + B(#?”) = (f?v)v \V//UEHO(Q)v

with u%(z,t) = ug(z) and n = 1,---, M. Both schemes lead to the following problem:
For a given function g,_; € H~1(), find w € H}(Q), such that

D (w,v) = (w,v) + 7B(w,v) = (gn-1,v), VUEH&(Q), (2)

where 7 is the time step parameter. For the backward Euler scheme

w = " — unfl’

T = At,,
(gn-1,0) = 7((f,v) — Bu",v)),

and for the Crank-Nicolson scheme,

w = u" —u L

T = At,/2,
(gn-1,0) = T(2(f,v) — B 1))

The stability of both schemes is well understood, see [19]. In this paper, we focus on
the study of fast iterative algorithms for solving the linear systems at each time step. In
general, D, (-, ) is not symmetric. For technical reasons, it is convenient to separate the
symmetric and the skewsymmetric parts of the bilinear form. We therefore introduce
the bilinear forms A, (u,v) = 1/2(D;(u,v) + D;(v,u)), which is symmetric, and
N:(u,v) = 1/2(D;(u,v) — Dr(v,u)), which is skewsymmetric. It is easy to prove
that N-(-,-) is bounded in the following sense: There exists a constant C, such that

n

| Nz(u,v) |< O7llull gy @)llvllr2), Yu,v € Hj ().

Define the 7-norm by || - ||3(Q) = |- ||%2(Q) + 7| - Hif&(ﬂ)' The following lemma

gives the boundness and positive definiteness of D, (-, ).



Lemma 1 There exist constants C and ¢ > 0, which are independent of T, such that
(1) | Dr(u,v) |< Cllullr@)llvll- ), Yu,v € Hi(Q)
(2) Dy(u,u) = cllull? . Yu € HY(Q)
(3) ’ AT(U,U) ‘S CHUHT(Q)HUHT(Q)? YVu,v € H(%(Q)

The proof follows immediately from the boundedness and ellipticity of B(-,-).

If we denote ||ul|4. = v/A;(u,u), then we know from this lemma that the A,-norm
is equivalent to the 7-norm. We shall use the A,;-norm in our discussion. It can be
shown, cf Grisvard [18] and Necas [22], that the solution of B(u,v) is H'*7(Q)-regular
in the following sense. For any g € L%(Q), there exists a solution u € H'*7(Q)NH(Q)
of

B(v,u) = (g,v), Yo € H}(Q)
with
| u v )< Cllgll 2

where v € [1/2,1]. Based on this regularity result, we have

Lemma 2 For any g € L?(2), the equation
D, (v,u) = (g,v), Yv € Hy(Q)
has a solution uw € H™(Q) N Hg(Q) that satisfies | u | i~y < C/7lgllr20)-
Proof: Consider the equality
(u,u) + 7B(u,u) = (g,u).

Since B(u,u) > 0, we have [lulz2@q) < [|gllz2(q), which implies that [|u — g|l72(q) <
2|9l z2(q)- On the other hand, we have

B(v,u) = ((g —u)/7,v), Y& H)(Q).

By using the regularity result of B(-,-), we complete the proof. O

1.2 A finite element approximation

We solve equation (2) by a conformal Galerkin finite element method. For simplicity,
we use piecewise linear triangular elements in R?and the corresponding tetrahedral
elements in R?. In this subsection, we introduce a two level triangulation of ©, the
corresponding finite element spaces and the Galerkin equation.

For a given polygonal region Q € R?, let {Q;} be a shape regular finite element
triangulation of €2 and H the maximal diameter of these 2;’s. We sometimes refer §2;
as a substructure and {€2;} as the coarse mesh or H-level triangulation of (.

We further divide each substructure €2; into smaller triangles, denoted as Tf , ] =
1,---. We assume that {Tf } form a shape regular finite element triangulation of {2 and
h is the maximal diameter of Tz-j . We call {Tf } the fine mesh or h-level triangulation of

Q.



We next define the piecewise linear finite element function spaces over both H-level
and h-level triangulations of ).

VH = {v" | continuous on Q, v |g, linear on Q;, Vi, v" = 0 on 9Q}

and
h _ g,k : h|  1; J - h
V* = {v"| continuous on 2, v" | ; linear on 77, Vi, v" = 0 on 9Q}

It is obvious that VZ ¢ V*. We also use the notations
A" = {z |€ interior nodes of h — level subdivision}

and
A" = {2 |€ interior nodes of H — level subdivision}.

To obtain a fully discrete problem, we discretize equation (2) in space by using a
Galerkin finite element method and the subspace V* C H{ (). The Galerkin approxi-
mation of equation (2) reads as follows: Find u® € V", such that

D (u" ") = (g,0"), WP e VP (3)

Here g is different for different time discretizations. The existence and uniqueness of
u” has been extensively studied in the literature, see [1, 19]. By using the nodal basis
functions, equation (3) can be transformed into a linear system of equations, which is
usually large and sparse, but not well conditioned. It is well known that the efficiency
of any iterative methods to be used to solve this linear system of equations depends
strongly on the conditioning of the stiffness matrix. The main focus of this paper is to
provide some effective preconditioning techniques for solving this equation.

2 An abstract theory for the additive Schwarz method

In this section, we present an abstract theory developed in [8] for the additive Schwarz
method. Interested reader should see [8] for detailed proof. Let V' be a Hilbert space of
real functions defined on Q ¢ R?with an inner product (u,v)y and the corresponding
norm |uly. Let w be a subdomain of 2. We define (u,v)y () to be the restriction of
the inner product to w.

Let B(-,-) be a bilinear form on V' x V and F(-) a linear functional on V' such that

e B(:,-) is continuous; in particular | B(u,v) |< Cllullyw)llvllvw), Yu,v €V,
where w = {supp u} N {supp v}.

e B(-,-) is V-elliptic, i.e. B(u,u) > cl|lul?,, Vue V.

e F(-) is continuous, i.e. | F(u) |< C|lully, Yu e V.

We define A(u,v) = 1/2(B(u,v)+B(v,u)), a symmetric bilinear form, and N (u, v) =
1/2(B(u,v) — B(v,u)), which is skewsymmetric.

It follows from the assumptions on B(u,v) that A(u,v) is elliptic and continuous in
the same sense as B. This implies that the norm corresponding to A(-,-) is equivalent
to the V-norm. In the following, we can therefore use (-,-) 4, instead of (-, )y .



We are interested in solving the problem that reads as follows: Find u € V', such
that
B(u,v) = F(v), YveV. (4)

Let V;, i =0,---, N, be subspaces of V, such that V. = V + --- + Vi, i.e., for
any v € V, there exist v; € V;, ¢ =0,---, N, such that v = vg + - - - + vny. Moreover,
we assume that there exists a constant C3 such that

N
> il < Gillvlly, YveV, (5)
i=0

where w; is the support of V;, i.e. the union of the supports of all functions in V;.
This is usually called the bounded decomposition lemma. Note that the constant
C2 may depend on the number of subregions N and also on some other parameters of
V', which may be introduced in particular applications.
We also assume that there exists a constant C,,, such that

N
Yol < Collvllfy, weV. (6)
1=0

In fact this constant C,, is the maximal number of w;s to which any point = € ) can
belong.
For each subspace V;, 0 < i < N, we define a projection PZB = P‘L}i V. —V,
with respect to the bilinear form B(-,-), as the solution of
B(PPu,v) = B(u,v), Yv €V

7

Let us denote P2 = PP +...+ PE:V — V and b = PPu+ -+ P5u, where
each component PiBu can be obtained, without a priori knowledge the solution u, by
solving

B(PPu,v) = F(v), YveV,.

The additive Schwarz algorithm can be stated as: Find the solution u of equation (4)
by solving the following equation.

PBu = b. (7)

We often refer to this equation as the derived equation with respect to the bilinear
form B(-,-) and the decomposition {V;}, see [8, 13, 14]. The following theorem is easy
to establish.

Theorem 1 If the operator PP is invertible, then the equations (4) and (7) have the
same solution.

In practice, the operator PB can be constructed in terms of the original stiffness
matrix and the inverse of some small matrices. The inverse of the small matrices
are imbedded, by zero, in a larger matrix. The explicit matrix for PB is normally
not known. However, the matrix-vector-product PPu, which is all that is needed,



can be computed by solving a linear system of equations for each subregion. In the
following theorem, we summerize the bounds of the operator P?, which determine the
convergence rate of the iterative method used to solve (7). The result was established
in [8].

Theorem 2 (1) There exists a constant C, such that
|PPulla < CCulJulla, YueV.
(2) There exists a constant ¢ > 0, independent of Cy, such that
HPBuHA > cC()_Q||u]]A, Yu e V.
(8) If there exists 0 < & < 1, such that | N'(u, PBu) |< 6B(u, PBu), Yu €V, then
(u, PPu) 4 > c(1 — 8)Cy % (u,u) 4, Yu €V,
where ¢ > 0 is independent of Cy and 9.

It is interesting to note that under similar assumptions for the bilinear forms and
the skewsymmetric part, an abstract theory for multiplicative Schwarz methods can
also be established, see [10].

3 Methods for parabolic convection-diffusion problems

In this section, we apply the abstract additive Schwarz method to parabolic convection-
diffusion problems. Three algorithms of this type are discussed, namely, an additive
Schwarz method (AgM) for problems in R2and R?, a modified AgM for problems in
R? and an iterative substructuring method (IgM) for problems in R?. The convergence
rates are given in Theorem 3 - 5.

3.1 An additive Schwarz method for problems in R?and R?

The additive Schwarz method was introduced by Dryja and Widlund [13] for elliptic
problems. In this section, we generalize the method to parabolic convection-diffusion
problems.

We first introduce our basic decomposition of 2 and the corresponding projections.
We first extend each subregion §2;, introduced in section 1.2, to obtain Q;, such that
Q, C Q; and such that there exists a constant « > 0 such that

distance(9Q;, 0, N Q) > oH, Vi.

We suppose that 8(2; does not cut through any h-level elements. We make the same
constructions for the subregions that meet the boundary except that we cut off the
parts that are outside 2. To simplify the notations, we also denote Q;) = Q.

It is easy to see that the finite element space V" can be decomposed into the sum
of the coarse mesh function space V¥ and a number of spaces which are supported



only in subregions Q;, ie. VA = VJ + V] + ...+ VL where V! = VH and
V= V"0 Hy ().

Let Pl-D ™ be the projection from V" to V;* with respect to the bilinear form D (-, -),
and PP = P({j T+ PJZ\?T. We obtain the derived equation with respect to the
bilinear form D, (-,-) and the decomposition {V/"},

PPyt =g, . (8)

Here 9;1—1 can be computed without a priori knowledge of the solution u” as described in
the abstract theory. We will prove that this derived system is uniformly well conditioned
under certain conditions, i.e., that the condition number of PP~ does not change if (1)
we refine the fine mesh size h to increase the accuracy; (2) we refine the coarse mesh
size H, increasing the number of subproblems for parallel computing purpose; (3) we
increase the time step 7.

Theorem 3 (1) There exists a constant Cy,, such that
IPP |4, < Cpllu”||a,, Vu" €V
(2) There exists a constant ¢ > 0, such that
1PP |4, 2 cllu”|a,, V" € V™.

(3) If cur = max{H,H"Y\/H?/T + 1} is small enough, i.e. 0 < ¢y, < ¢, then

there exists a constant c,(¢o) > 0, such that
(u", PPmu) 4, > cp(G) (u",uM) ar, V" € V.

Remarks:

(a) The problem is selfadjoint if the first order terms of L vanish and then it can be
seen easily that the operator PP7 is symmetric with respect to A,-norm. The standard
conjugate gradient method in A;-norm can therefore be used. Theorem 3 shows that
the derived linear system is optimal for the conjugate gradient method in the sense
that the rate of convergence does not depend on the mesh parameters H and h, nor on
the time step size 7.

(b) Since, in general, (8) is a nonsymmetric but positive definite system, we can
use the GMRES [16, 23] method to solve it. We use the (-, )4, inner product.

(c¢) In general, ¢y depends on the coefficients of the first order terms in L, the
ellipticity constant of D, the bounds on D, and also on the geometry of the domain
Q, which is reflected in v. We do not have an explicit relation between ¢y and the
skewsymmetric part of L. From the proof of the lower bound, we know that as the
skewsymmetric coefficients in L increase, ¢y decreases.

In order to prove the theorem, we need only to show that all the assumptions of
Theorem 2 hold and, in addition, that all the constants that appear in that abstract
result are independent of the mesh parameters H, h and 7. We begin by establishing
some lemmas, which contain most of the basic results.

The following lemma is well known.



Lemma 3 There exist two constants ¢ > 0 and C, which depend only on the shape
reqularity of the finite element subdivision of €, such that

ch® Y (uM(@:)? < 72 < CRT Y (M (@))%, Vu € V.

z;EAP T, €AN
The statement is also true if we replace V? by VH and h by H.

Lemma 4 For all uh € V", there exist uf € Vih, 1=0,1,---, N, such that

and there exists a constant C, which is independent of h and H, such that
h h
ZHU I, @) < Cllu I%, -

Proof: A proof can be found in [14] for the H} norm. Thus, our only task is
to show that the same estimate holds for the L? norm. The construction of uf, i =
0,1,---, N is the same as that of [14]. Let Qg be the L? projection into the coarse
mesh space defined as

(Quul, vy = (o), Wl e VI,

We take ufl = Qpu”, w" = u" — Qpu”, and then set u? = I,(60;(w")), where {6;} is a
partition of unity and 6; belongs to CSO(Q;) It can be arranged so that V#; is bounded
by const/H. I is a interpolation operator which uses the function values at the h-level
nodes only. Because Qpu” is the L? projection, we have

1Qau"1Z2() < 4720 (9)

Next, we prove the L2(2) boundness for the other u/. By using Lemma 3 for each
Q.

77

N
Z!llh@w Wiy SCP2C D0 ((0w")(5)%)-

=1 g eAhnQ;

Since | 6; |[<1,i=1,---,N, and {2} is a finite covering of Q, the right hand side can
be bounded by h*Y, can (w"(z;))?. Using Lemma 3 again, we obtain

Z 117y < Cllw"720) < Cllu[720y (10)

We conclude the proof by combining the estimates (9) and (10) and the estimate in
the H norm.O



Lemma 5 For any w € H}(Q) N H*(Q), there exists a w € VH | such that
lw = w0y < CH'WH? + 7 | w |1+ -

Proof: For any given w, let w!’ be the solution of

a(w v) = a(w,v), YoeVH,
where a(u,v) = [ VuVoudQ). By classical finite element theory, we know that

lw = w || g1 @) < CHY | w |14+,
lw — w20y < CH™Y | w | giv(q) -
Hence, we have [|w — w]|,q) < CH'WH? +71 | w |1ty - O
Lemma 6 There exists a constant C, which is independent of H and T, such that
[ = PPl 2 () < CHY(VH? + 7/7)|[u (), V" € V"
Proof: We first establish a bound for the 7-norm. It is easy to verify that
D, (u" — PP u" u" — PP ") = D, (u* — PP~ u",u™).

Using Lemma 1, we get the estimate

[u" = Py u"(| ) < Cllu"|l+q)-

The H}(Q) (or 7-norm) estimate and Nitsche’s trick give the L?({2) estimate. We
have

(uh — PP ul v
Jut — PPrub oy = sup ML)
loll 270 [1Pllz2(@)

For any fixed v € L?(Q2), we form an auxiliary problem: Find w € H7(Q) N HE (),
such that
Dy(¢,w) = (9,v), ¥¢ € Hy(Q).
By Lemma 2, we have | w |1ty < C/7[[v|[12(q). Let ¢ = uh — PPTul € HY ().
Then
(u" — PP uM v) = D (u* — PP u" w).

Let w! be the VH approximation of w obtained in Lemma 5. Since w? € VH we

have
D, (u" — PP uM w = | D (u" — PP ul w — w!
0 0

< Clluh = PPl o llw = wH | o)

< CHWH? +7|u|l x| w g+ o) -
Combining the above results, we obtain
Ju" — PP " 120y < CHY(VH? + 7/7)|[u"||().0

In the next lemma, we estimate the contribution from the skewsymmetric part
N:(+,-). We show that it is a lower order term compared with the symmetric part, and
that it can be controlled if the coarse mesh size is fine enough.

10



Lemma 7 Ifmax{H, H"\/H?/7 + 1} is small enough, there exists a constant 0 < § <
1, such that
| N (u", PP7u) |< 6D, (u, PP7ul), vul e V.

Proof: Since NT(PiDTuh, PZ-DTuh) =0, it is easy to verify that

| N, (u, PPl |<Z|N (PPul uh — PPyl |
=0

Therefore, we need only to estimate the right hand side of the above inequality. Since
the coarse mesh projection P({) T is special, we consider it separately using Lemma 6.
(1) i = 0; By Lemma 6

| No(Pymulul — PP7ul) | < Ol Py ul | gy lu = Py'mu 12 @
< CHWH? 7By u" | gage) - 14"l

It is easy to see that \/FH'U”H&(Q) < |[vl7(q)- Hence,

| No(Py ', u" — Py7u") |< CHY\H? 7 4 1| Py "o [0
From the definition of POD 7, we have
D, (PP u", PP uM) = D (u", BP7u").

We thus have, by Lemma 1, HPODTU/hHT(Q) < Cllut| g
Therefore, the first term can be bounded as follows

| Ne(PPrut ul — PPeul) 1< CHWH T+ 1|2 g
(2) i #0:

| N- (PDTUh u” PDT ) | < CTHPiDTuh||L2(Q;)(||“h||H5(Q;) + HPz‘DTUhHHé(Q;))
< C\ﬁHPiDTuhHLz(Q;)(Huh”T(Q;) + |’P'£DTUth—(Q;))'

The first factor can be estimated by using Friedrich’s inequality. Since PZ-D “uh € H, 3(9;)
and the diameter of Q; is of order H, we have

D, D,
1P u"| 2y < CH|IF; h||H1

@)
By the definition of PZ-D T,
D, (PP ul, PP~uh) = D, (u", PPuM).

We obtain, by Lemma 1, | PP u [ <C||uh||

11



Combining these inequalities, we obtain
D: h . h D, h hyj2
| NA(PPrult ul = PPty | < CHa 2

Putting the results in (1) and (2) together, we have

N
| No(PP7u ) |< Cmax{H, H'\JH? /7 + 1} Y |lu" |2 o, (11)
i=0 ‘

which also holds in the A;-norm. It is easy to see that

N
DIPI (= Dr(ut, PPrul).
i=0 !

By using the decomposition lemma, we have

"%, = So De(PPul,ul)

’L

< OSNoIPP ]y oy s ey

< cyzz ol @ o 1B M o

Therefore, we obtain

2, <C§%HPDT 3 @)

Hence
3. < CDy(u", PP~uM). (12)

We complete the proof by combining estimates (11) and (12). O
The proof of Theorem 3 follows from Theorem 2 and the lemmas in this section.
3.2 The modified additive Schwarz method for problems in R?

In this subsection, we propose a modified version of AgMobtained by dropping the
coarse mesh space Voh, which provided the global transportation of information. We
show that in some situations, with precise conditions given in the following theorem,
the global space is not necessary. This is in contrast to the elliptic case, for fast
convergence, this alternative algorithm is more suitable for parallel computers.

Let us define PP = PP+ ... 4 PJZ\?T, where the PiDT are the same as in the
previous subsection. We have the following theorem.

Theorem 4 (1) There exists a constant Cp, such that
PP, < Gl L, Wt € V"
(2) There exists a constant ¢ > 0, such that

HPDTuhHAT >c(1 +T/H2)71HuhHAT, vul e v

12



(3) If cr = H(1 + 7/H?) is small enough, i.e. 0 < cy, < ¢, then there exists a
constant c5(¢o) > 0, such that

(u, PPruM) 4. > c5(G0) (W, u) ar, V" € VT

Remarks:

(a) For symmetric problems, parts (1) and (2) of this theorem show that if the
factor 7/H? is small, the elimination of the coarse mesh space does not lead to slow
convergence. This suggests that we can use the modified AgM when we have a relatively
small time step or large substructures.

For nonsymmetric problems, we need that both H and 7/H? to be small in order
to obtain the fast convergence. We cannot choose 7 and H independently.

(b) This theorem has been established only in R?. In higher dimension, the fine
mesh size h enters our bounds.

Theorem 4 can be proved by using the results of Theorem 2, a new decomposition
lemma given below and a new estimate of the skewsymmetric part. We begin with the
decomposition lemma.

Lemma 8 For all u" € V", there exist u? € Vih, 1=1,---, N, such that

and, there exists a constant C, which is independent of h, H and 7, such that

Z W2 ) < COU+ 7/ H) 5,

Proof: We first construct the decomposition and then we do the estimates in both the
H}(Q) and the L*(Q) norm. Let {6;,i = 1,---, N} be the partition of unity, defined
in the proof of Lemma 4, of Q and denote u? = I,(6;u"). For each subregion €, we
have, in the sense of equivalent norms, that

[l s oy = SO () = (O3 ()

where the sum is taken over all adjacent pairs of nodal points z; and x,, in Q Let
K C Q be a single element and z;, z,, € K. Let

Oitm = 1/2(0; (1) + Oi(zm)).

We then have
(O:u") (1) — (Ou") () =
(0i(21) = O )u (1) = (Oi(@m) = it )" (@) + it (0" (1) — u (),

which can be bounded from above by

C(h/H max{| uM(@) M+ | u (@) = u"(@m) |)-

13



By squaring this estimate, using the triangle inequality and summing over all K C Q;-,
we obtain

() S CHT2 g maxgd{| ul(@) [} 0%+ [u" [7, o)

< C(H72’|Uh”i2(ﬂé)+ | ul ilé(ﬂé))'

Using Friedrich’s inequality, it is easy to establish that

N N
h 2 2 h |2

Therefore,

N
3 Ity < OO ot | " Fiyay) < CH 0"y o
1=

By combining the estimate given for the L? norm in the proof of Lemma 4 and the
definition of the 7-norm, we complete the proof. O
In the next lemma, we estimate the contribution from the skewsymmetric part

No ()

Lemma 9 There exists a constant C, which is independent of h, H and T, such that
| N, (u", PPy |< CH(1 4 7/H?)D-(u", PP7ul), wu € VI

The proof is very similar, replacing the decomposition Lemma 4 by Lemma 8, to
that of Lemma 7 part (2).

3.3 An iterative substructuring method for problems in R?

We present a domain decomposition method which appears to be of non-overlapping
type, but nevertheless fits into the additive Schwarz framework. In the first two algo-
rithms, we extended each H-level substructure €2; to a larger region Q;, which defined
our subspace and the corresponding projection. {Q;} is thus the basic decomposition
of the domain. Now, instead of extending each region, we combine each pair of ad-
jacent substructures. Denote by I';; the common edge of two adjacent substructures
; and ;, and let Q;; = Q; UT';; U Q;. We are now going to use {{2;;} as the basic
decomposition of €2, on which we will define our projections. This will eventually lead
to an iterative substructuring algorithm. Let €gp = 2 and denote

AP = {(,9) | Ti, Tj € AH7$i7xj adjacent, or i = j = 0}.

For each (0,0) # (i,7) € AF, we define V;’; = H}(Q4i)NVH and also Vi = V. Denote

by Pl-jf the projection associated with V;’; using the bilinear form D, (-,-) It is easy to
verify that
h_ h
V=" Vvl
(i.5)EAF

14



Let us also denote
pbr = Z PZ-?T: vh — yh
(4.5)EAF

and the derived equation can thus be defined as

PPru = bPr.

In the next theorem, we present the bounds for the operator PPr.

notation
v(h,H,7) = (1+ H?/7 +log H/h)(1 + log H/h).

Theorem 5 (1) There exists a constant Cy, such that
1PP |4, < Cpllu”||a,, Vu" €V
(2) There exists a constant ¢ > 0, such that
|1 PP || 4. > c/v(h, H,7)|u||4., Vu eV
(3) There exists a constant ¢, > 0, such that for H\/v small enough,

(u", PPy a. > ¢, /v(h, H,7)(u", u") ar, VUl € V.

We use the

As before, we need only to prove that the assumptions of Theorem 2 hold and study
how the constants depend on the mesh parameters h, H and 7. The proofs look more
complicated because of the lack of overlap between the substructures, but the idea
behind the proof is similar. We need to establish a bounded decomposition lemma for

V" functions. The bounds depend mildly on the parameters h and H.

We first give a lemma, which plays an important role in the traditional theory for
iterative substructuring algorithms. Variations of this result, which dates back at least
to 1966, are given in Bramble [3], Bramble, Pasciak and Schatz [4] and Yserentant [25].

Lemma 10 Let Q; be a substructure, v € V' and let 17? = m Jo, uhdQ. Then

st = W13y < CU+log H/B) [ 0" By

Lemma 11 For any u € V", there exist UZ eV (i,5) € AP, such that

YR
ul = > (ij)eAE uZ and the decomposition is bounded as follows

(a) Sagpenr sy < COUHlog B/ 2 o

(0) Siagyens 1513200,y < CUl gy + H(1+log H/R) a2 )

Proof: The construction of the decomposition and the proof of (a) were given by
Dryja and Widlund in [14]. We shall focus on (b) only. Let Iy be the interpolation
operator using the function values at the H-level nodes only. For a given u € V", we
estimate the L?(Q) norm of uf}, = Izu”. Let us consider one substructure at a time.

15



Assume that €2; has vertices 17, T, T3 and denote «o; = m sz u"dQ). Then, we
have
Heu[7200, < CUHmU" — il 32, + leillZ2,):

Since the function Izu® — a; is linear in the region €);, a straightforward calculation
shows that the L? norm in §; can be bounded by

C’H2((IHuh — ai)z I, +(IHuh — ai)z 1, —l—(IHuh — ai)2 I7y)-

This expression is, using Lemma 10, bounded by CH?(1 + log H/h) | u” |%11(Qi) . We
bound the [|a;|[z2(q,) term, by using Schwarz’s inequality

1
levill720, = /Q_(mm/g“hdﬁ)zdﬁ < w220

7

Therefore, we obtain
1u" 720,y < CUlu" 122, + H*(1+log H/R) | u [ (0,))-

By summing these inequalities, using Friedrich’s inequality and replacing the H' semi-
norm by the H' norm, we obtain

ITrru 72y < CUlu" 1220y + H (1 + log H/B)|[u" |31 q)-

Now consider the case (i,j) # (0,0). Recalling the construction of [14], u Z] =

In(0;;(u — Iyuh)), where {6;;} is a partition of unity of Q \ {H-level nodes}. More
precise, as described in [14], 6;; must equal to zero at all H—level nodes and equal
to one at all nodal points in the interior of I';;. Let us denote Azhj = QN A", By
Lemma 3, we have

il 0,y < Ch* Y ((In(0(u" = Irul)) ().

xkEAh

Since | 6;; |< 1, and zy, is a nodal point, the interpolation operator I}, can be removed.
Therefore the right hand side can be bounded by

Ch? Z (ul = Tgu™) (zp))%

kaA?j

Taking into account that the value at a nodal point contributes at most three times,
we obtain

S ullReqy, < Ch Y (0 — Iul) ().

(3,5)€AE\(0,0) TR EAP

We can bound the right hand side, using Lemma 3, by C|lu" — IHuhH%Q(Q), which can
then be bounded by C’(HuhH%Q(Q) + H*(1+ logH/h)HuhH%ﬂ(Q)). O
0
An immediate consequence of this lemma is the following;:

16



Lemma 12 The decomposition in Lemma 11 is bounded in the Ar-norm, i.ce. there
exists a constant C, independent of H, h and 7, such that

( )Z ) luil12q,,) < Cv(h, H,7)l[u" |12 ()-
i.j)eA

Lemma 13 There exists a constant C, independent of h, H and 7, such that
| N, (u", PP~u™) |< Cmax{H, H"\/H2 /7 + 1}v(h, H,7) D, (u", PP "), vu € V"

Proof: It is easy to see that the coarse mesh projection ;™ is identical to the coarse
mesh projection POD 7 defined previously. It follows from the proof of Lemma 7 part (1)
and (2), that we have

| N (PP ) |< Cma{HHH e 41} Y o2, (19)

(4,7)EAE

By using the same argument as when equation (12) was proved and the decomposition
lemma 12, we have
[u"|, < Cv(h, H,7)D.(u", PP7u").0

The proof of Theorem 5 is completed by using Theorem 2, the lemmas in this
section and the assumption that max{H, H"\/H?/7 + 1}v(h, H, ) is small enough.

4 Numerical results

In this section, we present some numerical results with model problems. To specify our
model problems, we need only to give the elliptic parts of the parabolic operators. We
consider the following linear second order elliptic operator defined on © = [0, 1]x [0, 1] C
R?,

0 , 0Ou 0 , Ou ou ou
02 Ca,) @(n@) tao- +B<7y +yu=f,
with the homogenous Dirichlet boundary condition. The coefficients are specified as
follows.

Example 0. £ =1, n=1and a« = 8 = v = 0. This is a selfadjoint problem,
used to test the iterative substructuring algorithm. f is chosen so that the solution is
u = ze"sin(mx)sin(my).

Example 1. £ =1+22+y?, n=e", a=5(x+y), f=1/(1+2+y)and v =0.
u is the same as in Example 0.

Example 2. The coefficients are chosen as ¢ =0, n=0,a=1,=1and v=1.
o will be specified later. u is the same as in Example 0.

The H-level subdivision of 2 is as shown in Figure 1. We further divide each
subregion in a similar fashion into h-level triangles, which are not shown in the figure.

Lu =
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(H,0) (1,0) X

Figure 1. H—level subdivision

We use ovlp to denote the size of the overlap, i.e. ovlp = distance(aQ;, 002; N Q).
In our Fortran program, all the subproblems are solved exactly by the band solver from
LINPACK. The stopping criterion for the GMRES method is ||7;]| 4. /||rolla, < 1074,
where 7; is the residual after the i*" step. The programs were run in single precision
on a CONVEX C-1 computer at New York University.

Y

y

(H,0) (1,0)

Figure 2. extended subregions

We assume that the time step has the form
T = hS,

where € > 0. The main issue here is to determine how the rate of convergence (
number of iterations ) depends on e. In the case of € = 2.0, the stiffness matrix is well
conditioned with a condition number independent of the mesh parameters h and 7. In
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general, the smaller € is ( the larger the time step is ) the more ill-conditioned is the
problem. If € is very small, the accuracy of the solution is lost. We include some test
results by using unusually large time step 7 to show the robustness of the algorithm.
In our experiments, we have used € € [0.25,1.5].

4.1 Tests of the additive Schwarz method

€ 1.5 11.0]0.5|0.25
h=1/45H=1/3,0ovlp=5h | 10 | 12 | 12 | 13
Example 0 | h=1/60,H=1/3,ovlp=6h | 10 |12 | 13 | 13
h=1/60,H=1/10,ovlp=2h | 10 | 11 | 12 | 12
h=1/45,H=1/30ovlp=h | 15 |18 | 18 | 19
h=1/15,H=1/3,0vlp=2h |12 | 13 | 14 | 14
h=1/30,H=1/3,0vlp=4h |12 | 14 | 14 | 14
h=1/45,H=1/3,0vlp=6h | 12 | 14 | 15 | 15
Example 1 | h=1/60,H=1/3,ovlp=8h | 11 |14 |15 | 15
h=1/15,H=1/5,ovlp=1h | 11 |12 | 12 | 12
h=1/30,H=1/5,0vlp=2h | 12 | 14 | 14 | 14
h=1/45,H=1/5,0vlp=3h | 12 | 13 | 14 | 15
h=1/60,H=1/5,0vlp=4h | 11 | 13 | 15 | 15
h=1/45,H=1/3,0vlp=5h | 11 | 17 | 28 | 35
Example 2 | h=1/45,H=1/9,0vlp=2h |9 12 | 14 | 16

o0 =+/2/30 | h=1/45H=1/15,0vlp=1h |7 [8 |10 | 10
h=1/60,H=1/10,ovlp=2h | 9 |11 [ 14 | 15
h=1/60,H=1/15,0ovlp=1h |7 |9 [10 |11
h=1/60,H=1/20,0ovlp=1h [ 6 |8 [ 10 | 10

Example 2 | h=1/60,H=1/15,0ovlp=1h | 8 |11 |18 |20

o =+/2/100 | h=1/60,H=1/20,ovlp=1h |7 |9 |13 | 16

This table shows that the number of iterations is almost independent on the mesh
parameters as well as the time step size, especially for symmetric problems. For non-
symmetric, see Theorem 3. For nonsymmetric problems, a relatively small coarse mesh
size is needed for reducing the total number of iterations, which confirms Theorem 3
part(3). The larger the Reynold’s number, which is roughly the ratio of the first or-
der term coefficients and the second order term coefficients, is, the smaller the coarse
mesh size is needed. As in the stationary case, using less overlap can increase the total
number of iterations. This can be seen from the last row of Example 0.
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4.2 Tests of the modified additive Schwarz method

€ 1.5 1.0 0.5 0.25
h=1/45 H=1/3,0vlp=5h | 10 | 12 | 14 | 15
Example 0 | h=1/60,H=1/3,ovlp=6h | 9 12 |15 | 16
h=1/60,H=1/10,ovlp=2h | 12 | 24 | 34 | 35
h=1/45H=1/3,0vlp=h | 12 | 21 | 27 | 28
h=1/15,H=1/3,0vlp=2h | 13 | 15 | 15 | 15
h=1/30,H=1/3,0vlp=4h | 13 | 14 | 16 | 16
h=1/45,H=1/3,0vlp=6h | 13 | 15 | 16 | 17
Example 1 | h=1/60,H=1/3,ovlp=8h | 12 | 15 | 17 | 17
h=1/15,H=1/5,0vlp=1h | 14 | 18 | 19 | 20
h=1/30,H=1/5,0vlp=2h | 15 | 20 | 23 | 24
h=1/45 H=1/5,0vlp=3h | 13 | 10 | 24 | 25
h=1/60,H=1/5,ovlp=4h 13 | 18 | 23 | 25
€ 1.5 1.0 0.75 | 0.5
h=1/45,H=1/3,ovlp=>5h 13 | 22 | 31 42
h=1/45,H=1/50vlp=3h |12 | 18 | 23 | 32
Example 2 | h=1/45,H=1/9,ovlp=2h | 10 | 14 | 19 30
o =+/2/30 | h=1/45,H=1/15,ovlp=1h | 7 | 12 | 22 | 36
h=1/60,H=1/10,ovlp=2h | 10 | 13 | 20 | 33
h=1/60,H=1/15,0vlp=1h | 8 | 13 | 24 | 41
h=1/45,H=1/9,0vlp=2h | 10 | 10 | 31 | +50
Example 2 | h=1/45,H=1/15,ovlp=1h | 7 13 |25 48
o =+/2/100 | h=1/60,H=1/15,0vlp=1h | 7 | 13 | 25 | +50
h=1/60,H=1/20,0vlp=1h | 6 | 12 | 24 | +50

This table shows that if the factor 7/H? is small, the results are quite satisfactory
compared with the AgM which also uses a coarse mesh. This is true especially for sym-
metric and mildly nonsymmetric problems; cf. Example 0 and Example 1. However,
if 7/H? is large, i.e. the time step or the number of substructures large, the number
of iterations can be large; cf. the third row of Example 0. For the problems with high
Reynold’s number, the algorithm becomes very sensitive to the parameter €; cf. the

last colum of the second table. See also Theorem 4.

We also note that using less overlap can increases the total number of iterations.

This can be seen by comparing the first and last rows in Example 0.

By comparing with the AgMwhich uses coarse mesh, we see that this simpler algo-

rithm is more sensitive to the mesh parameters and the overlapping factor.
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4.3 Tests of the iterative substructuring method

€ 1.5 1.0{0.5]0.25
Example 0 | h=1/45H=1/3 |14 |14 |14 | 14
h=1/60,H=1/3 |15 |15 | 14 | 14
h=1/60,H=1/10 | 11 | 12 | 12 | 13
h=1/45,H=1/5 |18 | 17 |17 | 17
Example 1 h=1/45H=1/9 |14 |14 | 14 | 14
h=1/60,H=1/5 |18 | 17 |17 | 18
h=1/60,H=1/10 | 13 | 14 | 14 | 14
h=1/45,H=1/5 | 15 | 25 | 35 | 38
h=1/45,H=1/9 |13 | 18 |20 | 22
Example 2 | h=1/45,H=1/15 | 10 | 12 |13 | 14
o=+2/30 [ h=1/60,H=1/5 |15 |22 |36 |41
h=1/60,H=1/10 | 13 | 17 | 20 | 22
h=1/60,H=1/15 | 11 | 14 | 15 | 16
Example 2 h=1/45H=1/15 | 11 | 15 | 20 | 22
o =+/2/100 | h=1/60,H=1/15 | 12 | 18 | 24 | 27
h=1/60,H=1/20 | 10 | 14 | 17 | 18

For the symmetric problems, we see that the number of iterations is insensitive to
the fine mesh size h, but depends on the coarse mesh size H. The number of iterations
is reduced when the coarse mesh size is reduced. This is not true for elliptic problems.

The algorithm is not very sensitive to the time step parameter.

For nonsymmetric problems, the algorithm becomes more sensitive to the time step
parameter and the coarse mesh size is more important for controlling the number of

iterations.
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