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Abstract

Iterative methods for linear systems of algebraic equations arising from
the finite element discretization of nonsymmetric and indefinite elliptic
problems are considered. Methods previously known to work well for pos-
itive definite, symmetric problems are extended to certain nonsymmetric
problems, which can also have some eigenvalues in the left half plane.

We first consider an additive Schwarz method applied to linear, sec-
ond order, symmetric or nonsymmetric, indefinite elliptic boundary value
problems in two and three dimensions. An alternative linear system, which
has the same solution as the original problem, is derived and this system
is then solved by using GMRES, an iterative method of conjugate gradient
type. In each iteration step, a coarse mesh finite element problem and a
number of local problems are solved on small, overlapping subregions into
which the original region is subdivided. We show that the rate of conver-
gence is independent of the number of degrees of freedom and the number
of local problems if the coarse mesh is fine enough. The performance of
the method in two dimensions is illustrated by results of several numerical
experiments.

We also consider two other iterative method for solving the same class
of elliptic problems in two dimensions. Using an observation of Dryja and
Widlund, we show that the rate of convergence of certain iterative sub-
structuring methods deteriorates only quite slowly when the local problems
increase in size. A similar result is established for Yserentant’s hierarchical
basis method.
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1 Introduction

Domain decomposition techniques are powerful iterative methods for solving lin-
ear systems of equations that arise from finite element problems. In each iteration
step, a coarse mesh finite element problem and a number of smaller linear sys-
tems, which correspond to the restriction of the original problem to subregions,
are solved instead of the large original system. These algorithms can be regarded
as divide and conquer methods. The number of subproblems can be large and
these methods are therefore promising for parallel computation. The central
mathematical question is to obtain estimates on the rate of convergence of the
iteration by deriving bounds on the spectrum of the iteration operator. We are
able to establish quite satisfactory bounds if the coarse mesh is fine enough.

We work with two triangulations of the region: 1) partitioning the region
into subregions, also called substructures, which define a coarse, global model; 2)
partitioning the region into elements of a finite element model. As in the positive
definite case considered previously, see Cai [3],[4], Dryja [6] and Dryja and Wid-
lund [7],[8], the coarse problem provides interchange of information among the
different parts of the region; it is known that without such a coarse subproblem
the rate of convergence is considerably slower; cf [24]. This part of the approxi-
mate solver plays an additional role in the indefinite case. We can interpret the
main results of this paper by saying that if the eigenfunctions corresponding to
the eigenvalues in the left half plane are approximated well enough on the coarse
mesh, then the spectrum of the preconditioned linear system of equations lies in
a fixed bounded subset of the right half plane. This is important for the rate of
convergence of the iterative method. The least favorable situation for iterative
methods of conjugate gradient type is the case where the origin of the complex
plane is surrounded by eigenvalues of the iteration operator. Here we are able to
avoid such a situation.

The additive Schwarz algorithms, introduced in [7], cf. also [6],[8],[9],[18],
provide a means of constructing preconditioners for many problems in terms of
a partition of a given finite element space into a sum of subspaces. The use of
such a preconditioner involves solving, exactly or approximately, the restriction
of the original problem to the different subspaces. The residual, which plays a
central role in the iteration, is computed as a sum of terms from the different
subspaces. These terms can be computed in parallel. We note that it has been
shown in Dryja and Widlund [9] that many domain decomposition methods can
be viewed as additive Schwarz methods. For recent work on the case of more
than two levels of triangulation, see Dryja and Widlund [10] and Xu [25].
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In the symmetric, positive definite case, the iterative method most commonly
used to solve the transformed (preconditioned) equations is the conjugate gra-
dient method. For the cases considered here symmetry is always lost. In our
experiments, we have used a generalized conjugate residual method GMRES; see
[22]. Since the spectrum of the operator is confined to the right half plane, Man-
teuffel’s Chebyshev algorithm would also be successful; cf. [17]. Since we can
show that the symmetric part of the operator is uniformly positive definite, with
respect to a suitable inner product, and that the spectrum is uniformly bounded,
we can guarantee a rate of convergence, which is independent of the mesh size
and the number of subregions.

Other methods for indefinite, elliptic problems are discussed in [2],[14],[16],
[27],[28].

The paper is organized as follows. In Section 2, we introduce a class of
indefinite, elliptic boundary value problem, the two triangulations of the domain
and a Galerkin finite element method. We briefly review the GMRES method in
Section 3. In Section 4, we present two variants of the additive Schwarz method
and a detailed analysis of their rates of convergence. Our analysis is based on
previous work on the positive definite case, see [3],[4],[6],[7],[8], and a result due
to Schatz [23]. Schatz’s work, in turn, is based on G̊arding’s inequality and the
Aubin-Nitsche trick; see Ciarlet [5] or Nitsche [21]. In Section 5, we discuss
some numerical results. Finally, in Section 6, we show that, for problems in the
plane, our result can be extended to iterative substructuring and hierarchical
basis algorithms discussed in Dryja and Widlund [8],[9] and Yserentant [26],
respectively.

2 The Elliptic Problems

Let Ω be an open, bounded polygonal region in Rd, d = 2 or 3, with boundary
∂Ω. Consider the homogeneous Dirichlet boundary value problem:

{
Lu = f in Ω,

u = 0 on ∂Ω.
(1)

The elliptic operator L has the form

Lu(x) = −
d∑

i,j=1

∂

∂xi
(aij(x)

∂u(x)

∂xj
) + 2

d∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x).

All the coefficients are, by assumption, sufficiently smooth and the matrix
{aij(x)} is symmetric and uniformly positive definite for ∀x ∈ Ω. The right hand
side f ∈ L2(Ω). We also assume that the equation has a unique solution in H1

0 (Ω).
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Let (·, ·) denote the usual L2 inner product and ‖·‖ or ‖·‖L2 the corresponding
norm. The weak form of equation (1) is: Find u ∈ H1

0 (Ω) such that

B(u, v) = (f, v), ∀v ∈ H1
0 (Ω). (2)

The bilinear form B(u, v) is defined by

B(u, v) =
d∑

i,j=1

∫
Ω
aij

∂u

∂xj

∂v

∂xi

dx +
d∑

i=1

2
∫
Ω

bi
∂u

∂xi

vdx +
∫

Ω
cuvdx

or

B(u, v) =
d∑

i,j=1

∫
Ω
aij

∂u

∂xj

∂v

∂xi
dx +

d∑
i=1

∫
Ω

bi
∂u

∂xi
v +

∂(biu)

∂xi
vdx +

∫
Ω
c̃uvdx.

Here, c̃(x) = c(x) − ∑d
i=1 ∂bi(x)/∂xi.

We also use two other bilinear forms

A(u, v) =
d∑

i,j=1

∫
Ω
aij

∂u

∂xj

∂v

∂xi

dx

and

S(u, v) =
d∑

i=1

∫
Ω

bi
∂u

∂xi

v +
∂(biu)

∂xi

vdx ,

which correspond to the second order terms and the skew-symmetric part of L,
respectively. The bilinear form A defines a norm, which we denote by ‖ · ‖A.
Under the assumptions on the coefficients aij , this norm is equivalent to the H1

0

norm. It is also easy to verify that

S(u, v) = −S(v, u), ∀u, v ∈ H1
0 (Ω).

Throughout this paper, c and C, with or without subscripts, denote generic,
strictly positive constants. They are independent of the mesh parameters h and
H, which will be introduced later in this section.

Using elementary, standard tools, it is easy to establish the following inequal-
ities:

(i) | B(u, v) |≤ C‖u‖A‖v‖A, ∀u, v ∈ H1
0 (Ω).

(ii) G̊arding’s inequality: There exists a constant C, such that

‖u‖2
A − C‖u‖2

L2(Ω) ≤ B(u, u), ∀u ∈ H1
0 (Ω) .
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(iii) There exists a constant C, such that

| S(u, v) |≤ C‖u‖A‖v‖L2(Ω), ∀u, v ∈ H1
0 (Ω),

| S(u, v) |≤ C‖v‖A‖u‖L2(Ω), ∀u, v ∈ H1
0 (Ω).

We note that the bounds for B(·, ·) and S(·, ·) are different, since each of the
terms in S(·, ·) contains a factor, which is of zero order. This enables us to control
the skew-symmetric term and makes our analysis possible.

We also use the following regularity result; cf. Grisvard [13] and Nečas [19].

(iv) The solution w of the adjoint equation

B(φ, w) = (g, φ), ∀φ ∈ H1
0 (Ω)

satisfies

‖w‖H1+γ(Ω) ≤ C‖g‖L2(Ω) ,

where γ depends on the interior angles of ∂Ω, is independent of g and is at least
1/2.

We approximate equation (2) by a Galerkin conforming finite element method.
For simplicity, we consider only continuous, piecewise linear, triangular elements
in R2 and tetrahedral elements in R3.

To define the additive Schwarz algorithms, we need two levels of triangulation
that have already been introduced in [3],[4],[6],[7],[8],[9]. We first partition Ω
into substructures {Ωi}, i = 1, · · · , N, which provide a regular finite element
triangulation of Ω. The Ωi are non-overlapping, d-dimensional simplices. They
satisfy all the standard rules of finite elements; cf. Ciarlet [5]. This is the coarse
mesh and it defines a mesh parameter H = max{H1, · · · , HN}. The triangulation
is assumed to be shape regular, i.e. Hi, the diameter of Ωi is bounded uniformly
in terms of the diameter of the largest inscribed ball in Ωi.

In a second step, we divide each substructure Ωi into smaller simplices, de-
noted by { τ j

i , j = 1, · · · }. They form a shape regular, fine mesh (h-level) finite
element triangulation of Ω with the mesh parameter h = maxi,j{hj

i}. Here hj
i is

the diameter of τ j
i .

We can now define the piecewise linear finite element spaces over the H-level
and the h-level triangulations of Ω.

V H = {vH | continuous on Ω, vH |Ωi linear , vH = 0 on ∂Ω}

and

V h = {vh | continuous on Ω, vh |τj
i

linear , vh = 0 on ∂Ω} .
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The Galerkin approximation of equation (2) is defined by: Find uh ∈ V h such
that

B(uh, vh) = (f, vh), ∀vh ∈ V h. (3)

If the mesh size h is small enough, it follows from a result by Schatz [23]
that this problem has a unique solution. By using nodal basis functions to span
the finite element space, equation (3) is transformed into a linear system of al-
gebraic equations, which is large, sparse, nonsymmetric, indefinite and relatively
ill-conditioned.

3 A Brief Discussion of the GMRES Method

Among the possible iterative methods to solve the linear system, we have only
used one, the GMRES method; cf. Saad and Schultz [22] and Eisenstat, Elman
and Schultz [11]. This is a generalized minimum residual method, which in prac-
tice has proven quite powerful for a large class of nonsymmetric problems. The
GMRES method is described in [22] and the theory developed in L2(Ω) can be
found in [11]. Both the algorithm and the theory can easily be extended to an
arbitrary Hilbert space; see Cai [3]. In developing our theory and in the numeri-
cal results that are discussed in Section 5, we have exclusively used the A-norm
introduced in Section 2. Here we briefly describe the GMRES algorithm and
state a theorem without proof.

Let P be a linear operator in the finite dimensional space Rn with an inner
product [·, ·], and a corresponding norm ‖ · ‖, chosen to take advantage of the
special properties of P . (In our applications, P is the preconditioned stiffness
matrix and the A-norm is used.) P is not symmetric but is positive definite
with respect to [·, ·]. The GMRES method is used to solve the linear system of
equations

Px = b,

where b ∈ Rn is given. We begin from an initial approximation x0 ∈ Rn and the
initial residual r0 = b − Px0. In the mth iteration, a correction vector zm is
computed from the Krylov subspace

Km(r0) = span{r0, P r0, · · · , P m−1r0},

which minimizes the norm of the residual. In other words, zm solves

min
z∈Km(r0)

‖b − P (x0 + z)‖ .

The mth iterate is xm = x0 + zm.
The exact solution would be reached in no more than n iterations if we use

exact arithmetic.
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Following Eisenstat, Elman and Schultz [11], the rate of convergence of the
GMRES method can be characterized in terms of the minimal eigenvalue of the
symmetric part of the operator and the norm of the operator. They are defined
by

cp = inf
x �=0

[x, Px]

[x, x]
and Cp = sup

x �=0

‖Px‖
‖x‖ .

By considering the decrease of the norm of the residual in a single step, the
following theorem can be established.

Theorem(Eisenstat, Elman and Schultz). If cp > 0, then, the GMRES
method converges and after m steps, the norm of the residual is bounded by

‖rm‖ ≤ (1 −
c2
p

C2
p

)

m/2

‖r0‖.

4 Algorithms on Overlapping Subregions

In this section, we introduce two variants of an additive Schwarz algorithm and
provide bounds on their convergence rates; see Theorem 1 in the following dis-
cussion. The analysis is valid for both two and three dimensions.

We first form a basic decomposition of the domain Ω into overlapping subre-
gions and then introduce the projections which define our algorithms.

We use the H-level subdivision {Ωi} of Ω. Each subregion Ωi is extended to
a larger region Ω

′
i, i.e. Ωi ⊂ Ω

′
i. The overlap is generous in the sense that there

exists a constant α > 0, such that

distance(∂Ω
′
i ∩ Ω, ∂Ωi ∩ Ω) ≥ αHi, ∀i.

We assume that ∂Ω
′
i does not cut through any h-level elements. We use the

same construction for the subregions that intersect the boundary ∂Ω except that
we cut off the part that is outside Ω.

We also use the notation Ω
′
0 = Ω.

We note that the larger α is, the fewer iterations can be expected. However, if
we increase the overlap, the size, and hence the cost of the subproblems increases.
It is an important practical issue to balance the total number of iterations and
the cost of solving the subproblems.

For each Ω
′
i, i > 0, a regular finite element subdivision is inherited from the

h-level subdivision of Ω. The corresponding finite element space is defined by

V h
i = H1

0 (Ω
′
i) ∩ V h.
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The elements of this subspace of V h can be extended continuously by zero to the
complement of Ω

′
i. We also use the subspace

V h
0 = V H .

It is easy to see that our finite element function space V h can be represented
as the sum of the N + 1 subspaces,

V h = V h
0 + V h

1 + · · · + V h
N .

We can now define the projection operators, which are the main building
blocks of our algorithms. These operators map the finite element space V h onto
the subspaces V h

i and are defined in terms of the bilinear forms B(·, ·) and A(·, ·).
Definition: For i = 0, · · · , N :
For any wh ∈ V h, Qiw

h ∈ V h
i is the solution of the finite element equation

B(Qiw
h, vh

i ) = B(wh, vh
i ), ∀vh

i ∈ V h
i .

For any wh ∈ V h, Piw
h ∈ V h

i is the solution of the finite element equation

A(Piw
h, vh

i ) = B(wh, vh
i ), ∀vh

i ∈ V h
i .

We now introduce the two operators which define our transformed equations

Q(1) = Q0 + Q1 + · · · + QN

and
Q(2) = Q0 + P1 + · · · + PN .

Our main effort goes into the study of the spectra of these two operators. The
only difference between Q(1) and Q(2) is that, for i > 0, we replace the projection
Qi, corresponding to Ω

′
i, by Pi. The coarse mesh projection is not changed.

The computation of Qiw
h or Piw

h, for i > 0 and for an arbitrary function
wh ∈ V h, involves the solution of a standard finite element linear system of al-
gebraic equations on the small subregion Ω

′
i. The former gives rise to a nonsym-

metric linear system of equations and the latter to a positive definite, symmetric
problem. For i = 0, the problem is a standard finite element equation on the H-
level, coarse space. One can view Pi as a preconditioner of Qi in the subspace V h

i ;
cf. the discussion in Dryja and Widlund [8],[9]. The cost of the computation can
often be decreased by simplifying the local problems further. We can replace the
given second order elliptic operator by the Laplacian. If it is possible to choose
some of the Ω

′
i to be rectangular and the corresponding mesh to be uniform, a

Fast Poisson solver can then be used to compute the contribution from V h
i . It is

an easy exercise to modify our theory to cover such a case.
We will consider two additive Schwarz algorithms:

8



Algorithm 1: Obtain the solution of equation (3) by solving the equation

Q(1)uh = b(1), (4)

and

Algorithm 2: Obtain the solution of equation (3) by solving the equation

Q(2)uh = b(2). (5)

In order for equations (4) and (5) to have unique solutions, the operators Q(1)

and Q(2) must be invertible. This follows from Theorem 1 given in the following
discussion. To obtain the same solution as equation (3), the right hand sides
b(1) and b(2) must be chosen correctly. The crucial observation is that these right
hand sides can be computed without knowledge of the solution of equation (3).
The following formulas are valid:

b(1) = Q(1)uh =
N∑

i=0

Qiu
h

and

b(2) = Q(2)uh = Q0u
h +

N∑
i=1

Piu
h.

Each of these terms can be computed by solving a problem in a subspace since,
by equation (3) and the definitions of Qi and Pi,

B(Qiu
h, vh

i ) = B(uh, vh
i ) = (f, vh

i ), ∀vh
i ∈ V h

i

and

A(Piu
h, vh

i ) = B(uh, vh
i ) = (f, vh

i ), ∀vh
i ∈ V h

i .

The main result of this study is Theorem 1. By combining it with the Theorem
given in Section 3, we establish that the two algorithms converge at a rate which
is independent of the mesh parameters h and H, if the coarse mesh is fine enough.

Theorem 1 There exist constants H0 > 0, c(H0) > 0 and C(H0) > 0, such
that if H ≤ H0, then, for i = 1, 2

c(H0)C
−2
0 A(uh, uh) ≤ A(uh, Q(i)uh)

and

A(Q(i)uh, Q(i)uh) ≤ C(H0)A(uh, uh).
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The special constant C0 is introduced in Lemma 1.
Remarks:
(a) The operator Q0 is very important, since it provides global transportation

of information. All the other projections are local mappings. Without using
Q0, information would travel only from one subregion to its neighbors in each
iteration and it would take O(1/H) iterations for the information to propagate
across the region. For further details, see [24].

Without such a global mechanism, it would also be impossible to confine the
spectrum to the right half plane. To see this, we consider a symmetric, indefinite
case. If the subregions are small enough, all the local elliptic problems are positive
definite, symmetric and, in the absence of a global part, the preconditioner defined
by the Schwarz algorithm is positive definite symmetric. Therefore, by the inertia
theorem, the operator P has as many negative eigenvalues as the original discrete
elliptic problem.

(b) The constant H0 determines the minimal size of the coarse mesh problem
and it depends on the operator L. In general, H0 decreases if we increase the
coefficients of the skew-symmetric terms, it decreases with c̃, while it increases
if we increase the overlap. H0 also depends on the shape of the domain Ω. If
the domain is not convex, the estimate of H0, implicit in our proof of Lemma 5,
depends on the parameter γ in (iv). We do not have an explicit formula for H0 but
we know from experience that it can be determined by numerical experiments.

If the operator L is positive definite, symmetric, there is no restriction on the
coarse mesh size H, i.e. H0 = ∞.

The proof of Theorem 1 is based on the following results.

Lemma 1 There exists a constant C0, which is independent of h and H, such
that, for all uh ∈ V h, there exist uh

i ∈ V h
i with

uh =
N∑

i=0

uh
i

and
N∑

i=0

A(uh
i , u

h
i ) ≤ C2

0A(uh, uh).

This lemma is also central in the theory previously developed for positive
definite, symmetric problems. For a proof see Dryja and Widlund [8]; cf. also
Lions [15] or Nepomnyaschikh [20]. Note that this lemma is independent of the
skew-symmetric and zero order terms of the elliptic operator. In the symmetric,
positive definite case, Lemma 1 is combined with an abstract argument to give a
lower bound for the spectrum of the iteration operator.

The next lemma is a variation of a result by Schatz; cf. [23]. In his proof,
G̊arding’s inequality, (ii), and the regularity result, (iv), are used. The proof
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of Lemma 2 follows directly from Schatz’s work by replacing the approximate
solution by the coarse mesh solution and the exact solution of the continuous
problem by the finite element solution in V h.

Lemma 2 There exist constants H0 > 0 and C(H0) > 0, such that if H ≤ H0,
then,

‖Q0u
h‖A ≤ C(H0)‖uh‖A

and
‖Q0u

h − uh‖L2 ≤ C(H0)H
γ‖Q0u

h − uh‖A.

Lemma 3 The restriction of the quadratic form B(·, ·) to the subspaces V h
i , i >

0, is strictly positive definite for H sufficiently small, i.e. there exists a constant
c > 0 such that

cA(uh, uh) ≤ B(uh, uh), ∀uh ∈ V h
i .

Proof of Lemma 3: We have to prove that the second order terms domi-
nate the other symmetric term; the contribution from the skewsymmetric term
vanishes. This follows from the fact that the smallest eigenvalue for the Dirichlet
problem for −
 on the region Ω

′
i is on the order of H−2

i .

Lemma 4 Let vh =
∑

vh
i , where vh

i ∈ V h
i . Then there exists a constant C > 0,

such that
‖

∑
vh

i ‖2
A ≤ C

∑
‖vh

i ‖2
A.

Proof of Lemma 4: The proof follows from the observation that for each
x ∈ Ω, the number of terms in the sum, which differ from zero, is uniformly
bounded.

Lemma 5 There exist constants H0 > 0, c(H0) > 0 and C(H0) > 0, such that
if H ≤ H0, then,

c(H0)C
−2
0 A(uh, uh) ≤

N∑
i=0

A(Qiu
h, Qiu

h) ≤ C(H0)A(uh, uh)

and
c(H0)C

−2
0 A(uh, uh) ≤ A(Q0u

h, Q0u
h) +

∑N
i=1 A(Piu

h, Piu
h)

≤ C(H0)A(uh, uh).

Proof of Lemma 5: An upper bound for A(Q0u
h, Q0u

h) is given in Lemma
2. To obtain an upper bound for the sum of the other terms, we use Lemma 3
and the formula

B(Qiu
h, Qiu

h) = B(uh, Qiu
h)
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to show that

c
N∑

i=1

A(Qiu
h, Qiu

h) ≤ B(uh,
N∑

i=1

Qiu
h).

The right hand side can be estimated by using inequality (i) and Lemma 4. The
other upper bound is established in a similar way.

To prove the lower bounds, we begin by using Lemma 2 and the triangle
inequality to obtain

‖uh‖2
L2 ≤ C(H2γA(uh, uh) + ‖Q0u

h‖2
L2).

Since the eigenvalues of the Dirichlet problem for −
 are bounded from below
and Lemma 2 holds, the last term can be replaced by C‖Q0u

h‖A‖uh‖A. By using
G̊arding’s inequality, (ii), it follows that

(1 − CH2γ)A(uh, uh) ≤ B(uh, uh) + C‖Q0u
h‖A‖uh‖A .

By the definition of the operators Qi and Lemma 1, we find that

B(uh, uh) =
N∑

i=0

B(uh, uh
i ) =

N∑
i=0

B(Qiu
h, uh

i ).

The boundedness of B(·, ·), (i), can now be used to obtain

N∑
i=0

B(Qiu
h, uh

i ) ≤ C
N∑

i=0

‖Qiu
h‖A‖uh

i ‖A,

which by Lemma 1 and the Cauchy-Schwarz inequality can be bounded above by

CC0(
N∑

i=0

‖Qiu
h‖2

A)1/2‖uh‖A .

We finally obtain

A(uh, uh) ≤ CC2
0

N∑
i=0

A(Qiu
h, Qiu

h),

for sufficiently small H.
The proof of the other lower bound is quite similar.
Proof of Theorem 1: The upper bounds on the norms of the operators

follow immediately from Lemmas 4 and 5.
To obtain the lower bounds, we first consider

A(uh, Q(1)uh) =
N∑

i=0

A(uh, Qiu
h).
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Using Lemma 5, we see that it suffices to show that

|
N∑

i=0

(A(uh, Qiu
h) − A(Qiu

h, Qiu
h))|

can be bounded from above by

CHA(uh, uh).

By the definition of the quadratic forms

A(uh − Qiu
h, Qiu

h) = B(uh − Qiu
h, Qiu

h)
− S(uh − Qiu

h, Qiu
h) − (c̃(uh − Qiu

h), Qiu
h).

By using the definition of Qi, the first term of the right hand side is seen to
vanish.

For i = 0, the absolute value of the second term can be bounded above by
CH2γA(uh, uh) using inequality (iii) and Lemma 2. We note that S(Qiu

h, Qiu
h) =

0. There remains to consider S(uh,
∑N

1 Qiu
h). By using the inequality (iii),

|
N∑

i=1

S(uh − Qiu
h, Qiu

h)| ≤ C‖uh‖A‖
N∑

i=1

Qiu
h‖L2.

Since, for each x ∈ Ω, the number of terms Qiu
h that differ from zero is uni-

formly bounded, the second factor on the right hand side can be bounded by
C(

∑N
i=1 ‖Qiu

h‖2
L2)1/2. By an elementary estimate, which shows that the smallest

eigenvalue of the Dirichlet problem for −
 on Ω
′
i is on the order of H−2

i , and
Lemma 5, the required inequality is established.

The third term is written as the difference of two expressions, which can be
handled by exactly the same tools.

The estimate for the operator Q(2) is obtained similarly.

5 Numerical Results

In this section, we present some numerical results to demonstrate the behavior of
our additive Schwarz algorithms for both symmetric and nonsymmetric indefinite
boundary value problems in R2. Numerical results for positive definite problems,
both symmetric and nonsymmetric, have previously been given in [3],[4],[12].

We consider the problem{
Lu = f in Ω = [0, 1] × [0, 1],

u = 0 on ∂Ω.

The right hand side f is always chosen so that the exact solution is u =
xexysin(πx)sin(πy). The coefficients of L are specified later for each problem.
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Figure 1: An extended subregion

We use a two-level subdivision of Ω as described in section 2. The subregion
Ω

′
i is obtained by enlarging the triangle Ωi as in Figure 1. In this extension, the

same number ovlp of h-level triangles are added in all directions.

In our experiments all the subproblems are solved exactly by using a band
solver from LINPACK. We stop the GMRES method as soon as ‖ri‖A/‖r0‖A ≤
10−3. We work with the A-norm, since our theory so far has not been devel-
oped for any other norms. However, in our experience, the performance of the
algorithm is quite comparable if we replace that norm with the 2-norm. We
have found that the overall error is not substantially reduced by a more stringent
stopping criterion. In our tables, the error denotes the difference between the
computed solution and the exact solution of the continuous problem measured
in the norms indicated. The programs have been run in single precision on the
Multiflow computer at Yale University.

Example 1. We consider the symmetric and indefinite Helmholtz equation

{
−
 u − δu = f in Ω

u = 0 on ∂Ω,
(6)

δ is a constant. The eigenvalues of the operator in (6) are (i2 + j2)π2 − δ, where
i, j are positive integers. The numerical results are given in Tables 1 and 2.
Algorithms 1 and 2 given in (4) and (5), respectively, are used.
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Iteration A − norm; residual L2 norm; error L∞ norm; error
1 2.50722 0.318660 0.719067
2 1.44028 0.182950 0.405074
3 0.971708 1.63224E-02 4.73967E-02
4 0.218693 7.38034E-03 2.46119E-02
5 5.54836E-02 6.13811E-03 1.94588E-02
6 3.40790E-02 5.16731E-03 1.53261E-02
7 2.60738E-02 3.71766E-03 9.73493E-03
8 1.87841E-02 2.19535E-03 6.23578E-03
9 1.03642E-02 1.67804E-03 4.90165E-03
10 6.81844E-03 1.36607E-03 4.00215E-03
11 5.02644E-03 8.28570E-04 2.39784E-03

Table 1: Convergence history for Algorithm 1 and Example 1. Here h−1 = 75,
H−1 = 15, ovlp = 2 and δ = 16.0π2

Case # δ h−1 H−1 ovlp Algorithm 1 Algorithm 2
1 3π2 15 3 2 11 12
2 30 3 4 11 12
3 45 3 6 12 12
4 60 3 8 12 12
5 15 5 1 10 10
6 30 5 2 12 12
7 45 5 3 12 12
8 60 5 4 12 12
10 16π2 45 15 1 10 10
11 60 15 1 11 11
12 75 15 2 11 11
13 60 5 4 44 33
14 60 10 2 17 17
15 60 20 1 8 8
16 30π2 60 20 1 16 16
17 80 20 1 17 18

Table 2: Example 1. The last two columns give the number of GMRES iterations.
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Iteration A − norm; residual L2 norm; error L∞ norm; error
1 2.99430 0.309833 0.696816
2 1.82397 0.234651 0.529782
3 1.34039 0.136604 0.313758
4 0.905845 7.27307E-02 0.172788
5 0.585598 4.46239E-02 0.108047
6 0.407054 2.78872E-02 6.71409E-02
7 0.288880 1.37858E-02 3.38832E-02
8 0.180577 8.21095E-03 2.06587E-02
9 0.129736 4.44917E-03 1.15359E-02
10 8.77408E-02 2.19873E-03 6.17071E-03
11 5.48599E-02 1.18357E-03 3.88315E-03
12 3.46359E-02 7.18704E-04 2.24515E-03
13 2.29454E-02 4.35330E-04 1.39198E-03
14 1.35519E-02 2.90249E-04 1.03428E-03
15 8.90639E-03 2.18270E-04 6.67672E-04
16 5.98530E-03 1.90636E-04 5.61312E-04
17 3.89341E-03 1.72248E-04 5.31457E-04

Table 3: Convergence history for Algorithm 1 and Example 2. Here h−1 = 120,
H−1 = 20, ovlp = 2, η = 16.0π and δ = 16.0π2

Example 2. We consider a nonsymmetric and indefinite problem

{
−
 u − η(∂u/∂x + ∂u/∂y) − δu = f in Ω

u = 0 on ∂Ω,
(7)

The numerical results are given in Tables 3 and 4.
We note that in a few of the experiments, the rate of convergence is unsatisfac-

tory, but that the rate of convergence improves considerably by decreasing H. The
rate of convergence varies only marginally with the parameter ovlp. Normally,
the overall cost of the computation is smallest if ovlp = 1. We also note that, as
expected, a smaller H is required when the parameters δ and η are increased to
increase the terms that make the operators skewsymmetric and indefinite.

6 Two Other Methods

We conclude by outlining how some other results, previously analyzed for the
positive definite, symmetric case, can be extended to the class of elliptic problems
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Case # parameters h−1 H−1 ovlp Algorithm 1 Algorithm 2
1 η = 3π 15 5 1 13 12
2 30 5 2 17 14
3 δ = 3π2 45 5 3 18 14
4 60 5 4 18 14
5 60 6 3 16 14
6 60 10 2 12 11
7 η = 16π 45 15 1 17 13
8 60 15 1 18 14
9 δ = 16π2 75 15 2 25 17
10 60 20 1 13 11
11 80 20 1 14 12
12 100 20 2 18 14
13 120 20 2 17 14
14 η = 30π 60 20 1 24 16
15 120 20 2 35 19
16 δ = 30π2 75 25 1 17 13
17 100 25 1 18 14
18 120 30 1 15 13

Table 4: Example 2. The last two columns give the number of GMRES iterations.
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described in Section 2. We confine our discussion to problems in the plane; both
of the algorithms considered here need to be modified considerably in order to
obtain fast methods for problems in three dimensions.

We first consider a basic iterative substructuring method for problems in two
dimensions; cf. Dryja and Widlund [8], [9]. For problems that are nonsymmetric,
but positive definite, the result to be formulated has previously been obtained by
Cai [3],[4].

When iterative substructuring methods are used, the region is divided into
substructures and elements as in Section 2. Though originally derived differ-
ently, it has been demonstrated by Dryja and Widlund [8] that these methods
can be viewed as additive Schwarz methods. Our work depends heavily on this
reinterpretation of the algorithms; see [8] for detailed arguments.

In defining the partition of the finite element space into subspaces, we use the
coarse space V H introduced in Section 4. We also use subspaces corresponding
to the subregions Ωij = Ωi

⋃
Γij

⋃
Ωj . These subregions play the same role as the

Ω′
i in Section 4. Here Ωi and Ωj are adjacent substructures with the common

edge Γij. We note that an interior substructure is covered by three such regions.
The local subspaces are V h

ij = H1
0 (Ωij) ∩ V h.

Compared with the case considered previously, we use less overlap in the
sense that only the elements of V H can differ from zero at the vertices of the
substructures. This is reflected in a poorer bound for the constant of Lemma 1,

C2
0 ≤ const.(1 + log(H/h))2;

cf. Dryja and Widlund [8]. Lemma 1 is modified accordingly. The rest of the
proof carries over without change. In Theorem 2, we use the notation Q̃ =
Q0 +

∑
Qij .

Theorem 2 For the iterative substructuring method, introduced as an additive
Schwarz method with the subspaces V H and V h

ij , there exist constants H0 > 0,
c(H0) > 0 and C(H0) > 0, such that if H ≤ H0,

c(H0)(1 + log(H/h))−2A(uh, uh) ≤ A(uh, Q̃uh)

and
A(Q̃uh, Q̃uh) ≤ C(H0)A(uh, uh).

We finally show that the result, obtained by Yserentant [26] for positive defi-
nite symmetric problems, can be extended in the same way. We note that Bank
and Yserentant [1] have already reported on successful numerical experiments
with an accelerated variant of this algorithm for the class of elliptic problems
introduced in Section 2. We also note that our algorithm is different from those
proposed by Yserentant [27, 28] for indefinite and nonsymmetric problems. Thus
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in [27] a reduced system obtained by implicitly eliminating the nodes of the
coarest mesh is solved by an iterative method.

We assume that the region Ω is a plane polygon. A coarse triangulation is
introduced as before. Its triangles are recursively subdivided into four congruent
triangles, a total of j times. The characteristic mesh size for the level k trian-
gulation is hk. As demonstrated in Yserentant [8], more complicated situations
can also be considered, where the final triangulation is highly nonuniform, but
to simplify our discussion, we only consider the regular case in this paper.

As shown in Dryja and Widlund [10], Yserentant’s method can also be viewed
as an additive Schwarz method defined by a set of subspaces. Let Ikv ≡ Ihk

v be
the linear interpolant of v ∈ V h onto the space of finite elements on the level k
triangulation. The following identity holds

v = I0v + (I1v − I0v) + · · ·+ (Ijv − Ij−1v) , ∀v ∈ V h .

We represent V h as
V h = V0 ⊕ V1 ⊕ · · · ⊕ Vj ,

where V0 = V H and, for k > 0, Vk = R(Ik − Ik−1) is the range of the operator
(Ik − Ik−1). An additive Schwarz method is defined for this set of subspaces. We
obtain Yserentant’s method by replacing , for k > 0, the resulting problems on
the subspaces by suitable preconditioners.

The following result holds for the family of elliptic problems introduced in
Section 2. Here Q̂ denotes the operator of the transformed equation, which
corresponds to Yserentant’s method.

Theorem 3 For Yserentant’s method there exist constants H0 > 0, c(H0) > 0
and C(H0) > 0, such that if H ≤ H0,

c(H0)j
−2A(uh, uh) ≤ A(uh, Q̂uh)

and
A(Q̂uh, Q̂uh) ≤ C(H0)A(uh, uh).

We will only outline how this result can be established. We model our proof
on that of Theorem 1. We have to show that the different lemmas hold for the
spaces just introduced. It is shown in Yserentant [26] that Lemma 1 holds with
C0 ≤ Cj2; cf. Lemmas 2.4 and 2.5 of [26]. Lemma 2 is still valid since the
same coarse operator is used in all the methods considered in this paper. A
counter part of Lemma 3 can be obtained as well, by using Lemma 2.4 of [26].
Lemma 4 is modified by using Lemma 2.7 of [26], a result that makes it possible
to obtain a sharp upper bound in Yserentant’s main theorem. Lemma 5 can
be modified in a straightforward manner. One change is required in the proof
of the theorem. The factor ‖∑N

i=1 Q̂iu
h‖L2 must be estimated differently, since,

19



typically, all these terms differ from zero everywhere. By using Yserentant’s tools,
it is however possible to show that

‖Q̂iu
h‖L2 ≤ Chi‖Q̂iu

h‖A .

Since the hi decay geometrically, the triangle and Cauchy-Schwarz inequalities
give

‖
N∑

i=1

Q̂iu
h‖2

L2 ≤ CH2
N∑

i=1

‖Q̂iu
h‖2

A ,

and the proof can be completed.
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