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Abstract. We propose and study a new parallel one-shot Lagrange-Newton-Krylov-Schwarz
(LNKSz) algorithm for shape optimization problems constrained by steady incompressible Navier-
Stokes equations discretized by finite element methods on unstructured moving meshes. Most existing
algorithms for shape optimization problems solve iteratively the three components of the optimality
system: the state equations for the constraints, the adjoint equations for the Lagrange multipliers,
and the design equations for the shape parameters. Such approaches are relatively easy to implement,
but generally not easy to converge as they are basically nonlinear Gauss-Seidel algorithms with three
large blocks. In this paper, we introduce a fully coupled, or the so-called one-shot, approach which
solves the three components simultaneously. First, we introduce a moving mesh finite element method
for the shape optimization problems in which the mesh equations are implicitly coupled with the
optimization problems. Second, we introduce a LNKSz framework based on an overlapping domain
decomposition method for solving the fully coupled problem. Such an approach doesn’t involve any
sequential steps that are necessary for the Gauss-Seidel type reduced space methods. The main
challenges in full space approaches are that the corresponding nonlinear system is much harder to
solve because it is two to three times larger and its indefinite Jacobian problems are also much more
ill-conditioned. Effective preconditioning becomes the most important component of the method.
Numerically, we show that LNKSz deals with these challenges quite well. As an application, we
consider the shape optimization of an artery bypass problem in 2D. Numerical experiments show
that our algorithms perform well on supercomputers with hundreds of processors.
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1. Introduction. Shape optimization, or optimal shape design, aims to optimize
an objective function by changing the shape of the computational domain. In the
past few years, shape optimization problems have received considerable attentions.
On the theoretical side there are several publications dealing with the existence of
solution and the sensitivity analysis to the problems; see e.g., [19, 20, 21, 27, 39, 46]
and references therein. On the practical side, optimal shape design has played an
important role in many industrial applications, for example, aerodynamic shape design
[25, 33, 34, 35, 44], artery bypass design [2, 3, 6, 7, 40, 43], microfluidic biochip design
[4, 24, 38] and so on. Most of these optimization problems have constraints imposed
by partial differential equations (PDE) or other physical and geometrical conditions.
They are considerably more difficult and expensive to solve than the corresponding
simulation problems, and often require large scale parallel computers for their memory
capacity and processing speed. In this paper, we propose a general framework for
the parallel solution of shape optimization problems, and study it in detail for the
optimization of an artery bypass problem. The key element of the proposed framework
is the domain decomposition preconditioner which ensures the convergence and also
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the parallel scalability of the method.

Traditional approaches for solving shape optimization problems view the state
variables and the design variables as dependent variables and only regard the design
variables as the optimization variables; i.e., the state variables are considered as func-
tions of the design variables. These methods split the optimality system into three
components: the state equations for the constraints, the adjoint equations for the
Lagrange multipliers, and the design equations for the shape design parameters. A
typical algorithm starts from an initial given shape and then goes through three steps:

(1) Solve the state equations.
(2) Solve the adjoint equations for the sensitivity analysis.
(3) Solve the design equations to update the shape; return to (1) unless a stopping

condition is met.

The three steps have to be performed sequentially [2, 3, 6, 7, 26, 32, 34, 35, 43].
These algorithms are often called nested analysis and design (NAND) and they in-
volve an iterative algorithm and need to solve the state equations repeatedly, which
make this computing extremely time consuming and in some cases not practical. The
attractiveness of NAND is that one can apply well developed PDE solvers and op-
timization solvers directly and it requires less memory. Sometimes convergence is
not easy to achieve. Preconditioning can be applied to the subsystems, such as the
state equations, but can not be applied to the whole system. An alternative to these
approaches are the simultaneous analysis and design (SAND), or the so-called one-
shot, approaches. In the one-shot approaches the state variables and design variables
are viewed as independent variables in the optimization problem and the numerical
solution of the state equations is an integral part of the optimization routine; i.e.,
retain the state equations as equality constraints in the optimization problem and the
state variables are regarded as optimization variables [4, 5, 8, 22, 25, 38, 44]. The
one-shot methods update the shape and the state simultaneously and they only need
to solve the state equations one time, which saves the computational work and time
considerably. The main challenges in the one-shot approaches are that the nonlinear
system is two to three times larger, and the corresponding indefinite Jacobian system
is a lot more ill-conditioned and also much larger. A review of NAND and SAND can
be found in [9].

As computers become more powerful in processing speed and memory capacity,
one-shot methods become more attractive due to their higher degree of parallelism
and better scalability. To answer the challenges facing in the one-shot methods, one
needs to design a preconditioner that can substantially reduce the condition num-
ber of the large fully coupled system and, at the same time, provides the scalability
for parallel computing. There are several recent publications on one-shot methods for
PDE constrained optimization problems. In [22], a parallel reduced Hessian sequential
quadratic programming (RSQP) method was introduced for an aerodynamic design
problem, which uses a sequential quadratic programming (SQP) method (which can
be viewed as Lagrange-Newton method) to solve the discretized shape optimization
problem and employs a reduced space method (which can be viewed as a Schur com-
plement method) to solve the linearized Jacobian system in the SQP steps. And later
in [44], RSQP was used as a preconditioner for a defect correction method to solve a
similar problem. In [12, 13], a parallel full space method was introduced for boundary
control problems, where a Newton-Krylov method is used together with Schur com-
plement type preconditioners which split the Jacobian system into three sub-systems
that are solved one after another. In [41, 42], an overlapping Schwarz based Lagrange-
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Newton-Krylov approach was investigated for some boundary control problems. In
these papers, the one-shot approach was shown to be very successful. A review of
these methods can be found in [1]. As far as we know no one has studied shape opti-
mization problems using Lagrange-Newton-Krylov-Schwarz (LNKSz) method, which
has the potential to solve very large problems on machines with a large number of
processors. The previous work in [41, 42] doesn’t consider the change of the compu-
tational domain which makes the study much more difficult and interesting.

We restrict ourselves to the discretize-then-optimize approach which first dis-
cretizes the continuous shape optimization problem with a finite element method
on a moving mesh to obtain a finite dimensional equality constrained optimization
problem and then use an optimization method to solve this finite dimensional opti-
mization problem. In the proposed new approach, the moving mesh equations are
viewed as constraints of the optimization problem and the moving mesh variables
are viewed as optimization variables which are independent of the state and design
variables. This makes our algorithms very simple, and it doesn’t require a sensitiv-
ity analysis as in the traditional algorithms [46]. For solving the finite dimensional
equality constrained optimization problem we use a Lagrange multiplier method to re-
duce the optimization problem to a nonlinear equations problem, and then investigate
a Newton-Krylov-Schwarz method [15] to solve the fully coupled nonlinear Karush-
Kuhn-Tucker (KKT) system. In fact the linearized KKT system at each Newton step
can be viewed as the KKT system of a related quadratic programming problem, so
this method can be considered as a SQP method which is one of the most successful
method for solving constrained nonlinear optimization problems [14]. We focus on
the parallel additive Schwarz preconditioners which are quite efficient for the rather
difficult problem considered in this paper.

In medical practice, artery bypass surgery aims to create new routes around nar-
rowed and blocked arteries that allow the blood to flow smoothly along the artery.
Artery bypass design is to find the best shape of the bypass. In large arteries, blood
flows can be described by the incompressible Navier-Stokes equations and an optimal
design can be obtained by solving a shape optimization problem. Several publications
have studied this problem. In [6, 7, 43], a Newtonian flow modeled by the Stokes
equations is used to study the design of the incoming branch of the bypass (the toe)
into the coronary. A non-Newtonian flow described by the Navier-Stokes equations
is used to study the design of the entire bypass in [2, 3, 40]. In our numerical exper-
iments, a Newtonian flow governed by the Navier-Stokes equations is used to study
the design of the entire bypass.

The rest of the paper is organized as follows. In Section 2, we describe the
mathematical formulation of the problem and introduce a moving finite element dis-
cretization of the problem. Then, in Section 3, we give a description of the parallel
one-shot Lagrange-Newton-Krylov-Schwarz algorithms. Some numerical experiments
are given in Section 4 and some concluding remarks are given in Section 5. In the Ap-
pendix, we provide some details about the computation of the nonlinear KKT system
and the construction of the analytic Jacobian matrix.

2. Shape optimization on a moving mesh. We consider a class of shape opti-
mization problems governed by the stationary incompressible Navier-Stokes equations
defined in a two dimensional domain Ωα. Here the subscript α is a shape function
which determines the shape of the computational domain. First we recall some def-
initions: For a scalar function φ, a vector-valued function u = (u, v) and matrices
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A = (aij)n×n, B = (bij)n×n, we denote

∇φ :=

(
∂φ

∂x
,
∂φ

∂y

)
, ∇ · u :=

∂u

∂x
+
∂v

∂y
, and A :B :=

n∑
i=1

n∑
j=1

aijbij .

The velocity-pressure formulation of the stationary Navier-Stokes equations can be
written as (state equations):



−µ∆u + u · ∇u +∇p = f in Ωα,
∇ · u = 0 in Ωα,

u = g on Γinlet,
u = 0 on Γwall,

µ
∂u

∂n
− p · n = 0 on Γoutlet,

(2.1)

where u = (u, v) and p represent the velocity and pressure, n is the outward unit
normal vector on the domain boundary ∂Ωα and µ is the kinematic viscosity. Γinlet,
Γoutlet and Γwall represent the inlet, outlet and wall boundaries, respectively and
Γoptimized, which needs to be designed, is also a wall boundary for the velocity u; see
Fig. 2.1. f is the given body force and g is the given velocity at the inlet Γinlet.

Γ
inlet

Γ
wall

Γ
outlet

Γ
wall

α
0
(x)

Γ
optimized

α(x)

Γ
wall

A B

CD

EF

Fig. 2.1. The initial flow domain Ωα0 (blue dashed line) and deformed flow domain Ωα (red
solid line) over a simple mesh. The boundary Γoptimized (ED) denotes the part of the boundary
whose shape is to be determined by the optimization process.

Our goal is to computationally find the optimal shape for part of the boundary
∂Ωα such that a given objective function Jo is optimized. We represent the part
of the boundary by a smooth function α(x) determined by a set of parameters a =
(a1, a2, ..., ap). By changing the shape of the computational domain defined by α(x),
one can optimize certain properties of the flow according to some objective functions;
defined as, for example, the total drag [34], the total energy dissipation [19] or the
total vorticity in the whole or part of the flow domain [43]. In this paper, we focus
on the minimization of the energy dissipation in the whole flow field and use the
integral of the squared energy deformation as the objective function [19] (objective
function):
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Jo(u, α) = 2µ

∫
Ωα

ε(u) : ε(u)dxdy +
β

2

∫
I

(α′′)2dx,(2.2)

where ε(u) =
1

2
(∇u + (∇u)T ) is the deformation tensor for the flow velocity u and β

is a nonnegative constant. I = [a, b] is an interval in which the shape function α(x) is
defined. The last term of (2.2) is a regularization term which provides the regularity
of the boundary of the domain Ωα. In some approaches [2, 3], some restrictions of the
geometry are included in the constraints, e.g., certain thickness or volume, instead of
a regularization term in the objective function. In this paper, we use a regularization
term as in [19].

The continuous shape optimization problem can be described as follows.

min
u,α

Jo(u, α) = 2µ

∫
Ωα

ε(u) : ε(u)dxdy +
β

2

∫
I

(α′′)2dx

subject to

−µ∆u + u · ∇u +∇p = f in Ωα,
∇ · u = 0 in Ωα,

u = g on Γinlet,
u = 0 on Γwall,

µ
∂u

∂n
− p · n = 0 on Γoutlet,

α(a) = z1, α(b) = z2.

(2.3)

The last two equations indicate that the optimized boundary should be connected to
the rest of the boundary and z1 and z2 are two given constants [21].

For PDE constrained optimization problems, there are two basic approaches:
optimize-then-discretize (OTD) and discretize-then-optimize (DTO). As the differen-
tiation and discretization steps do not commute, the two approaches are not the same
and the general believe is that no approach has a clear advantage over the other in
terms of the accuracy of the solution [19, 41]. In this paper, we use the DTO approach
which turns out to be easier to formulate since the boundary conditions for the ad-
joint equations is rather difficult to derive when the shape derivatives are involved.
In the DTO approach, such boundary conditions are not necessary since the adjoint
problem is obtained algebraically. We next introduce a finite element discretization of
the shape optimization problem (2.3). To obtain the weak form of the state equations
in Ωα, we define the function spaces

U = {u|u ∈ [H1(Ωα)]2 u = g on Γinlet},
U0 = {u|u ∈ [H1(Ωα)]2 u = 0 on Γinlet ∪ Γwall}.

Then the weak form of the state equations can be defined as follows: Find u ∈ U ,
p ∈ L2(Ω) such that

µ

∫
Ωα

∇u :∇Φdxdy +

∫
Ωα

(u · ∇)u · Φdxdy −
∫

Ωα

p∇ · Φdxdy =

∫
Ωα

f · Φdxdy,
(2.4) ∫

Ωα

(∇ · u)ϕdxdy = 0,

hold for all Φ ∈ U0 and ϕ ∈ L2(Ωα).
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Since the computational domain of the shape optimization problem changes dur-
ing the optimization process, the mesh needs to be modified following the computa-
tional domain. Generally speaking, there are two strategies to modify the mesh. One
is mesh reconstruction which often guarantees a good new mesh but is computation-
ally expensive. The other strategy is moving mesh which changes the locations of the
mesh points but keeps the number of mesh points and the connectivity unchanged.
This approach is cheaper but the deformed mesh may become ill-conditioned when
the boundary variation is large. In our test cases the boundary variations are not very
large, so we use the latter strategy. The moving of the mesh is simply described by
Laplace’s equations ([28]) in this paper. Let α0 be the initial shape of the boundary
and Ωα0 the initial computational domain, see Fig. 2.1. We define x0 as the coor-
dinate of a point in Ωα0

, x as the coordinate of the corresponding point in Ωα and
δx := x−x0 as the displacement of this point. When the point x0 moves, we assume
the displacement δx satisfies the following equations (moving mesh equations):

{
−∆δx = 0 in Ωα0 ,

δx = gα on ∂Ωα0 ,
(2.5)

where gα = (gxα, g
y
α) is the displacement on the boundary and it is determined by the

shape function α(x). Note that gα is not a given function, but a function obtained
automatically during the iterative solution process. For example, in Fig. 2.1, gxα = 0
and gyα = α(x)− α0(x).

To obtain the weak form of the moving mesh equations (2.5) on domain Ωα0 , we
define the function spaces

X = {x|x ∈ [H1(Ωα0
)]2 x = gα on ∂Ωα0

},
X0 = {x|x ∈ [H1(Ωα0

)]2 x = 0 on ∂Ωα0
}.

Then we arrive at the weak form of the moving mesh equations (2.5): Find δx ∈ X
such that ∫

Ωα0

∇δx :∇Ψdxdy = 0,(2.6)

holds for all Ψ ∈ X0. In our numerical experiments, this simple mesh movement
scheme performs quite well (see Fig. 4.3). When the mesh deformation is large, some-
times one can use a model based on the linear or nonlinear elasticity equation with lo-
cally adjustable stiffness in stead of the Poisson’s equation [48]. Changing the moving
mesh equation in the algorithmic framework proposed in this paper is straightforward.
For more moving mesh strategies see, e.g., [28, 34].

The shape optimization problem (2.3) is discretized with a LBB-stable Q2 −Q1

finite element method for the state equations (2.1) and a Q2 finite element method
for the moving mesh equations (2.5). We approximate the velocity u, the pressure p
and the grid displacement δx in finite-dimensional space as follows

u ≈
∑
i

φiui, p ≈
∑
i

ϕipi, and δx ≈
∑
i

ψiδxi
,

where the finite element basis functions φi, ϕi and ψi are piecewise polynomials [23].
The basis functions φi and ϕi depend on the grid displacement δxi

, while ψi are
independent of δxi

, because φi and ϕi are defined on the domain Ωα and ψi are
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defined on Ωα0
. We denote n and m as the total number of nodes for velocity and

pressure unknowns, respectively. We also use u, p and δx to denote, respectively, the
vector consisting of the nodal values of u, p and δx.

Using this approximation, the finite element discretization of the state equations
(2.1) is given as follows{

Ku + B(u)u−Qp = Ff + Fu,
QTu = 0,

(2.7)

where

K =

(
(kij)n×n 0

0 (kij)n×n

)
, kij =

∫
Ωα

(
∂φi
∂x

∂φj
∂x

+
∂φi
∂y

∂φj
∂y

)
dxdy,

Q =
(
(Quij)m×n, (Qvij)m×n

)T
, Quij =

∫
Ωα

∂φj
∂x

ϕidxdy, Q
v
ij =

∫
Ωα

∂φj
∂y

ϕidxdy,

Ff =

(
(F 1
j )n×1

(F 2
j )n×1

)
, F ·j =

∫
Ωα

f·φjdxdy.

Fu is the Dirichlet boundary condition for u and

B(u) =

(
(Bij(u))n×n 0

0 (Bij(u))n×n

)
,

Bij(u) =

n∑
k=1

∫
Ωα

(
∂φi
∂x

ukφk +
∂φi
∂y

vkφk

)
φjdxdy.

The discretization of the moving mesh equations reads:

Dδx = Fx,(2.8)

where

D =

(
(Dij)n×n 0

0 (Dij)n×n

)
, Dij =

∫
Ωα0

(
∂ψi
∂x

∂ψj
∂x

+
∂ψi
∂y

∂ψj
∂y

)
dxdy,

and Fx is the Dirichlet boundary condition for δx. We discretize the objective function
as:

Jo(u,a) = µuTJu +
β

2
Jα,(2.9)

where

J =

(
(J11
ij )n×n (J12

ij )n×n
(J21
ij )n×n (J22

ij )n×n

)
, J11

ij =

∫
Ωα

(
2
∂φi
∂x

∂φj
∂x

+
∂φi
∂y

∂φj
∂y

)
dxdy,

J12
ij = J21

ji =

∫
Ωα

∂φi
∂y

∂φj
∂x

dxdy, J22
ij =

∫
Ωα

(
∂φi
∂x

∂φj
∂x

+ 2
∂φi
∂y

∂φj
∂y

)
dxdy,

and

Jα =

∫
I

(α′′)2dx.
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Putting all the pieces together, the discretized shape optimization problem is
given as follows

min
u,a,δx

Jo(u,a, δx) = µuTJu +
β

2
Jα

subject to
Ku + B(u)u−Qp = Ff + Fu,

QTu = 0,
Dδx = Fx,
Aa = Fa,

(2.10)

where

Aa =

(
α(a)
α(b)

)
and Fa =

(
z1

z2

)
.

Note that K, B(u), Q and J are dependent on the grid displacement δx, while D is
independent of δx. Here the mesh variable δx is treated as an optimization variable
and the moving mesh equations are viewed as constraints of the optimization problem
which are solved simultaneously with the other equations. It should be pointed out
here that the moving mesh equations appear only in the discretized shape optimization
problem and not in the continuous shape optimization problem.

3. One-shot Lagrange-Newton-Krylov-Schwarz methods. In this section
we introduce a parallel solution algorithm for the discrete shape optimization problem
(2.10). We define a Lagrangian functional associated with problem (2.10) as follows

L(u,p,x,a, λu, λp, λx, λa) = Jo(u,a, δx) + (λu)T ·(Ku + B(u)u−Qp− Ff − Fu)

+(λp)T ·(QTu) + (λx)T ·(Dδx − Fx) + (λa)T ·(Aa − Fa),

where λu, λp, λx and λa are the Lagrange multipliers for the equality constraints.
According to [36], one can find the solution of the optimization problem (2.10) by
consider the first-order necessary optimality condition, or the KKT system, given by

G(X) ≡ ∇XL(X) = 0,(3.1)

where X ≡ (u, p, δx, λ
u, λp, λx, a, λa)

T
.

To form the algebraic system of the nonlinear equations from a finite element
discretization, we need to order the unknowns and the corresponding functions. The
ordering of unknowns, though irrelevant mathematically, can have a significant effect
on the convergence properties of the solver and the parallel scalability of the overall
algorithm. The unknowns are ordered element by element, in contrast to physical
variable by physical variable as usually required by other methods. That is, we order
the elements so that elements which are nearby geometrically are also as close as
possible in the matrix. We order all the unknowns belonging to the first element
together, and then all the unknowns that belong to the second but not the first, then
all the unknowns that belong to the third element but have not already been placed,
and so on [11]. The shape variables a and λa, not belong to any elements, are placed
at the end of the other variables. When we distribute these unknowns to parallel
processors, we distribute them to the processors which include the mesh points on
the moving boundary. The elements are ordered subdomain by subdomain, for the
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purpose of parallel processing. The ordering of the subdomains is not important
since we use additive Schwarz methods whose performance has nothing to do with
the subdomain ordering. In order to avoid pivoting problem during the sparse LU
factorization, for each element, the functions are ordered as [41, 42]

(∇λuL,∇λpL,∇λxL,∇uL,∇pL,∇δxL)
T
,

and the corresponding unknowns are ordered as

(u, p, δx, λ
u, λp, λx)

T
.

As a result, the LU factorization can be carried out without running into the pivot
problem. The structure of the nonlinear system (3.1) on each element looks like

K + B(u)u −Q 0 0 0 0 0 0

QT 0 0 0 0 0 0 0
0 0 D 0 0 0 0 0

J 0 0 K + (B(u)u)Tu Q 0 0 0

0 0 0 −QT 0 0 0 0
0 0 0 Mu Mp D 0 0
0 0 0 0 0 0 A 0

0 0 0 0 0 Γa βJ AT




u
p
δx
λu

λp

λx

a
λa

 −


Ff + Fu

0
Fx
0
0

−(Jo)δx
Fa
0

 = 0.(3.2)

Here A and J refer to the geometric constraints and Mu and Mp refer to the derivative
of the diffusion/convective terms (Mu) and the pressure term (Mp) with respect to the
moving mesh variables δx. Though written in a matrix form, many of the operators
are nonlinear. In particular the B(u) term depends on u, and the K, B(u) and Q
terms depend on the moving mesh δx. Note that there are still two small zero blocks
appearing on the diagonal of the Jacobian matrix (see the (2, 2) and (5, 5) blocks of
the matrix in (3.2)). We deal with these two zero blocks by adding a small number ε
during the LU factorization. For more details about the evaluation of the nonlinear
function see Appendix A.

We solve the nonlinear system (3.1) by an inexact Newton method [17, 18]. Given
an initial guess X0, at each iteration, k = 0, 1, · · ·, we approximately solve the right-
preconditioned system

Hk(Mk)−1(Mkdk) = −Gk,(3.3)

in the senes of

‖ Hk(Mk)−1(Mkdk) + Gk ‖≤ max{ηr ‖ Gk ‖, ηa}(3.4)

to find a search direction dk, where Hk = ∇XG(Xk) is the Jacobian matrix of the
nonlinear system (3.1), Gk = G(Xk) and (Mk)−1 is an additive Schwarz precondi-
tioner to be defined shortly, and ηr and ηa are relative and absolute tolerances for the
linear solver. After approximately solving (3.3), one may use a globalization method
such as line search or trust region [36] to update the solution. In this paper we focus
on a line search approach, where the new approximate solution is

Xk+1 = Xk + τkdk,

and the step length τk is selected by a cubic line search method [16]. Newton methods
can be implemented with or without the Jacobian matrix. A framework for imple-
menting Newton methods without using the explicit form of the Jacobian is provided
in [31]. In this paper, we do not use the matrix-free method since we need the explicit
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form of the Jacobian to construct the preconditioner. The sparsity of Hk is similar to
that of the matrix in (3.2) and it is a large, sparse nonsymmetric matrix and is very
ill-conditioned. There are two saddle-point problems embedded in Hk: incompressible
Navier-Stokes equations and the constrained optimization problem. One of the most
expensive steps of our algorithm is the construction of Hk. Unfortunately, there is no
reasonably cheap way to compute Hk. Some researchers try to approximate Hk by
dropping some terms (such as the shape derivatives) when taking the derivative of the
nonlinear function G(X). After many attempts to use an approximate Hk, we decide
to use a full, analytically computed, Jacobian. For this class of problems, we find that
the inexact Newton method converges faster and is most robust when equipped with
the full Jacobian. The full Jacobian matrix can be obtained by either a hand-coded
program which is accurate but programmer-time-consuming or a multi-colored finite
difference method which is less accurate and computer-time-consuming. We choose
to use a hand-coded Jacobian matrix since the finite difference based method is too
slow. For more details about the evaluation of the Jacobian matrix Hk see Appendix
A.

Most of the computing time for solving the optimization problem is spent on
solving the Jacobian system at each Newton step. Therefore, one needs an efficient
iterative method with a good preconditioner. We use a right-preconditioned GMRES
method [45]. The nonlinear and linear solvers are standard, we focus here on the
construction of the preconditioner.

To define the additive Schwarz preconditioner, we need an overlapping partition of
Ωα. Since the mesh topology doesn’t change when the shape of the domain changes, we
obtain the partition using the initial mesh on Ωα0

. We first partition the domain Ωα0

into non-overlapping subdomains Ωαl , l = 1, · · · , Np (see Fig. 4.2) and then extend
each subdomain Ωαl to Ωδαl which overlaps its neighbors, i.e., Ωαl ⊂ Ωδαl . Here Np is
the number of processors which is equal to the number of subdomains. The parameter
δ represents the size of the overlap. Note that the shape vectors a and λa are not
partitioned and assigned to all subdomains intersecting with the moving boundary.
When extending a subdomain to increase the overlap, the shape variables are not
considered.

Let N and Nl be the total degrees of freedom (DOF ) in Ωα and Ωδαl , respectively.

We define a Nl ×N restriction matrix Rδl which maps the global vector of unknowns
to those belonging to a subdomain. The component (Rδl )ij is either 1 if the indices
1 < i < N, 1 < j < Nl are related to unknowns defined at the grid points belonging to
Ωδαl or 0. For example, for X ∈ RN , Xl = RδlX by throwing away all the components

of X ∈ RN corresponding to mesh points outside Ωδαl .

For each of the overlapping subdomain we define Hl as the restriction of H to
the overlapping subdomain Ωδαl , i.e.,

Hl = Rδl H (Rδl )
T ,

where H is the Jacobian matrix of G(X). This is equivalent to assuming homogeneous
Dirichlet boundary conditions for all variables on the interior part of the boundary of
the overlapping subdomain. Then the classical one-level additive Schwarz precondi-
tioner [47] is defined as

M−1
asm =

Np∑
l=1

(Rδl )
TB−1

l Rδl .
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Here B−1
l is either the inverse of Hl or a preconditioner for Hl. In this paper, B−1

l is
the inverse of Hl which is computed by a sparse LU factorization.

The theory of classical one-level additive Schwarz preconditioner is very well de-
veloped for elliptic problems ([47]), and it says that the condition number of the
preconditioned system satisfies

κ ≤ C(1 +H/δ)

H2
,(3.5)

where H is the subdomain diameter, δ is the size of the overlap and C is a constant
which is independent of H, δ and the mesh size h. The 1/H2 term shows that the
number of iterations increases with the number of subdomains. Our problem is not
elliptic, but the performance of the preconditioner does show a similar dependence on
1/H2.

The overall algorithm can be described as follows:
Step 1: Set or compute the initial guess of the shape function α0(x), the

mesh displacement δx, the velocity u, the pressure p and the Lagrange
multipliers λu, λp, λx and λa.

Step 2: Form the Jacobian matrix of the nonlinear system G(Xk).
Step 3: Inexactly solve the preconditioned Jacobian system (3.3) for dk using

a GMRES.
Step 4: Update the solution Xk+1 = Xk + τkdk, where the step length τk is

selected by a cubic back-tracking line search method.
Step 5: Update the mesh using the grid displacements in dk and return to

Step 2 unless a stopping condition is met.
In Step 5, the reason that we can update the mesh using the grid displacements

in dk is that the moving mesh equations are included in the Jacobian system at
each Newton step and they are solved when the Jacobian system is solved in Step
3. The initial mesh displacement and the Lagrange multipliers are often set to zero.
The initial velocity and pressure are computed by solving the state equations on the
initial computational domain.

4. Numerical experiments. The algorithm introduced in the previous sec-
tions is applicable to general shape optimization problems governed by incompressible
Navier-Stokes equations. Here we study an application of the algorithm for a sim-
plified artery bypass problem [2] as shown in Fig. 4.1. The basic assumption is that
there is a complete blockage in the artery, and a bypass needs to be built. The goal
is to find the shape of the bypass such that the energy loss is minimized. We only
consider a 2D version of the problem and the algorithms developed in this paper can
be extended to 3D and generalized in a number of ways. For example, in the cur-
rent approach the moving boundary is assumed to be a polynomial. This assumption
can be replaced by any function that can be represented as a linear combination of
some local or global basis functions. The moving mesh equation can be replaced by
an elasticity equation which is more suitable for the case of large deformation. Our
solver is implemented using the Portable Extensible Toolkit for Scientific computing
(PETSc) [10]. All computations are performed on an IBM BlueGene/L supercom-
puter. Meshes are generated with CUBIT [37] from Sandia National Laboratory and
partitioned with ParMETIS [29]. The purposes of the numerical experiments are to
understand the convergence and the parallel scalability of the algorithm. Special at-
tention is paid to the performance of the domain decomposition preconditioner which
is the key component of the one-shot approach.
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Fig. 4.2. A sample partition of the computational domain, each color representing a different
subdomain. The initial computational domain Ωα0 is partitioned into 8 non-overlapping subdomains
by Parmetis [29].

We consider a simplified bypass problem as shown in Fig. 4.1. Without the block-
age, the flow is supposed to go from AB to IJ , but now we assume that the artery
is blocked at DE and the flow has to go through CH. For simplicity, the thickness
of CH is fixed. The goal is to find the best shape of the bypass CH, such that the
energy dissipation of the fluid in the entire computational domain Ωα is minimized in

Jo(u, α) = 2µ

∫
Ωα

ε(u) : ε(u)dxdy +
β

2

∫
I

(α′′)2dx.

For simplicity, we let the body forces f = 0 in the state equations (2.1). The boundary
condition on the inlet Γinlet is chosen as a constant vin, no-slip boundary conditions
are used on the walls Γwall and on the outlet boundary Γoutlet the stress-free boundary
conditions are imposed; see (2.1). We use a polynomial function

r(θ) =

p∑
i=1

riθ
i,

with p = 5 to represent the centerline of the bypass (see the dashed line in Fig. 4.1)
whose shape is to be determined by the optimization process. Other shape functions
can be used, but here we simply follow the paper [2].

In all experiments, we use a hand-coded Jacobian matrix. The Jacobian system
in each Newton step is solved by a right-preconditioned GMRES method with an
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Fig. 4.3. An example of the mesh deformation. The top figure is the initial mesh and the
bottom one is the deformed mesh.

absolute tolerance equal to 10−10 and a relative tolerance of 10−3. We stop the
Newton iteration when the nonlinear residual is decreased by a factor of 10−6. For
the one-level additive Schwarz preconditioner, the number of subdomains is equal to
the number of processors and the extended subdomain problems have zero Dirichlet
interior boundary conditions and are solved with a sparse LU factorization. The
overlapping size δ is understood in terms of the number of elements; i.e., δ = 8 means
the overlapping size is 8 layers of elements.

For the initial guess of the Newton method, we first solve the state equations (2.1)
on the initial computational domain Ωα0 and use this solution as the initial guess of
the velocity u and pressure p. We use zero initial guess for the other unknowns.

In the first test case, we set the Reynolds number Re = Lvin
µ to 300, where L = 0.8

is the artery diameter, vin = 3.75 is the inlet velocity and µ = 0.01 is the kinematic
viscosity. We solve the problem on a mesh with about 18,000 elements and 73,000
mesh points with a nearly uniform distribution in the flow domain. The parameter
β = 10.0 and the DOF for this test case is 620,946. The centerline of the initial shape
of the bypass is a semi-circle with center O and radius 2.7, and Fig. 4.4 shows the
velocity distribution of the initial (top) and optimal shapes (bottom). The energy
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Fig. 4.4. Velocity distribution of the initial (top) and optimal shapes (bottom). Here β = 10.0
and Re = 300.

dissipation of the optimized shape (top) is reduced by about 16.23% compared to the
initial shape (bottom). The centerline of the optimized shape is represented by the
computed polynomial

r(θ) = 2.700− 0.844θ + 0.377θ2 − 0.108θ3 + 0.036θ4 − 0.004θ5.

In some publications, e.g., [2, 40], the first term ε(u) : ε(u) in the objective function
(2.2) is referred to as the squared shear rate. We show the distribution of the shear
rate of the initial (top) and optimal (bottom) shapes in Fig. 4.5.

The regularization parameter β in the objective function (2.2) is very important
for shape optimization problems. From Table 4.1 we can see that reducing β can
increase the reduction of the energy dissipation (“Init.”, “Opt.” and “Reduction”
are the initial, optimized and reduction of the energy dissipation in the table), but
the number of Newton (Newton) and the average number of GMRES iterations per
Newton (GMRES) and the total compute time in seconds (Time) increase, which
means that the nonlinear algebraic system is harder to solve when β is small. This
is because the boundary of Ωα is more flexible and can become very irregular when
β is small. Fig. 4.6 shows the initial shape and the optimized shapes obtained with
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Fig. 4.5. The shear rate distribution of the initial (top) and final shapes (bottom). Here
β = 10.0 and Re = 300.

Table 4.1
Effect of the regularization parameter β in the cost functional (2.2). Here DOF = 620, 946,

Re = 300.

β Newton GMRES Time
Energy Dissipation

Init. Opt. Reduction
20.0 5 262.00 1573.58 106.51 92.17 13.47%
15.0 6 271.17 1804.33 106.51 90.78 14.77%
10.0 9 271.33 2450.19 106.51 89.22 16.23%
8.0 12 270.17 3101.40 106.51 88.55 16.86%
5.0 17 293.76 4275.80 106.51 87.45 17.90%

different values of β. From this figure we can see that β can control the boundary
deformation.

To show the parallel scalability of the algorithm, two meshes withDOF = 620, 946
and DOF = 893, 714 are considered. The strong scalability of the algorithm is given
in Fig. 4.7, which shows that the speedup is close to be linear when the number of
processors is small. The straight solid lines are the ideal scalability which means that
the compute time decreases in proportion to the increase of the number of proces-
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Table 4.2
Parallel scalability. Here β = 10 and overlap = 8 for the first grid (DOF = 620, 946) and

β = 20 and overlap = 6 for the second grid (DOF = 893, 714) and Re = 300 for both grids.

np
DOF = 620, 946

np
DOF = 893, 714

Newton GMRES Time Newton GMRES Time
45 9 287.22 3390.83 80 8 341.75 2373.75
64 9 271.44 2454.14 120 8 429.75 1741.29
90 9 366.11 1926.30 160 8 493.63 1621.78
128 9 393.89 1545.37 240 8 672.50 1308.43

sors. Refer to [30] for the definition of the speedup. As expected in one-level Schwarz
methods, the preconditioner becomes worse as the number of subdomains increases;
overlap between adjacent subdomains is not sufficient for the global transfer of in-
formation. The number of GMRES iterations increases with number of processors,
as shown in Table 4.2, where (as in all the tables) “np” is the number of processors.
This suggests the need for a two-level or multi-level Schwarz algorithm which we plan
to develop in the future.
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Fig. 4.7. The speedup and the total compute time for two different mesh sizes. Here Re = 300.

In our approach, we use a line search method to globalize the Newton method.
But not every Newton step requires a line search. In Table 4.3, we present the
number of line search (# Line-Search) and the compute time spent on the line search
(Line-Search). We also show the compute time for the preconditioner on the slowest
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Table 4.3
Time spent on the preconditioning and line search steps. Here β = 10, overlap = 8, DOF =

620, 946 and Re = 300.

np dof Newton # Line-Search
Time

Total Preconditioner Line-Search
64 63,208 9 4 2453.48 1562.94 39.56
90 60,328 9 4 1940.48 1372.32 27.91
128 52,808 9 5 1540.51 1173.84 19.85

Table 4.4
Test results using different overlapping factors with respect to the number of processors. Here

β = 10.0, DOF = 620, 946, Re = 300.

Overlap
Newton GMRES Time

np=64 np=128 np=64 np=128 np=64 np=128
5 9 9 393.67 825.11 2218.38 1821.93
6 9 9 334.00 586.22 2026.75 1563.14
7 9 9 282.11 459.22 2363.58 1669.32
8 9 9 271.89 407.11 2444.80 1567.20
9 9 9 261.89 344.67 2992.58 1818.65
10 9 9 233.00 330.00 2886.06 2437.13

processor (Preconditioner) and the degrees of freedom on this processor (dof) in
Table 4.3. Since we use the overlapping domain decomposition preconditioner, the
degrees of freedom on each processor is not halved when the number of processors is
doubled. We find that about 70% of the total compute time (Total) is spent on the
preconditioning step.

In overlapping domain decomposition methods, the overlapping parameter δ plays
an important role in controlling the number of iterations of the linear solver. From
Table 4.4, we see that the number of Newton iterations does not change when we
change the overlapping size and the number of GMRES iterations decreases as we in-
crease the overlapping size. The total compute time first decreases and then increases
as the overlapping size increases over a certain value. This suggests that an optimal
overlapping size exists if the goal is to minimize the total compute time for a given
number of processors on a particular machine.

Table 4.5 shows some results for different Reynolds numbers and regularization
parameters. Judging from the increase of the number of linear and nonlinear itera-
tions, it is clear that the problem becomes harder as we increase the Reynolds number
or decrease the regularization parameter. On the other hand, we achieve higher per-
centage of reduction of energy dissipation in the harder to solve situations.

5. Conclusions and future work. In this paper, we developed a parallel one-
shot Lagrange-Newton-Krylov-Schwarz method for two-dimensional shape optimiza-
tion problems governed by incompressible Navier-Stokes equations. Our approach
is based on a finite element discretization on a moving unstructured mesh covering
the computational domain whose shape determines the value of the objective func-
tion. This approach first reformulates the optimization problem into a large coupled
nonlinear algebraic system of equations and then solves the system with a one-level
Newton-Krylov-Schwarz algorithm. Even though the coupled system is highly ill-
conditioned, NKS converges well thanks to the powerful Schwarz preconditioner. We
tested the algorithms for an artery bypass design problem with more than 800,000
DOF and up to 128 processors. The numerical results show that our method is quite
robust with respect to the Reynolds number and the regularization parameter. The
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Table 4.5
The impact of Reynolds number. Here overlap = 8, DOF = 620, 946, np = 64.

Re
Newton GMRES Time Reduction

β=10.0 β= 5.0 β=10.0 β= 5.0 β=10.0 β= 5.0 β=10.0 β= 5.0
50 5 9 216.00 226.44 1524.26 2365.37 7.72% 7.92%
100 5 10 231.60 242.70 1541.14 2606.56 10.16% 10.72%
200 6 11 241.50 264.00 1761.78 2863.26 13.79% 14.97%
300 9 17 271.33 293.76 2450.19 4275.80 16.23% 17.90%

strong scalability is almost ideal when the number of processors is not too large. In
the future, we plan to study some multi-level Schwarz methods which may improve
the scalability when the number of processors is large.
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Appendix A. Evaluation of the nonlinear KKT system and the con-
struction of its Jacobian matrix. Providing an analytic hand-coded Jacobian
is very helpful for the efficiency and the robustness of the nonlinear solver, but the
actual construction of the Jacobian is often a challenge. In this appendix we provide
some details for the evaluation of the KKT system (3.1) and the construction of the
corresponding Jacobian matrix H in (3.3).

A.1. Evaluation of the nonlinear KKT system. First we compute the
derivatives of the Lagrange functional with respect to the velocity u. We note that
in the Lagrange functional all the terms except the objective function term Jo(u,a)
and the convective term B(u)u are linear with respect to u. Therefore we only need
to compute these two terms. The derivative of the objective function with respect to
u is

∂(Jo(u,a))

∂u
= 2µJu.

The nonlinear convective term B(u)u in the x direction is

n∑
i=1

ui

∫
Ω(α)

(
∂φi
∂x

n∑
k=1

ukφk +
∂φi
∂y

n∑
k=1

vkφk

)
φjdxdy, 1 ≤ j ≤ n.(A.1)

Taking the derivatives of (A.1) with respect to uq, 1 ≤ q ≤ n, we obtain

n∑
k=1

uk

∫
Ω(α)

(
∂φq
∂x

φk +
∂φk
∂x

φq

)
φjdxdy +

n∑
k=1

vk

∫
Ω(α)

∂φq
∂y

φkφjdxdy, 1 ≤ j ≤ n.

And the derivative with respect to vq, 1 ≤ q ≤ n is

n∑
k=1

uk

∫
Ω(α)

∂φk
∂y

φqφjdxdy, 1 ≤ j ≤ n.(A.2)

The derivatives in the y direction are similar.
Next we compute the derivatives of the Lagrange functional with respect to the

moving mesh δx. Because δx = x − x0, the derivatives to δx are equal to that of x.
For simplicity, we compute ∇x instead of ∇δx . The dependence on the moving mesh
is quite complicated because the integrals in the weak form are taken over a moving
domain, which depends on the mesh variables. To deal with this, we map the physical
domain Ωα to a reference domain Ωξ. Let the coordinate on the physical domain be
(x, y) and on the reference domain be (ξ, η). Then the transformation between the
coordinate (x, y) and (ξ, η) is given by

x =

n∑
i=1

xiφi(ξ, η), y =

n∑
i=1

yiφi(ξ, η),(A.3)
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where (xi, yi) are the spatial coordinates at node i. The Jacobian matrix of the
transformation is

J =


∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

 =


n∑
i=1

xi
∂φi(ξ, η)

∂ξ

n∑
i=1

yi
∂φi(ξ, η)

∂ξ

n∑
i=1

xi
∂φi(ξ, η)

∂η

n∑
i=1

yi
∂φi(ξ, η)

∂η

 ,(A.4)

and the determinant is

|J | =

∣∣∣∣∣∣∣∣∣∣

n∑
i=1

xi
∂φi(ξ, η)

∂ξ

n∑
i=1

yi
∂φi(ξ, η)

∂ξ

n∑
i=1

xi
∂φi(ξ, η)

∂η

n∑
i=1

yi
∂φi(ξ, η)

∂η

∣∣∣∣∣∣∣∣∣∣
=

n∑
i=1

xi
∂φi(ξ, η)

∂ξ

n∑
i=1

yi
∂φi(ξ, η)

∂η
−

n∑
i=1

xi
∂φi(ξ, η)

∂η

n∑
i=1

yi
∂φi(ξ, η)

∂ξ
.(A.5)

Note that the curvilinear coordinate (ξ, η) is defined locally with respect to each
element, so that each element has its own coordinate transformation. When we refer
to (ξ, η) globally, what we have in mind is the local curvilinear coordinate system
corresponding to the particular element that is referenced.

In order to change the integration domain, we need to replace the derivatives
∂φi
∂x

and
∂φi
∂y

with
∂φi
∂ξ

and
∂φi
∂η

. Using the chain rule

∂φi
∂ξ

=
∂φi
∂x

∂x

∂ξ
+
∂φi
∂y

∂y

∂ξ
,

∂φi
∂η

=
∂φi
∂x

∂x

∂η
+
∂φi
∂y

∂y

∂η
,

we have 
∂φi
∂x

∂φi
∂y

 = J−1


∂φi
∂ξ

∂φi
∂η

 , where J−1 =
1

|J |


∂y

∂η
−∂y
∂ξ

−∂x
∂η

∂x

∂ξ

 .
That is

∂φi
∂x

=
1

|J |

(
∂y

∂η

∂φi
∂ξ
− ∂y

∂ξ

∂φi
∂η

)
,
∂φi
∂y

=
1

|J |

(
−∂x
∂η

∂φi
∂ξ

+
∂x

∂ξ

∂φi
∂η

)
.(A.6)

Below we give an example of the computation of the derivative. Let us take the
Laplace term Ku

(Ku)j = µ

n∑
i=1

ui

∫
Ω(α)

(
∂φi
∂x

∂φj
∂x

+
∂φi
∂y

∂φj
∂y

)
dxdy.(A.7)

We transform the integral in (A.7) with (A.6) to obtain

(Ku)j = µ

n∑
i=1

ui

∫
Ωξ

(
(
∂y

∂η

∂φi
∂ξ
− ∂y

∂ξ

∂φi
∂η

)(
∂y

∂η

∂φj
∂ξ
− ∂y

∂ξ

∂φj
∂η

)(A.8)

+(−∂x
∂η

∂φi
∂ξ

+
∂x

∂ξ

∂φi
∂η

)(−∂x
∂η

∂φj
∂ξ

+
∂x

∂ξ

∂φj
∂η

)
) 1

|J |
dξdη.
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From the transformation (A.3), we have

∂x

∂ξ
=

n∑
i=1

xi
∂φi
∂ξ

,
∂x

∂η
=

n∑
i=1

xi
∂φi
∂η

(A.9)

and similarly for
∂y

∂ξ
and

∂y

∂η
. We also need to compute the derivatives ∂|J |/∂xq and

∂|J |/∂xq. From the definition of |J | (A.5), we have

∂|J |
∂xq

=
∂φq
∂ξ

n∑
i=1

yi
∂φi
∂η
− ∂φq

∂η

n∑
i=1

yi
∂φi
∂ξ

,

(A.10)
∂|J |
∂yq

=
∂φq
∂η

n∑
i=1

xi
∂φi
∂ξ
− ∂φq

∂ξ

n∑
i=1

xi
∂φi
∂η

.

Applying these to all the terms in (A.8), we obtain

∂(Ku)j
∂xq

= µ

n∑
i=1

ui

∫
Ωξ

(∂φi
∂x
|J |∂φj

∂x
|J |+ ∂φi

∂y
|J |∂φj

∂y
|J |
)( −1

|J |2
∂|J |
∂xq

)
dξdη(A.11)

+ µ

n∑
i=1

ui

∫
Ωξ

(
(−∂φq

∂η

∂φi
∂ξ

+
∂φq
∂ξ

∂φi
∂η

)
∂φj
∂y
|J |

+(−∂φq
∂η

∂φj
∂ξ

+
∂φq
∂ξ

∂φj
∂η

)
∂φi
∂y
|J |
) 1

|J |
dξdη,

which is an integral consisting of only quantities on the reference element—all depen-
dence on x and y has been suppressed, and so this integral can be computed in the
algorithm. The other terms can be computed similarly.

A.2. Construction of the Jacobian matrix. In this section we give an ex-
ample for the construction of the Jacobian matrix. Let us consider the x direction of
the Laplace term Ku. We have shown how to compute the first derivative (A.11) of
this term. We now compute the second derivative

∂(Ku)j
∂xq∂xk

= µ

n∑
i=1

ui

∫
Ωξ

(∂φi
∂x
|J |∂φj

∂x
|J |+ ∂φi

∂y
|J |∂φj

∂y
|J |
)

( 2

|J |
∂|J |
∂xq

∂|J |
∂xk

− ∂2|J |
∂xq∂xk

) 1

|J |2
dξdη

+ µ

n∑
i=1

ui

∫
Ωξ

(
(−∂φk

∂η

∂φi
∂ξ

+
∂φk
∂ξ

∂φi
∂η

)
∂φj
∂y
|J |

+ (−∂φk
∂η

∂φj
∂ξ

+
∂φk
∂ξ

∂φj
∂η

)
∂φi
∂y
|J |
)( −1

|J |2
∂|J |
∂xq

)
dξdη

+ µ

n∑
i=1

ui

∫
Ωξ

(
(−∂φq

∂η

∂φi
∂ξ

+
∂φq
∂ξ

∂φi
∂η

)
∂φj
∂y
|J |

+ (−∂φq
∂η

∂φj
∂ξ

+
∂φq
∂ξ

∂φj
∂η

)
∂φi
∂y
|J |
)( −1

|J |2
∂|J |
∂xk

)
dξdη

+ µ

n∑
i=1

ui

∫
Ωξ

(
(−∂φq

∂η

∂φi
∂ξ

+
∂φq
∂ξ

∂φi
∂η

)(−∂φk
∂η

∂φi
∂ξ

+
∂φk
∂ξ

∂φi
∂η

)
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+ (−∂φq
∂η

∂φj
∂ξ

+
∂φq
∂ξ

∂φj
∂η

)(−∂φk
∂η

∂φj
∂ξ

+
∂φk
∂ξ

∂φj
∂η

)
) 1

|J |
dξdη

and ∂2|J|
∂xq∂xk

= 0 from the definition of |J | (A.5). The other terms can be computed

similarly.


