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�� Introduction

In this paper� we give a progress report on the development of a new fam�
ily of domain decomposition methods for the solution of Helmholtz�s equation�
We present three algorithms based on overlapping Schwarz methods� in our fa�
vorite method we proceed to the continuous �nite element approximation of the
Helmholtz�s equation through a sequence of discontinuous iterates� While this is�
quite possibly� a new type of overlapping Schwarz methods� we have been inspired
to develop this idea by the thesis of Despr�es ����

The basic domain decomposition algorithm considered by Despr�es is de�ned as
follows	 The given region 
 is divided into two nonoverlapping subregions 
� and

�� and the iteration is advanced by simultaneously solving

��un��j � k�un��j � f x � 
j �

�un��j ��nint � ikun��j � ��unout��nout � ikunout x � ����

�un��j ��nint � ikun��j � g x � �
�

in the two subregions� Here f and g are data given for the original problem� k is
a real parameter� and  the interface� i�e� the parts common to �
� and �
�� the
boundaries of subregions� We note that Sommerfeld�type boundary conditions are
used and that the subregions themselves can be the union of a number of disjoint
regions as in the case when 
 is cut into strips and the strips colored using two
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colors� The iterates generally have jumps across the interface� the jump will go to
zero as the iteration converges�

In his thesis� Despr�es proves convergence in a relatively weak sense for a quite
general decomposition into nonoverlapping subregions and also conducts a detailed
theoretical and numerical study for a rectangular 
 cut into two� The convergence
is slow� but it is shown that under�relaxation can lead to an improvement� Despr�es
also brie�y considers the use of overlap� it is shown that this leads to a considerable
improvement in the rate of convergence of the iteration for the two subregion case�

In the limit of increasing domain diameter� the Sommerfeld boundary condition
provides the correct far��eld condition for propagation of waves in the frequency
domain� but for a bounded region it does not provide perfect transparency� It can
be argued that an alternative boundary condition� which more closely approximates
the correct nonlocal non�re�ecting boundary condition� would lead to more rapid
convergence� These ideas have indeed been tested with some success by Ghanemi
��� and others� This essentially amounts to replacing the ik terms in the interface
condition ��� with ikT � where T is an appropriate nonlocal operator� See also ���
for work more closely related to ours�

In our own work� we have instead attempted to use three ideas that have proven
successful in studies of other types of problems	 We have focused almost exclusively
on methods based on overlapping decompositions of the region 
� In addition� we are
exploring the possible bene�ts of a coarse solver as a part of our preconditioner� we
note that the use of a coarse space correction is required to establish convergence of
domain decomposition algorithms for a class of nonsymmetric and inde�nite elliptic
problems previously considered by Cai and Widlund ��� ��� We also take advantage
of well�known accelerators of the basic iteration schemes� in particular the GMRES
algorithm�

We refer to Smith� Bj�rstad� and Gropp ���� for an introduction to domain
decomposition methods in general� and these ideas in particular� We note that there
are a number of variants of the Schwarz algorithms	 additive� hybrid� restricted�
etc� In our work� we are now focusing on the classical� multiplicative algorithm�

�� Di�erential and Discrete Model Problems

We consider a Helmholtz model problem given by

��u� k�u � f x � 
� �u��n� iku � g x � �
����

where 
 is a bounded two or three�dimensional region� This equation is uniquely
solvable� and we note that the boundary condition� said to be of Sommerfeld type�
is essential in the proof of this fact�

We use Green�s formula� and complex conjugation of the test functions� to
convert ��� into variational form	 Find u � H��
� such that�

b�u� v� �

Z
�

�ru � r�v � k�u�v�dx� ik

Z
��

u�vds

�

Z
�

f�vdx�

Z
��

g�vds � F �v� �v � H��
��

Finite element problems can now be de�ned straightforwardly by replacing H��
�
by a suitable conforming �nite element space� So far� we have worked mainly with
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lower order elements but have made progress towards extending our studies and
numerical experiments to spectral elements�

Our interest in the spectral element case has been inspired by the work of Ihlen�
burg and Babu�ska �	� 
� �� and the thesis by Melenk ����� They have considered the
well�posedness of the original problem and di�erent �nite element discretizations
and proven� for a model problem in one dimension� that the basic estimate

jujH� � CkjF jH��

holds� In the �nite element case� an assumption of hk � � is used� The constant C
is independent of p� the degree of the �nite elements� Ihlenburg has also conducted
extensive numerical experiments which suggest that this bound also holds for prob�
lems in two or three dimensions� Error bounds of the following form are also given
for p � � and kh small enough	

jerrorjH� � C�� � C�k�
� where � � best H��error�

With oscillatory solutions typical� we can expect � to be on the order of kh� In
that case� the second term� which is due to the phase error� will dominate unless
k�h is on the order of �� Larger values of p appear attractive since Ihlenburg and
Babu�ska have also shown that

jerrorjH� � �p�C� � C��
�� � C�k�

�p�

Here � � hk��p� and the phase error is now relatively less important�

�� Overlapping Schwarz Algorithms

The basic multiplicative� one�level overlapping Schwarz method can be de�
scribed as follows	 Let f
jg be a set of open subregions that covers the given
region 
� Just as in the strip case of Section �� each subregion 
j can have many
disconnected components� it is often pro�table to color the subregions of an origi�
nal overlapping decomposition of 
 using di�erent colors for any pair of subregions
that intersect� The original set of subregions can then be partitioned into sets of
subregions� one for each color� e�ectively reducing the number of subregions� This
decreases the number of fractional steps of our Schwarz methods and helps make
the algorithms parallel� The number of colors is denoted by J �

In many cases� it is appropriate to view a multiplicative Schwarz method as
follows	 A full iteration step proceeds through J fractional steps�

un�j�J � un��j����J � Pj�u� un��j����J ��

where Pj � j � �� � � � � J� is a projection onto a subspace Vj related to 
j and u is the
exact �nite element solution� Such a fractional step can be more easily understood
by rewriting it in the form

bj�u
n�j�J � un��j����J � v� � F �v�� b�un��j����J � v� �v � Vj ����

The choice of the local sesquilinear form bj��� �� and the space Vj determines the
projection Pj � We will examine several choices one of which has discontinuous
iterates� and for it we will need an alternative to formula ���� Introducing a splitting
of the Helmholtz form with respect to each 
j and its complement 
c

j �

b�u� v� � bj�u� v� � bcj�u� v�����
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which we will further describe below� we can replace ��� by

bj�u
n�j�J � v� � F �v�� bcj�u

n��j����J � v�����

It is also easy to introduce a coarse space correction and a second level into
the algorithm� An additional fractional step is then used� we choose to make this
correction prior to the other� local steps� In our experiments� we have so far only
used the same low order �nite element method on a coarser mesh� The space related
to this mesh and fractional step is denoted by V� and we use formula ��� to de�ne
the related� special update� We note that all the solvers used in the fractional steps
are smaller� often much smaller� instances of the original problem�

One di�culty with faithfully implementing a generalization of Despr�es� algo�
rithm with overlap is the appearance and disappearance of multiple values� i�e�
jumps� across di�erent parts of the interface � which is now de�ned by

��
i n �
�

In our �rst two algorithms� we avoid jumps and use traditional domain decom�
position techniques� but in the third and most successful algorithm jumps in the
solution are fully accommodated�

The three algorithms can now be de�ned in terms of the sesquilinear forms
bj��� �� and the subspaces Vj �

ALG� An update with zero Dirichlet condition on �
j n
 is used in the jth frac�
tional step� this preserves the continuity of the iterates� The test functions
of Vj then vanish at all mesh points in the closure of 
c

j � The sesquilinear
form is de�ned by

bj�u� v� �

Z
�j

�ru � rv � k�uv�dx� ik

Z
�����j

uvds�

We note that for an interior subregion we cannot guarantee solvability of
the subproblem except by making the diameters of the components of the
subregion 
j small enough� The same preconditioner can also be obtained
by a matrix splitting based on the diagonal blocks of variables associated
with the nodes in 
j and on �
 � �
j �

ALG� The sesquilinear form is chosen as

bj�u� v� �

Z
�j

�ru � rv � k�uv�dx� ik

Z
��j

uvds�

and the elements of the space Vj are now required to vanish at all the nodes
in the open set 
c

j � We require that the solution of equation ��� belong to
the same space� Continuity of the iterates is maintained by overwriting all
the old values at all the nodes of the closure of 
j �

ALG� The same Vj and bj��� �� are used as in ALG�� but both the old and the new
values on �
j are saved� This will typically produce a jump across this part
of the interface� At the same time the jump across the interface interior to

j is eliminated� Further details will be given� we note that the new features
of this algorithm have required a redesign of our data structures� and that
there are consequences of the jumps that need careful scrutiny in order to
understand ALG� correctly�

Since we use completely standard techniques for the coarse grid correction� we
describe only the �ne grid fractional steps of ALG� in some detail� We must �rst
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realize that the lack of continuity across the interface  forces us to use broken
norms� i�e� to replace integrals over 
 and the 
j by sums of integrals over atomic

subregions de�ned by � We proceed by �nding the common re�nement of all split�
tings like ���� Let fAq jq � �� � � � � Qg be the open atoms generated by f
jg� i�e� the
collection of the largest open sets satisfying Aq � 
j or Aq � 
c

j for all j and q�
We re�ne ��� by expressing each term as a sum of Helmholtz forms de�ned on the
collection of open atoms contained in that region� Thus�

bj�u� v� �
X

Aq��j

bq�u� v�

bcj�u� v� �
X

Aq��c
j

bq�u� v��

These are the splittings needed to solve equation ��� in the presence of jumps and
to represent the solution in atomic form for further steps� The sesquilinear forms
corresponding to the individual atoms are de�ned by

bq�u� v� � aAq
�u� v�� ik�u� v�

e�q
� ik�u� v�

e��q
� ik�u� v�

e��q

where�

e�q � �Aq � �


e�q �
��

�Aq � �
j

���� 
c
j � Aq � j � �� � � � � J

�

e�q �
��

�Aq � �
c
j

���� 
j � Aq � j � �� � � � � J

�
�

For a valid splitting� we have to assume that the boundaries of any two intersecting
subdomains� 
i and 
j � must have the same unit normal where they intersect�
except on sets of measure zero�

The principal di�culty in implementing a multiplicative Schwarz cycle based

on ��� is that it requires that multiple values be kept at the atom interfaces e�q
and e�q because continuity is not enforced� Therefore� we represent the solution
function u as an element in the direct product of �nite element spaces� one for
each atom� At iteration n � j�J of the algorithm� see ���� the right hand side is
computed atomic subregion by atomic subregion� It is therefore practical to store
the nodal values of each atom separately� We also note that the test functions v
are continuous functions in the closure of 
 and that the solution un�j�J of ��� is
continuous in the closure of 
j � Once it is found� it is scattered to the individual
atoms of 
j � The set of nodal values of the iterate is exactly what is required in
the computation of the contribution from that atom to the next set of right hand
sides�

After a full sweep through all the subregions� the residuals interior to each
atomic subregion are zero� and across any segment of � the solution is either con�
tinuous or satis�es the �ux condition� Then� by Green�s formula� the approximate
solution un satis�es

b�un� v� � F �v� � ik

Z
�

�un��vds �v � V�
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In the limit� the jump goes to zero� this conveniently signals convergence� At this
point of the iteration� the residuals can be computed from the jump directly� but
also conventionally through its contributions from the atomic subregions�

�� Theoretical Results

Optimal convergence has been established for ALG� and ALG�� with a coarse
space V H and GMRES acceleration� using essentially only our older theory� see
��� �� or ���� Chapter ����� Our result is also valid for ALG� in the case when there
are no cross points� Our current proofs require H��regularity and that k�H� is
su�ciently small� i�e� the phase error of the coarse space solution is small enough�
�We believe that the H��regularity can be weakened at the expense of a more
severe restriction on k and H �� We note that while these types of conditions are
meaningful asymptotically� since our results show that the number of iterations
will be independent of h� only experiments can tell if the restriction imposed on
H makes our results irrelevant for a choice of mesh points that corresponds to a
realistic number of mesh points per wave length� We also note that our current
theory fails to explain the quite satisfactory performance that we have observed in
many of our experiments even without a coarse correction�

The bound for ALG� is independent of k and h while that of ALG� deteriorates
linearly with the number of points per wave length�

In view of our results and the formulas for the phase error� we have made series
of experiments with a �xed k�H� as well as k�h��

�� Numerical Results

The software used was developed with the PETSc library ��� supplied by Ar�
gonne National laboratories� as well as Matlab �TM�� a product of Mathworks�
Inc� We would like to acknowledge the generous help of the PETSc implementors
in developing and debugging our code� The platforms for our computations are
a Silicon Graphics Reality Monster �TM� parallel computer at Argonne National
Laboratories and local workstations�

We now describe the geometry and discretization used in our numerical ex�
periments� In all cases 
 is a unit square discretized with Q� elements� and the
subregions 
j are built from a decomposition of 
 into nonoverlapping square sub�
regions with a layer of � elements added in all directions� The relevant parameters
for describing an experiment are	

	 n the number of grid points per side of the square �ne mesh and h � ���n���
with 
 a unit square� nc and hc the analogs for the coarse mesh�

	 k the spatial frequency�
	 nsub the number of subregions�
	 � the number of elements across half of the overlap�
	 ppw the number of points per wave length on the �ne grid� ppw � ��

kh �
ppwc the analog for the coarse grid�

The number of points per wavelength is a non�dimensional measure of resolution�
We �rst compare the performance of the three algorithms on a � 
 � set of

square subregions without using a coarse grid� Here and below� we say that an
algorithm has converged at a given iteration if the �� norm of the preconditioned
residual is less than ���� of that of its original value� In some cases we also discuss
the relative error at termination of the iteration measured by the �� norm of the
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di�erence between the �nal iterate and the exact solution of the discrete system
divided by the �� norm of the same exact solution� An iteration number given in
parentheses indicates divergence and the iteration number at which the iteration
was stopped�

For ALG� GMRES acceleration had to be used at all times to obtain conver�
gence� moreover� given n � �� or ���� � � �� �� �� �� or �� and ppw � �� or ���
ALG� never converges in fewer than �� iterations� Moreover� the relative error in
the solution always exceeds ����� possibly re�ecting ill�conditioning�

For ALG�� we obtain convergence provided we use either overlap or GMRES
acceleration� Given the resolution n � �� or ��� and ppw � ��� ALG� diverges
when � � � unless GMRES acceleration is applied� Even with acceleration but
without overlap� ALG� appears to be worse than ALG�� With the smallest over�
lap� � � �� ALG� converges without acceleration� The convergence in about ��
iterations� is similar to that of ALG�� but the error is one tenth of that encoun�
tered in ALG�� apparently re�ecting better conditioning� With acceleration and
� � �� ALG� converges in �� iterations for both resolutions�

ALG� does not converge at all without overlap� but with overlap it outper�
forms both ALG� and ALG�� Given ppw � �� the resolution n � �� or ��� and
� � �� �� � or �� ALG� consistently converges at least twice as fast as ALG�� For
these parameter values ALG� always converges in fewer than �� iterations� and
the relative error is always less than ����� Given ppw � ��� whether n � �� or
n � ���� the results are the same provided that the ratio of � to ppw is maintained�
this indicates that ALG� has converged with respect to resolution� However� when
a coarse grid is used� the ratio of � to ppw ceases to be an accurate determinant of
performance�

In the remaining numerical results we investigate the behavior of ALG� in the
case of many subregions� Generally speaking� in the many subregion case ALG�
needs either GMRES acceleration or a su�ciently �ne coarse grid to converge� Table
� shows the results of several runs with ALG�� For the two sub�tables� k � �����
and ppw � ����� �above� and k � ����� and ppw������ �below�� and the mesh
size is  �
  � �above� and ���
 ��� �below�� The two choices of parameters are
related by a constant value of k�h�� In all cases there are !
 ! subregions� and the
coarse mesh size varies as indicated in the left column� Within each cell to the left
of the double line are presented the parameters nc �above� and ppwc �below� for
the row� within each cell to the right of the double line are presented data for the
unaccelerated algorithm �upper row�� the accelerated algorithm �lower row�� the
iteration count �left column�� the normalized residual �right column��

In all the above cases without a coarse grid� GMRES forces convergence in
�! or fewer iterations� By contrast� the algorithm sometimes fails to converge
when neither a coarse grid nor GMRES is used� Indeed� other experimental results
suggest that with a larger number of subregions �� �� ���� convergence without a
coarse grid generally requires acceleration�

In particular for a run not shown in our tables with k������� ppw������� a
���
 ��� �ne grid� no coarse grid� � � �� �� �� and a ��
 �� array of overlapping
subregions� the accelerated algorithm converges in �� to �� iterations� while the un�
accelerated algorithm diverges in two of three cases� For � � �� � a crude coarse grid
correction with ppwc���  grid lowers the iteration count to �! for the accelerated
algorithm� but the unaccelerated algorithm still diverges for � � �� �� ��
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Table �� Tables for ALG�

� � � �
nc��� ����� ��!�e��� �� ����e��� ��  ���e���
ppwc� ���� �� !���e��� �  �!�e��� �� ����e���
nc��� �� ����e��� ����� ����e��� ���� ��!�e���
ppwc� ��!� �� ����e��� ��  ���e��� �� ����e���
nc���� �� ���!e��� �� ���!e��� �� ����e���
ppwc� ���� �� ��!�e��� �� ����e��� �� ����e���
nc���� �� ����e��� �� ����e��� �� ����e���
ppwc������ �� ����e��� �� ����e��� �� ���!e���

� � � �
nc��� �! ����e��� �� ����e��� �� ����e���
ppwc� ���� ��  ���e��� �  ��!e��� �! ���!e���
nc���� �� !���e��� ����� ����e��� ���� ����e���
ppwc� ���� ��  � �e��� �� ����e��� �� ����e���
nc���� � ����e��� �� ���!e��� �� !���e���
ppwc�  ��� �� ����e��� �� ��! e��� �� ��!�e���
nc� �� �! ����e��� ��  �!�e��� �� !���e���
ppwc������ ��  ���e��� ��  ��!e��� �� ����e���

Thus far� our highest resolution computations use a �!�
 �!� �ne grid with a
�� 
 �� array of subregions� k � ������ and ppw � ������ Even without a coarse
grid� the unaccelerated algorithm converges in � to �� iterations� with GMRES
acceleration the algorithm converges in �� to �� iterations� With ppwc����! the
accelerated algorithm requires � to �! iterations� but the unaccelerated algorithm
diverges�

In general� when GMRES acceleration is used we always see convergence� even
without a coarse grid� When a coarse grid is used together with GMRES accelera�
tion� the coarse correction is helpful provided ppwc � �� The success of the GMRES
accelerated version of ALG� evidently comes from the restriction of the spectrum
to the right half�plane� which we always observe when using an Arnoldi method
to estimate the spectrum� This observation would indicate that ALG� could be
accelerated using less memory intensive techniques such as QMR or generalized
conjugate residual acceleration or� even� using Richardson�s method with a suitable
parameter� Certainly� these are some of the possibilities we will investigate�
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