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Abstract. Total variation denoising (TVD) is an effective technique for im-
age denoising, in particular, for recovering blocky, discontinuous images from
noisy background. The problem is formulated as an optimization problem in
the space of bounded variation functions, and the solution is obtained by solv-
ing the associated Euler–Lagrange equation defined on the domain occupied
by the entire image. The method offers high quality results, but is computa-
tionally expensive for large images, especially for three-dimensional problems.
In this paper, we introduce a highly parallel version of the algorithm which
formulates the problem as multiple overlapping, but independent, optimiza-
tion problems, and each is defined on a portion of the image domain. This
approach is similar to the overlapping Schwarz type domain decomposition
method, but is non-iterative, for solving partial differential equations, and is
highly scalable, without using any coarse grids, for parallel computers with a
large number of processors. We show by a theory and also by some two- and
three-dimensional numerical experiments that the new approach has similar
numerical accuracy as the classical TVD approach, but is much more efficient
on parallel computers.

1. Introduction. Denoising is usually the first step when processing a digital im-
age since the noise often impact the quality of later phases of the process. Consider
a noisy image defined on x ∈ Ω ⊂ Rd (d = 2, 3):

z(x) = u(x) + ε(x),

where u(x) is the ideal image to be restored, z(x) is the observed image, ε(x)
represents the noise to be removed. One of the most successful and popular methods
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is the Rudin-Osher-Fatemi (ROF) total variation based image denoising method
[33]. ROF model can be described as: Find u ∈ BV (Ω), such that

min
u∈BV (Ω)

{

α

∫

Ω

|∇u|dΩ +
1

2
‖u− z‖2L2(Ω)

}

,(1)

where |∇u| is the Radon measure, α is a positive parameter, and BV (Ω) is the
space of functions of bounded variation on Ω. The solution of the minimization
problem (1) is usually obtained by solving the associated Euler–Lagrange equation
which is obtained by the Fréchet differentiation of (1):

u− z − α∇ ·
( ∇u

|∇u|

)

= 0 in Ω,(2)

with the homogeneous Neumann boundary condition
∂u

∂n
= 0. To avoid the singu-

larity at |∇u| = 0, a small positive parameter β is usually introduced to the TV
functional, and the Euler-Lagrange problem is modified accordingly [33].

There are many techniques available for image denoising, such as the Gaussian
smoothing method [4], empirical Wiener filters [10], wavelet thresholding methods
[19], nonlocal means methods [6], variation based methods [2], and so on. Because
of the capability of preserving sharp edges and boundaries with a high quality
recovery, the variation based methods have been widely used with great success [2,
33]. In addition to denoising, the TV method has been successfully applied to other
image processing problems, including image debluring, inpainting, segmentation
and cartoon-texture decompositions [5, 9, 11, 30, 38]. In this paper, we focus on
the image denoising problem.

Most existing algorithms such as these in [11, 26, 31, 33, 39] for solving (1) tar-
get sequential computers. With the recent development of photographic technology,
the image resolution is significantly higher. For the denoising of high resolution and
large scale images, such as color images, three-dimensional images, the memory
requirement and the computing time increase drastically, as a result, parallel com-
puting becomes necessary. There are some recent works for parallel image processing
using GPU, multi-core and many-core architectures; see, for example [1, 20, 32, 35].
Single and multilevel domain decomposition (DD) methods were applied to TV min-
imization problems, and both overlapping and nonoverlapping DD methods were
considered. In [23], some non-overlapping DD methods were introduced for the TV
model and in [22], some overlapping methods were considered for the same class of
problems. A two-level overlapping DD method for the primal total variation min-
imization was studied in [40], and later they extended the method to the nonlocal
TV model in [13]. In [12], a DD method for its dual counterpart was considered
and a convergence analysis was provided. In [25], some nonoverlapping DD methods
coupled with semi-smooth Newton were studied for the pre-dual TV problem and a
convergence analysis was also provided. More recently, a dual decomposition based
primal nonoverlapping DD method was introduced in [29] for the TV model. These
DD based approaches are more suitable for CPU-based parallelizations, but only
limited parallel experiments were reported. In the PhD thesis [27] the author inves-
tigated some optimal control and convex programming based nonoverlapping DD
methods for smoothed TV and the methods are scalable with up to 144 processor
cores. All the above mentioned methods are iterative and require several linear and
nonlinear iterations to converge. In this paper, we propose a non-iterative parallel
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DD based algorithm applied directly to the optimization problem to solve the large
scale image denoising problem on a supercomputer.

To motivate our new algorithm, we make an obvious, but often ignored, obser-
vation about a major difference between image denoising problems and problems
arising from, for example, solving elliptic partial differential equations (PDE). The
difference is about data dependency, which is very important for the purpose of
parallelization on large scale parallel computers. Elliptic problems, and many other
PDE problems, are globally dependent, in the sense that one can not find the so-
lution on part of the computational domain without knowing the solution on the
rest of the domain. On the other hand, image denoising is a local problem, i.e., the
noise in part of the domain has nothing to do with the noise on other different parts
of the image. The advantage of the noise locality property is not taken into account
by the classical ROF approach. In other words, once the optimization problem (1)
is formed, the noise becomes a globally connected field. Additional efforts (decom-
position by domain and several iterations) will be needed to break up the global
field in order to introduce parallelism.

For the purpose for better parallelization, we take advantage of the fact that the
noise in different part of the image domain is independent, and form local opti-
mization problems on subdomains, one for each processor of the parallel computer.
We note that the algorithm does need a small amount of information from nearby
subdomains, therefore, we allow the subdomains to overlap each other. An error
analysis is provided in the paper to show that the solution obtained from the new
method is essentially the same as the solution of the classical iterative approach
based on the global optimization problem, and more importantly, the new method
is much faster on parallel computers because there is no communication between
processor cores. The algorithm proposed in the paper is aimed to solve minimiza-
tion problems in the BV space, and the numerical simulations presented in the
paper show that the algorithm performs quite well when the observation is in the
BV space. However, we need the assumption that the observation z ∈ W 1,1(Ω) for
the theory to work.

The rest of the paper is organized as follows. In Section 2, the new method is
introduced and the existence, uniqueness and error analysis of the method are given
in Section 3. Some numerical experiments are shown in Section 4 to demonstrate
the efficiency and robustness of the algorithm, and to compare the method with the
classical ROF approach for two- and three-dimensional problems. Some conclusions
and discussions are given in Section 5.

2. A non-iterative overlapping Schwarz method. In this section, we propose
a non-iterative overlapping Schwarz method (NiOS) for solving the image denoising
problem. The method to be introduced here is different from (1) which is based
on an optimization problem defined on the whole domain, but we will show ex-
perimentally and theoretically that the difference is small, in terms of the quality
of the restored image. The advantage of the new method is that it minimizes the
communication cost and is scalable on parallel computers without requiring any
coarse grids.

The NiOS method begins with a partition of the image domain into N nonover-

lapping subdomains denoted as Ωk
0 (k = 1, 2, · · · , N), that satisfy Ω =

⋃N
k=1 Ω

k
0

and Ωi
0

⋂

Ωj
0 = ∅, i 6= j. In other words, each pixel belongs to one and only

one subdomain. Then we extend each subdomain into a larger subdomain Ωk
δ

(k = 1, 2, · · · , N) by including δ layers of pixels (δ is a positive integer) from the
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Figure 1. An example of the domain partition. Here dots are im-
age pixels and the image domain is partitioned into 16 subdomains.
The domain with solid red lines is an example of a nonoverlapping
subdomain Ωk

0 and the corresponding overlapping subdomain Ωk
δ

is marked with dashed black lines. The overlapping size δ is the
distance between the boundaries of Ωk

0 and Ωk
δ .

neighboring subdomains; see, for example, Fig. 1. On each subdomain Ωk
δ , we define

a ROF problem as follows:

min
uk∈BV (Ωk

δ )

{

α

∫

Ωk
δ

|∇uk|dΩk
δ +

1

2
‖uk − zk‖2L2(Ωk

δ )

}

,(3)

where zk = z|Ωk
δ
is the sub-image with noise on the subdomain Ωk

δ . The Euler–

Lagrange equation corresponding to (3) takes the form

(4)















uk − zk − α∇ ·
(

∇uk

√

|∇uk|2 + β

)

= 0, in Ωk
δ ,

∂uk

∂n
= 0, on ∂Ωk

δ ,

where β is a small positive parameter added to the dominator to avoid the possible
singularity when |∇uk| is 0. There are many discretization techniques available for
solving (4), such as finite difference method or finite element method. After solving
the problem on the overlapping subdomain, we throw away part of the solution
and only keep the solution components on the nonoverlapping subdomains Ωk

0 and
the denoised image uh (the discretized solution) is obtained by combining those
solutions as follows:

uh =

N
∑

k=1

Ek
0R

k
0u

k
h,(5)

where Rk
0 is a restriction operator from the overlapping subdomain Ωk

δ to the
nonoverlapping subdomain Ωk

0 , that is, for a vector uk
h defined on Ωk

δ , R
k
0u

k
h takes

components belonging only to Ωk
0 . E

k
0 is an extension operator from the nonoverlap-

ping subdomain Ωk
0 to the whole domain Ω which is defined as follows. Let m be the
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total number of pixels in Ω and mk the total number of pixels in Ωk
δ . Then the ex-

tension operator Ek
0 is am×mk matrix, whose elements (Ek

0 )l1,l2 are 1 if 1 ≤ l1 ≤ m
and 1 ≤ l2 ≤ mk correspond to a pixel in Ωk

0 or 0 otherwise. In other words, we ex-
tend the local vector uk

h to a global vector by adding zeros (0, · · · , 0, Rk
0u

k
h, 0, · · · , 0).

Fig. 2 gives an example for the N = 4 case. The framework of the NiOS algorithm
is given in Algorithm 1.

Algorithm 1 : NiOS

Step 1. Partition the original image into N nonoverlapping sub-images Ωk
0 (k =

1, 2, · · · , N) and then extend each sub-image to include δ layers of pixels
surrounding the sub-image Ωk

δ to form overlapping subdomains.
Step 2. Define the ROF model (3) on the overlapping subdomains Ωk

δ (k =
1, 2, · · · , N), derive the Euler–Lagrange equation (4), and solve equation
(4) in parallel to obtain uk

h.
Step 3. Combine the sub-problem solutions uk

h (k = 1, 2, · · · , N) into a global
solution uh using (5).

We remark that Algorithm 1 is similar to the overlapping domain decomposition
method that decomposes the computational domain into overlapping subdomains
and then restricts the original partial differential equation to each of the subdo-
mains, except here we apply the overlapping decomposition idea directly to the
optimization problem. The other difference is that DD usually requires several
iterations to obtain the solution. However, numerical experiments in this paper
indicate that the NiOS algorithm can obtain a sufficiently accurate solution with-
out any iteration. To understand this, an error analysis is provided in the next
section to investigate the difference between the solutions obtained by NiOS and
the classical ROF method based on solving the global optimization problem. Note
also that traditional DD requires coarse grids in order to be scalable, but NiOS is
scalable without any coarse grids. It is important to note that the increase of the
overlapping size is helpful to reduce the difference between NiOS and the classical
ROF but it does not improve much of the quality of the image measured by the peak
signal-to-noise ratio. To balance the accuracy and efficiency of the NiOS algorithm,
a relatively small overlapping size should be chosen according to our experimental
studies.

3. Existence, uniqueness, and error analysis. In this section, we first prove
the existence and uniqueness of the solution for the Euler–Lagrange equation. Then
an auxiliary one-dimensional problem is studied. Finally we provide an error analy-
sis which shows that the solution obtained by NiOS is close to the solution obtained
by the method based on the global optimization approach.

We first consider the existence and uniqueness of the solution of the Euler–
Lagrange equation

u− z − α∇ ·
(

∇u
√

|∇u|2 + β

)

= 0 in Ω,(6)

with a homogeneous Neumann boundary condition

∂u

∂n
= 0.
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Figure 2. Procedure of NiOS. Step 1: Overlapping domain de-
composition (A); Step 2: Distribute overlapping subdomain prob-
lems to 4 processors and solve these four overlapping sub-problems
(B); Step 3: Combine images from non-overlapping subdomains
(C). Here the points with different colors are the image pixels dis-
tributed to different processor cores.

We are mainly interested in the case that Ω is a bounded domain with Lipschitz
boundary. By denoting the vector function Φ : Rd → Rd as

Φ(x) =
x

√

|x|2 + β
,

we can rewrite (6) as a capillarity type equation:

(7) ▽ · Φ(▽u(x)) = ϕ(x, u) in Ω.

When the boundary condition takes the form Φ(▽u) · n = cos θ, the problem was
carefully studied in [24, 36, 37]. In these papers, ϕ(x, v) is a given function and
assumed to have Hölder continuous partial derivatives with respect to (x, v) ∈ Ω̄×R

and satisfy

inf
x∈Ω̄,v∈R

∂ϕ(x, v)

∂v
> 0,

where Ω̄ represents the closure of Ω. Ural’tseva [37] shows that (7) has a C2(Ω̄)
solution if θ = constant ∈ (0, π) and Ω is a convex domain of class C2,γ . Using a
different method, Spruck [36] obtains a similar result in Ω ∈ R2 with C4 smooth
boundary without the restriction of convexity. Moreover, the angle θ is allowed
to be non-constant, and the cases θ = 0, π are also discussed. Similar results are
reported in [24].

In this paper, we aim to estimate the error of NiOS on a bounded domain with
Lipschitz boundary. Note that the noisy image z is usually considered as a function
in L2(Ω) and in such a situation ϕ(x, v) may not have Hölder continuous partial
derivatives with respect to x ∈ Ω̄. In such situation, the strong regularity results
of [24, 36, 37] do not hold for the Euler–Lagrange equation, we therefore switch
to a weak form of the problem. We first prove that the Euler–Lagrange equation
has a unique weak solution in W 1,1(Ω) ∩ L2(Ω). The weak form of (7) is: Find

Inverse Problems and Imaging Volume 13, No. 6 (2019), 1259–1282
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u ∈ W 1,1(Ω) such that
∫

Ω

(u− z)φdΩ +

∫

Ω

α▽φ · Φ(▽u)dΩ = 0,

holds for any φ ∈ W 1,1(Ω).

Lemma 3.1. The following inequality holds for all x, y ∈ Rd with d = 1, 2 or 3,
(

Φ(x)− Φ(y)
)

· (x− y) ≥ 0.

Proof.
(

Φ(x) − Φ(y)
)

· (x− y)

=
|x|2

√

|x|2 + β
+

|y|2
√

|y|2 + β
− x · y
√

|x|2 + β
− x · y
√

|y|2 + β

≥ |x|2
√

|x|2 + β
+

|y|2
√

|y|2 + β
− |x||y|
√

|x|2 + β
− |x||y|
√

|y|2 + β

= (|x| − |y|)
( |x|
√

|x|2 + β
− |y|
√

|y|2 + β

)

≥ 0.

The last inequality holds due to the monotonicity of the function |Φ|.

Theorem 3.1. Let Ω be a bounded domain with Lipschitz boundary. Suppose z ∈
W 1,1(Ω) ∩ L2(Ω). α, β are two positive constants. Then the Euler–Lagrange equa-
tion has a unique weak solution u ∈ W 1,1(Ω)∩L2(Ω) satisfying ‖u‖L2(Ω) ≤ ‖z‖L2(Ω)

and ‖▽u‖L1(Ω) ≤ C+
√
1 + β‖▽z‖L1(Ω), where C is a positive constant independent

of α and β.

Proof. According to the variation theory, the solution of the Euler–Lagrange equa-
tion is also the solution of the following minimization problem

(8) L(u) = min
v∈V (Ω)

L(v),

where the function L(v) is defined as L(v) := α
∫

Ω(β+ |∇v|2)1/2dΩ+ 1
2‖v− z‖2L2(Ω)

and the space V (Ω) is defined as V (Ω) := {v ∈ W 1,1(Ω)|∇v · n = 0 on ∂Ω}. It is
easy to check that L(v) ≥ α‖∇v‖L1(Ω) and L(v) is convex. Thus, similar to [21]
(Theorem 2, page 448), we obtain that there exists at least one solution u ∈ V (Ω)
such that L(u) = min

v∈V (Ω)
L(v) by replacing the Dirichlet boundary condition with the

homogeneous Neumann boundary condition, which means that the Euler–Lagrange
equation exists at least one solution in V (Ω).

Since the function L(u) is strictly convex, the minimization problem exists only
one solution, which implies the uniqueness of the weak solution of the Euler–
Lagrange equation.

Multiplying the Euler–Lagrange equation with u and taking the integral, we
obtain

∫

Ω

u2dΩ +

∫

Ω

α▽u · Φ(▽u)dΩ =

∫

Ω

uzdΩ ≤ 1

2
(‖u‖2L2(Ω) + ‖z‖2L2(Ω)).

Since the second term in the left-hand side is nonnegative, this implies ‖u‖L2(Ω) ≤
‖z‖L2(Ω). Because z ∈ W 1,1(Ω), there is a positive constant C such that ‖▽z‖L1(Ω) ≤
Inverse Problems and Imaging Volume 13, No. 6 (2019), 1259–1282
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C. Let Ω̃ be a subdomain of Ω defined as Ω̃ =
{

x ∈ Ω
∣

∣|▽u| ≥ 1
}

. Then we have

α√
1 + β

‖▽u‖L1(Ω̃) ≤
∫

Ω̃

α▽u · Φ(▽u)dΩ̃ ≤
∫

Ω

α▽z · Φ(▽u)dΩ ≤ α‖▽z‖L1(Ω),

which shows that ‖▽u‖L1(Ω̃) ≤
√
1 + β‖▽z‖L1(Ω). Subsequently, we conclude that

‖▽u‖L1(Ω) ≤ C +
√
1 + β‖▽z‖L1(Ω), where C is a constant independent of α and β.

The proof is complete.

In the rest of this section, we assume β < 1 and α is a given positive constant.
We introduce an auxiliary one-dimensional problem as follows, and later we will
consider two- and three-dimensional problems as tensor products of one-dimensional
problems

(9)

{

v(y)− αDΨ(Dv(y)) = 0 y ∈ (a, b),

Dv
∣

∣

y=a
= ν1, Dv

∣

∣

y=b
= ν2.

Here D represents the derivative and the scalar function Ψ : R → R is defined as
Ψ(y) = y√

y2+β
.

Lemma 3.2. Assume ν1ν2 = 0. The auxiliary problem (9) has a unique solution
that satisfies

(10)

oscy∈[a,b]v(y) ≤ Cβ1/4,

max
y∈[a,b]

∣

∣v(y)
∣

∣ ≤ C(α + β1/4),

|Dv(y)| ≤ C in [a, b],

|Dv(y)| ≤ Cβ1/4 in [a− Cβ1/2 log β, b+ Cβ1/2 log β].

Here C is a positive constant independent of α and β. osc refers to the oscillation
defined as oscy∈[a,b]v(y) = supy∈[a,b]v(y)− infy∈[a,b]v(y).

Proof. The uniqueness of the solution is easily obtained from Theorem 3.1. Let

σ =
√

α
β1/2 , ȳ = σy, and v̄ = v/(σβ1/2). Then, v̄ is a solution of a capillarity type

equation as follows

v̄ −Dȳ

( Dȳ v̄
√

(Dȳ v̄)2 + 1

)

= 0 in (σa, σb).

By using Theorem 3.3 in [36], we have v̄ ∈ C3[a, b] and v ∈ C3[a, b]. Next, we
prove |Dv| ≤ C with C independent of α and β. Let Y = {y ∈ [a, b]

∣

∣|Dv(y)| =
max
z∈[a,b]

|Dv(z)|} and y0 = min
y∈Y

y. If y0 ∈ (a, b), we obtain D2v(y0) = 0. According to

(9), we have v(y0) = αβ D2v(y0)

(
√

(Dv(y0))2+β)3
= 0. If Dv(y0) > 0, it follows D2v(y) > 0

and v(y) < 0 for y ∈ (y0 − ε, y0) with small enough ε, which contradicts with

v(y0) = αβ D2v(y0)

(
√

(Dv(y0))2+β)3
. Similarly, for Dv(y0) < 0, we have D2ṽ(y) < 0 and

v(y) > 0 for y ∈ (y0−ε, y0) with small enough ε, which also contradicts with v(y0) =

αβ D2v(y0)

(
√

(Dv(y0))2+β)3
. Thus, we have y0 = a or y0 = b and |Dv| ≤ max{|ν1|, |ν2|} ≤ C,

where C is a constant independent of α and β.
If ν1 = ν2 = 0, then the solution of (9) is v = 0 and satisfies (10), which completes

the proof in this situation. Next, we consider the case with ν1 = 0 and ν2 > 0.
The proof of the other case is similar. Let us assume that the minimum value

Inverse Problems and Imaging Volume 13, No. 6 (2019), 1259–1282
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v(ỹ0) = min
y∈[a,b]

v(y) < 0. Due to ν1 = 0, ν2 > 0 and the minimum condition, we

get D2v(ỹ0) ≥ 0 and Dv(ỹ0) = 0. However, D2v(ỹ0) = v(ỹ0)
[(Dv(ỹ0))

2+β]3/2

αβ < 0,

which shows the assumption is not true. Thus v(y) ≥ 0 and D2v(y) ≥ 0 hold for all
y ∈ [a, b], which implies Dv(y) is monotonically increasing in [a, b]. Due to ν1 = 0,
we have Dv(y) ≥ 0 and v(y) is a monotonically increasing function in [a, b]. If
ν2 ≤ β1/4, it is clear that oscy∈[a,b]v(y) ≤ Cβ1/4 and |Dv(y)| ≤ Cβ1/4 hold for all

y ∈ [a, b]. Since

b
∫

a

vdy = αΦ(ν2), we obtain

v(b) = max
y∈[a,b]

∣

∣v(y)
∣

∣ ≤ C(α + β1/4),

which implies that the estimates (10) hold.
Next, we assume ν2 > β1/4. Since v(y) is monotonically increasing in [a, b], we

have v(a) = min
y∈[a,b]

v(y) ≥ 0. Let ζ1 in [a, b] such that Dv(ζ1) = β1/2. Then we have

β1/2 =

ζ1
∫

a

D2vdy =

ζ1
∫

a

[(Dv)2 + β]3/2

αβ
vdy ≤ 23/2

ζ1
∫

a

β1/2v(ζ1)

α
dy,

which implies (ζ1 − a)v(ζ1) ≥ Cα and v(ζ1) ≥ Cα.
We only consider the case with ν2 > β1/6. The other cases are similar. Since

Dv(y) is monotonically increasing in [a, b], we can choose a sequence ξn such that
Dv(ξn) = βγn , for n = 1, 2, · · · . Here γ1 = 1/6 and γn = 1/6 + γn−1/3. It is clear
1/4 = lim

n→∞
γn , γn ≤ 1/4, and lim

n→∞
ξn = ξ0 with Dv(ξ0) = β1/4. Since ξi > ζ1 and

v(ξi)/α ≥ C, we have
(11)

ν2 − β1/6 = Dv(b)−Dv(ξ1) =

b
∫

ξ1

D2vdy =

b
∫

ξ1

[(Dv)2 + β]3/2

αβ
vdy ≥

b
∫

ξ1

β−1/2v

α
dy,

which implies b− ξ1 ≤ Cβ1/2α. Similarly, we get

(12)

1− βγn−γn−1 = β−γn−1

ξn−1
∫

ξn

D2vdy = β−γn−1

ξn−1
∫

ξn

[(Dv)2 + β]3/2

αβ
vdy

≥ β−γn−1

ξn−1
∫

ξn

(β2γn + β)3/2

αβ
vdy ≥

ξn−1
∫

ξn

β−1/2v

α
dy.

Together with (11) and (12), we have

ν2 − βγ1 +
n
∑

i=2

(1− βγn−γn−1) ≥
b
∫

ξ̄n

β−1/2v

α
dy.

Since −y log β ≥ (1− βy) holds for any small positive y, we get

C log β ≥ ν2 − βγ1 − (γ1 − γn) log β ≥
b
∫

ξn

β−1/2v

α
dy.
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Then we obtain b− ξn ≤ −Cβ1/2 log β. Let n → ∞, we have b− ξ0 ≤ −Cβ1/2 log β,
which shows the fourth inequality of (10) is true. Since Dv(y) ≥ 0, we have

oscy∈[a,b]v(y) =

∫ b

a

Dv(y)dy ≤ Cβ1/4,

which implies the first inequality of (10) holds. Due to

∫ b

a

vdy = αΦ(ν2), it follows

that max
y∈[a,b]

∣

∣v(y)
∣

∣ ≤ C(v(a) + β1/4) ≤ C(α + β1/4), which completes the proof.

Now let us consider the error estimates for the two- and three-dimensional prob-
lems based on the above Lemmas and Theorem. Assume u is the solution of
(6) on domain Ω and uk is the solution of the sub-problem on Ωk

δ . Here Ωk
δ =

((xs
1, x

u
1 )× · · · × (xs

d, x
u
d))∩Ω. From Theorem 3.1, we get the uniqueness of the two

solutions. For a fixed k, it is clear that u satisfies

u− z − α▽ · Φ(▽u) = 0 in Ωk
δ ,

with boundary condition Φ(▽u) · n = ν(x) for x on ∂Ωk
δ . It is clear that |ν(x)| ≤ 1

and ν(x) = 0 for x on ∂Ω. The following theorem provides an estimate of the
distance between u and uk in L2(Ωk

δ ).

Theorem 3.2. Let Ω be a bounded domain with Lipschitz boundary and Ωk
δ =

(

(xs
1, x

u
1 ) × · · · ×(xs

d, x
u
d)
)

∩ Ω. Suppose z ∈ W 1,1(Ω) ∩ L2(Ω). Assume u is the

solution of (6) on Ω and uk is the solution of (4) on Ωk
δ . Then we have

‖u− uk‖2L2(Ωk
δ )

≤ C(α + β1/4).

Here C is a constant which is dependent on ‖ u ‖W 1,1(Ω) but independent of α and
β.

Proof. We obtain the uniquenesses of u and uk from Theorem 3.1. For i = 1, 2, · · · , d,
let ws

i and wu
i be the solutions of the following equations

(13)

{

ws
i (xi)− αD

(

Ψ(Dws
i (xi))

)

= 0 in (xs
i , x

u
i ),

Dws
i (xi)

∣

∣

xi=xs
i

= −1, Dws
i (x)

∣

∣

xi=xu
i

= 0,

and

(14)

{

wu
i (xi)− αD

(

Ψ(Dwu
i (xi))

)

= 0 in (xs
i , x

u
i ),

Dwu
i (xi)

∣

∣

xi=xs
i

= 0, Dwu
i (xi)

∣

∣

xi=xu
i

= 1.

Case A. Ωk
δ = (xs

1, x
u
1 ) × · · · × (xs

d, x
u
d) ⊂ Ω. In this case, Ωk

δ is a rectangular or
hexahedral subdomain of Ω. With the definition of u, uk, ws

i , w
d
i , we have u−uk−

∑d
i=1 ν̃

s
iw

s
i −

∑d
i=1 ν̃

u
i w

u
i satisfies



























u− uk −
d
∑

i=1

ν̃siw
s
i −

d
∑

i=1

ν̃ui w
u
i − α▽ · Φ(▽u) + α▽ · Φ(▽uk)

+

d
∑

i=1

αν̃si ∂xi

(

Ψ(∂xiw
s
i )
)

+

d
∑

i=1

αν̃ui ∂xi

(

Ψ(∂xiw
u
i )
)

= 0 in Ωk
δ ,

where ν̃si = −
√

(1 + β)Φ(▽u(xs)) · n, and ν̃ui =
√

(1 + β)Φ(▽u(xu)) · n. Here
xs = (x1, · · · , xi−1, x

s
i , xi+1, · · · , xd) and xu = (x1, · · · , xi−1, x

u
i , xi+1, · · · , xd) are
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two points on ∂Ωk
δ . By multiplying the above equation by u − uk and taking the

integral, we get
(15)

‖u− uk‖2L2(Ωk
δ )

+ α

∫

Ωk
δ

(

Φ(▽u)− Φ(▽uk)
)

▽(u− uk)dΩk
δ

=

d
∑

i=1

α

∫

Ωk
δ

ν̃siΨ(∂xiw
s
i )∂xi(u− uk)dΩk

δ +

d
∑

i=1

α

∫

Ωk
δ

ν̃ui Ψ(∂xiw
u
i )∂xi(u − uk)dΩk

δ

+

∫

Ωk
δ

d
∑

i=1

ν̃siw
s
i (u− uk)dΩk

δ +

∫

Ωk
δ

d
∑

i=1

ν̃ui w
u
i (u− uk)dΩk

δ .

The first two terms in the right-hand side of (15) satisfy

d
∑

i=1

α

∫

Ωk
δ

ν̃siΨ(∂xiw
s
i )∂xi(u− uk)dΩk

δ +

d
∑

i=1

α

∫

Ωk
δ

ν̃ui Ψ(∂xiw
u
i )∂xi(u − uk)dΩk

δ

=

d
∑

i=1

α

∫

Ωk
δ

∂xi(u− uk)dΩk
δ

(

ν̃ui

∫ xi

xs
i

∂xi

(

Ψ(∂xiw
u
i )
)

dxi − ν̃si

∫ xu
i

xi

∂xi

(

Ψ(∂xiw
s
i )dxi

)

)

=

d
∑

i=1

∫

Ωk
δ

∂xi(u − uk)dΩk
δ

(

ν̃ui

∫ xi

xs
i

wu
i dxi − ν̃si

∫ xu
i

xi

ws
i dxi

)

.

Thanks to Theorem 3.1 and Lemma 3.2, we obtain

∣

∣

∣

d
∑

i=1

α

∫

Ωk
δ

ν̃siΨ(∂xiw
s
i )∂xi(u− uk)dΩk

δ +
d
∑

i=1

α

∫

Ωk
δ

ν̃ui Ψ(∂xiw
u
i )∂xi(u − uk)dΩk

δ

∣

∣

∣

≤ C(α+ β1/4).

The last two terms in the right-hand side of (15) satisfy

∣

∣

∣

∫

Ωk
δ

d
∑

i=1

ν̃siw
s
i (u− uk)dΩk

δ +

∫

Ωk
δ

d
∑

i=1

ν̃ui w
u
i (u− uk)dΩk

δ

∣

∣

∣

≤ C(α+ β1/4)‖u− uk‖L2(Ωk
δ )
.

Since the second term in the left-hand side of (15) is nonnegative, we have

‖u− uk‖2L2(Ωk
δ )

≤ C(α + β1/4),

which completes the proof in this situation.

Case B. Ωk
δ ( (xs

1, x
u
1 ) × · · · × (xs

d, x
u
d). In this case, ∂Ωk

δ ∩ ∂Ω 6= ∅. For a point

x ∈ Ωk
δ , let us define ρi(x) = xs

i +
(xi−x̃s

i )(x
u
i −xs

i )

(x̃u
i −x̃s

i )
, where x̃s = (x1, · · · , xi−1, x̃

s
i , xi+1,

· · · , xd) and x̃u = (x1, · · · , xi−1, x̃
u
i , xi+1, · · · , xd) are two points on ∂Ωk

δ . We can
choose the two points x̃s and x̃u such that the line between them belongs to Ωk

δ

and x̃u
i > x̃s

i .
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Then, we have u− uk −∑d
i=1 ν̃

s
iw

s
i (ρi)−

∑d
i=1 ν̃

u
i w

u
i (ρi) satisfies

u− uk −
d
∑

i=1

ν̃siw
s
i (ρi)−

d
∑

i=1

ν̃ui w
u
i (ρi)− α▽ · Φ(▽u) + α▽ · Φ(▽uk)

+
∑d

i=1 αν̃
s
i ∂ρi

(

Ψ(∂ρiw
s
i (ρi))

)

+
∑d

i=1 αν̃
u
i ∂ρi

(

Ψ(∂ρiw
u
i (ρi))

)

= 0 in Ωk
δ ,

where ν̃si = −
√

(1 + β)Φ(▽u(x̃s)) ·n and ν̃ui =
√

(1 + β)Φ(▽u(x̃u)) ·n, respectively.
Here ws

i are wu
i are given in (13) and (14), respectively. It is important to note

that ν̃ui and ν̃si are both equal to zero while x̃u and x̃s are on ∂Ω. For x̃u or x̃s on
∂Ωk

δ \∂Ω, we have that ν̃ui or ν̃si is a function independent of xi. Similar to the case
A, multiplying the above equation by u− uk and taking the integral give that
(16)

‖u− uk‖2L2(Ωk
δ )

+ α

∫

Ωk
δ

(

Φ(▽u)− Φ(▽uk)
)

▽(u − uk)dΩk
δ

=
d
∑

i=1

α
(x̃u

i − x̃s
i )

(xu
i − xs

i )

∫

Ωk
δ

{

ν̃siΨ(∂ρiw
s
i (ρi)) + ν̃ui Ψ(∂ρiw

u
i (ρi))

}

∂xi(u− uk)dΩk
δ

+

d
∑

i=1

∫

Ωk
δ

{

ν̃siw
s
i (ρi) + ν̃ui w

u
i (ρi)

}

(u − uk)dΩk
δ .

The first summation in the right-hand side of (16) satisfies

∣

∣

∣

d
∑

i=1

α
(x̃u

i − x̃s
i )

(xu
i − xs

i )

∫

Ωk
δ

{

ν̃siΨ(∂ρiw
s
i (ρi)) + ν̃ui Ψ(∂ρiw

u
i (ρi))

}

∂xi(u− uk)dΩk
δ

∣

∣

∣

≤
∣

∣

∣

d
∑

i=1

α

∫

Ωk
δ

∂xi(u− uk)dΩk
δ

(

ν̃ui

∫ xi

xs
i

∂ρi

(

Ψ(∂ρiw
u
i (ρi))

)

dρi

− ν̃si

∫ xu
i

xi

∂ρi

(

Ψ(∂ρiw
s
i (ρi))

)

dρi

)∣

∣

∣

=
∣

∣

∣

d
∑

i=1

∫

Ωk
δ

∂xi(u − uk)dΩk
δ

(

ν̃ui

∫ xi

xs
i

wu
i (ρi)dρi − ν̃si

∫ xu
i

xi

ws
i (ρi)dρi

)∣

∣

∣
.

Thanks to Theorem 3.1 and Lemma 3.2, we obtain

∣

∣

∣

d
∑

i=1

α
(x̃u

i − x̃s
i )

(xu
i − xs

i )

∫

Ωk
δ

{

ν̃siΨ(∂ρiw
s
i (ρi)) + ν̃ui Ψ(∂ρiw

u
i (ρi))

}

∂xi(u− uk)dΩk
δ

∣

∣

∣

≤ C(α + β1/4).

The second part in the right-hand side of (16) satisfies

∣

∣

∣

d
∑

i=1

∫

Ωk
δ

{

ν̃siw
s
i (ρi) + ν̃ui w

u
i (ρi)

}

(u − uk)dΩk
δ

∣

∣

∣

≤ C(α+ β1/4)‖u− uk‖L2(Ωk
δ )
.

Since the second term in the left-hand side of (16) is nonnegative, we have

‖u− uk‖2L2(Ωk
δ )

≤ C(α + β1/4),

which completes the proof in Case B and finishes the proof of the theorem.
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Theorem 3.3. Let Ω be a bounded domain with Lipschitz boundary. Suppose z ∈
W 1,1(Ω)∩L2(Ω). Assume u is the solution of (6) on Ω and ũ is the solution obtained
by (4) and (5). Then we have

(17) ‖u− ũ‖2L2(Ω) ≤ C(α+ β1/4).

Here C is a constant which is dependent on ‖ u ‖W 1,1(Ω) but independent of α and
β.

Proof. Since ũ =
∑N

k=1 E
k
0R

k
0u

k, we have

‖u− ũ‖2L2(Ω) =
N
∑

k=1

‖u− Ek
0R

k
0u

k‖2L2(Ωk
0
) ≤

N
∑

k=1

‖u− uk‖2L2(Ωk
δ )

≤ C(α+ β1/4),

which completes the proof.

4. Numerical experiments. In this section, some numerical experiments using
the proposed algorithm are presented, and we also compare with the results obtained
by the classical ROF approach. We focus on the efficiency, scalability and robustness
of the algorithm. In the experiments, the noisy images are obtained by adding some
Gaussian white noise generated by the Matlab function imnoise(I,‘gaussian’, M,
σ2). A standard second-order finite difference method (5-point stencil for 2D and
7-point stencil for 3D) is used to discretize (4) or (6) with a mesh size equals to
distance between the two nearest pixels. To measure the quality of the restored
images, the peak signal-to-noise ratio (PSNR) is used.

PSNR = 10 log10

d
∏

i=1

Ni

∑

j(uj,r − uj)2
,(18)

where (uj,r − uj) represents the difference of the pixel values between the restored
and original images, and Ni is the number of pixels in the ith spatial coordinate
direction. Higher values of PSNR means better restoration quality. Typical values
of PSNR in lossy image and video compression are between 30dB to 50dB, and
acceptable values for wireless transmission quality loss are usually considered to be
about 20dB to 25dB.

Our algorithm is implemented on top of the open source package PETSc [3]
developed at Argonne National Laboratory. All computations are carried out
on the Tianhe 2 supercomputer at the China National Supercomputer Center in
Guangzhou. The compute node has a dual six-core Intel Xeon X5650@2.76GHz
processor and 24GB of memory.

To compare with the classical ROF model, we implement a parallel solver for
(6) using the Newton-Krylov-Schwarz method (NKS) [8] described in Algorithm 2
below, where an inexact Newton method is used as the nonlinear solver and a Krylov
subspace method (GMRES) [34] is used to solve the Jacobian system preconditioned
by an overlapping domain decomposition method [7]. In Algorithm 2, F (u) = 0
represents the nonlinear system arising from the finite difference discretization of
(6) on a rectangular or hexahedral mesh, Jk is the full Jacobian of F (u) at point
uk, M

−1
k is an additive Schwarz preconditioner. The inexactness means that the

accuracy of the Jacobian solver is determined by a parameter η ∈ [0, 1) in the sense
of

||F (uk) + J(uk)sk|| ≤ η||F (uk)||.(19)
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Algorithm 2 : Newton-Krylov-Schwarz (NKS)

Use the observed image as the initial guess u0

For k = 0, 1, . . . until convergence, do
1. Construct the Jacobian matrix Jk
2. Solve the following right-preconditioned Jacobian system inexactly by a

Krylov subspace method

JkM
−1
k Mksk = −F (uk)

3. Do a cubic line search to find a step length τk
4. Set uk+1 = uk + τksk

End

The number of subdomains equals to the number of processors and the subdomain
solver for the Schwarz method is an incomplete LU factorization (ILU). The relative
residual stopping conditions are used for the linear and nonlinear solvers, which are
10−4 and 10−6, respectively. The overlap in the Schwarz preconditioner is set to 1.
The NKS method is a very powerful parallel solver for nonlinear problems and it
has been well studied for lots of problems, for example, problems in fluid dynamics
[15, 28] and optimization problems [14, 18].

Note that the subdomain problems (4) in NiOS are also solved with the sequential
version of the NKS method on a single processor, where ILU is employed as the
subdomain solver. In the rest of the paper, unless otherwise stated, we denote by
“Newton” as the total number of Newton iterations for NKS and it also used as the
average number of local Newton iterations over all processors for NiOS, “GMRES”
as the average number of GMRES iterations per Newton iteration, “Time” as the
total compute time in second, and np as the number of processors.

4.1. Two-dimensional image denoising. For two-dimensional problems, we test
three benchmark gray scale images, boat-1024×1024, cameraman-2048×2048, and
cameraman-4096×4096, respectively. The original images have a dynamic range
[0,1], and some Gaussian white noises with variance σ2 = 0.04 are added to them.
For the purpose of comparison, we set the parameters as β = 10−4 and α = 0.18.
The computed results are shown in Fig. 3-4. A comparison of the results obtained
by the NiOS method and the NKS method is shown in Fig. 4, clearly the restored
images of the two methods are very similar. Furthermore, the PSNRs for the two
images are almost the same (PSNRNiOS = 28.536962 and PSNRNKS = 28.536417).
The compute time comparison is in Table 1, which shows that NiOS is much faster
than NKS, especially when the number of processors is large, for example, when
np = 1024, for the cameraman-4096×4096 case, NiOS is 4.5 times faster than NKS.

To further compare the two methods, we plot the difference (or we refer to as
the error of the NiOS method) of the two solutions in Fig. 5, and the larger error
appears mainly near the inner boundary of the subdomains. Table 2 shows how
the error depends on the parameters α and β. We observe that the error decreases
with the decrease of α and increases when β decreases. The possible reason that
the error increases when β decreases is that Theorem 3.1 gives us an upper bound
of ‖u‖W 1,1(Ω), but the relationship between ‖u‖W 1,1(Ω) and β is still unknown.
Thus the constant C in the error estimate (17) may increase as β decreases which
leads to the increase of the error. According to the estimate (17), the error is
proportional to α + β1/4 which matches with the numerical results in Table 2. To
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Figure 3. The boat-1024× 1024 image denoising results. From
left to right: the original image, the noise image with δ2 = 0.04,
and the restored image by NiOS. Here α = 0.18, β = 10−4, and
the PSNR of the restored image is 27.5444.

Table 1. The comparison of NiOS and NKS. Here β = 1.0×10−4,
α = 0.18, the overlapping size for NiOS is 4. “Sp” refers to the
compute time speedup of the NiOS method compared with the
NKS method, which is defined as the time of NKS divides the time
of NiOS.

cameraman-2048×2048 cameraman-4096×4096

np NKS NiOS NKS NiOS

Newton Time Newton Time
Sp

Newton Time Newton Time
Sp

32 24 9.8 22 5.0 2.0 30 50.0 26 23.4 2.1
64 27 6.2 21 2.8 2.2 37 35.6 23 12.6 2.8
128 25 3.0 20 1.2 2.5 38 17.9 23 6.5 2.8
256 25 1.7 19 0.6 2.8 33 8.7 21 2.9 3.0
512 24 0.9 19 0.4 2.3 38 5.3 20 1.4 3.8
1024 23 1.2 19 0.3 4.0 38 3.6 20 0.8 4.5

check the convergence rate, we reduce the parameters proportionally, that is if α is
reduced by 1

2 , then β should be reduced by (12 )
4. Table 3 shows the convergence

rate of the algorithm, which matches the estimate from the theory. As mentioned
before, β is an artificial parameter used to prevent the singularity at |▽u| = 0,
therefore the value should be chosen as small as possible. As reported in Table 2,
the number of nonlinear iterations increases sensibly as β decreases, but the image
quality is improved slowly at the same time. So in this paper, we use α = 0.18
and β = 1.0 × 10−4 unless mentioned otherwise. With these values of α and β,
the difference of solutions obtained using NiOS and NKS in relative sense is about
1.0× 10−3, which is small enough to indicate that these two images are essentially
the same.

The parallel performance of NiOS for the 2D cameraman image case is given
in Table 4 and Fig. 6. Table 4 shows that the numbers of Newton and GMRES
iterations decrease with the increase of the number of processors (which equals to
the number of subdomains). The possible reason is that the subdomain problem
becomes smaller when the number of subdomains increases, and this makes the
subdomain problem easier to solve. Fig. 6 shows that the parallel performance of
the NiOS method is almost ideal (the ideal speedup is defined as: the total compute
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Figure 4. A comparison of the results obtained by NiOS and
NKS. The first row: the clean image (left), the noisy image with
σ2 = 0.04 (right); second row: the local zoom-in of the figures in
the first row; third row: the restored images obtained by NiOS
(left) and NKS (right); fourth row: the local zoom-in of the figures
in the third row. The PSNR of the restored image with NiOS and
NKS are 28.536962 and 28.536417, respectively.
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Figure 5. The surface plot of the error between NiOS and NKS:
uNKS − uNiOS. Here the image size is 1024×1024, α = 0.18, β =
1.0× 10−4. The overlapping size is 4 and the number of processors
is 4.

time is halved as the number of processors is doubled). This is because the algorithm
is communication-free and the only factor that influences the parallel efficiency is
the unbalance of the subdomain problems, since different subdomain problems have
different smoothness properties, so the number of Newton, GMRES iterations, and
the total compute time are different as shown in Table 5. The compute time for
the fastest subdomain is almost half of that for the slowest subdomain. In all test
cases, we consider the time spent by the slowest subdomain as the total compute
time. In some of our tests, the total compute time is not exactly halved when the
number of processors doubles because the computations on different processors are
not always balanced.

4.2. Three-dimensional magnetic resonance image denoising. In medical
diagnosis, the three-dimensional magnetic resonance (MR) plays an important role,
however, random noise is difficult to avoid in the imaging process and the noise
may lead to numerous systematic errors in subsequent applications. For three-
dimensional image processing, the computation is more expensive because of the
large size. In this section, the performance of the NiOS method is investigated.

The three-dimensional images used for this experiment are from the BrainWeb
database1 [16]. We focus on the restoration of two images: T1-weighted (T1-w)
image and T2-weighted (T2-w) image, both of which contain 181×217×181 voxels.
9% Rician noise is added to the images using the white Gaussian noise as in [17].
Suppose that the pixel values of the images lie in the interval [0, 1]. 9% Racian noise
means that the Gaussian noise used is equivalent to 9

100ν, where ν is the brightest

tissue in the image (150255 for T1-w and 250
255 for T2-w). In the experiments, the PSNR

1http://www.bic.mni.mcgill.ca/brainweb/.
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Table 2. The error of the NiOS method with respect to the pa-
rameters α and β. Here ERROR is the relative error ||uNiOS −
uNKS||2/||utrue||2, uNiOS, uNKS, and utrue are the solution of NiOS,
NKS, and the clean image, respectively.

β α
boat-1024×1024 cameraman-2048×2048

Newton GMRES ERROR PSNR Newton GMRES ERROR PSNR

10−1 0.01 2 1 2.1× 10−7 15.1 2 1 4.4× 10−9 15.4
10−1 0.05 3 1 1.4× 10−5 17.4 3 1 2.9× 10−7 17.6
10−1 0.1 3 2 6.3× 10−5 19.5 3 2 7.1× 10−6 19.7
10−1 0.15 4 2 1.3× 10−4 21.1 4 2 1.6× 10−5 21.2
10−1 0.2 4 2 2.0× 10−4 22.3 4 2 3.6× 10−5 22.4
10−1 0.25 6 2 2.7× 10−4 23.2 12 3 6.1× 10−5 23.2

10−2 0.01 2 1 9.3× 10−7 15.6 2 1 7.5× 10−7 15.6
10−2 0.05 4 2 5.7× 10−5 18.8 4 2 3.7× 10−6 19.0
10−2 0.1 5 2 2.3× 10−4 22.3 5 2 4.5× 10−5 22.4
10−2 0.15 6 2 4.3× 10−4 24.5 6 2 1.4× 10−4 24.6
10−2 0.2 8 3 6.3× 10−4 25.7 7 3 2.6× 10−4 25.8
10−2 0.25 10 3 8.1× 10−4 26.4 8 3 3.8× 10−4 26.6

10−3 0.01 3 1 2.2× 10−6 15.4 3 1 1.3× 10−7 15.7
10−3 0.05 9 2 1.3× 10−4 19.3 10 2 1.9× 10−5 19.6
10−3 0.1 8 3 4.8× 10−4 23.9 8 3 1.8× 10−4 24.2
10−3 0.15 10 3 8.7× 10−4 26.6 12 3 5.0× 10−4 26.9

10−3 0.2 20 4 1.2× 10−3 27.4 12 4 8.3× 10−4 28.0
10−3 0.25 17 4 1.5× 10−3 27.3 14 4 1.1× 10−3 28.4

10−4 0.01 9 1 3.2× 10−6 15.4 5 2 5.4× 10−7 15.7
10−4 0.05 16 3 1.9× 10−4 19.4 14 3 5.1× 10−5 19.7
10−4 0.1 21 4 7.1× 10−4 24.5 20 3 4.1× 10−4 24.7
10−4 0.15 19 5 1.3× 10−3 27.3 19 5 1.0× 10−3 27.9
10−4 0.2 22 7 1.7× 10−3 27.5 21 6 1.6× 10−3 28.7
10−4 0.25 21 15 2.0× 10−1 27.6 24 8 2.1× 10−3 28.7

Table 3. The error of the NiOS method with respect to the pa-
rameters α and β changed proportionally, for example, when α
is reduced by 1

2 , β is reduced by (12 )
4. “ERROR” has the same

definition as in Table 2.

β α
boat-1024×1024 cameraman-2048×2048

Newton GMRES ERROR PSNR Newton GMRES ERROR PSNR

6.25× 10−3 0.1 8 2 2.8× 10−4 22.7 6 2 6.4× 10−5 22.9
3.9× 10−4 0.05 11 2 1.6× 10−4 19.3 11 2 3.0× 10−5 19.7
2.4× 10−5 0.025 14 2 4.1× 10−5 16.8 12 2 6.8× 10−6 17.1
1.5× 10−6 0.0125 17 2 7.6× 10−6 15.6 10 2 1.1× 10−6 15.9

Table 4. Parallel performance of the NiOS algorithm for the 2D
cameraman image denoising.

np
2048×2048 4096×4096

Newton GMRES Time(s) Newton GMRES Time(s)
64 21 4 1.7 23 4 7.2
128 20 4 0.8 22 4 3.3
256 20 4 0.4 21 4 1.6
512 19 4 0.2 20 4 0.8
1024 18 4 0.1 20 4 0.4
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Figure 6. The speedup of the NiOS algorithm for the 2D cam-
eraman image denoising problem.

Table 5. The detail of the sub-problem solving in NiOS with 24
processors. Image size is 2048×2048. Here “rank” is the processor
core ID.

rank Newton GMRES Time rank Newton GMRES Time
0 11 5 7.3 12 17 5 9.1
1 11 5 7.3 13 14 5 8.4
2 17 5 9.2 14 10 5 6.4
3 19 5 9.8 15 8 5 5.2
4 12 5 7.2 16 14 5 8.0
5 12 5 7.3 17 14 5 8.3
6 12 5 7.3 18 16 5 8.8
7 12 5 7.6 19 16 5 8.8
8 16 5 8.8 20 13 5 7.6
9 17 5 9.0 21 13 5 7.5
10 11 5 6.8 22 16 5 8.5
11 12 5 7.3 23 16 5 6.6

are used as criteria for the quality of image restoration. For the sake of clarity, the
PSNR are estimated only in the brain region obtained by removing the background.

Instead of removing the noise slice by slice as in most of the previous works,
we use the full three-dimensional model, that is we solve the ROF model (1) in
the three-dimensional domain. An example of the noisy image and its partition for
parallel computing are shown in Fig. 7. The slices of restored images are shown in
Fig. 8 and the three-dimensional reconstructions of the images are shown in Fig. 9.
The PSNR values for the noisy T1-w and T2-w images are 26.3706 and 21.9557, and
after denoising, the PSNR values are promoted to 30.2275 and 25.7565, respectively.

Table 6 shows a comparison of NiOS and NKS. The results indicate that NiOS
saves a lot of compute time compared with NKS, especially when the number of
processors is large. Table 7 shows the effect of the overlapping size in the NiOS

Inverse Problems and Imaging Volume 13, No. 6 (2019), 1259–1282



1278 Rongliang Chen, Jizu Huang and Xiao-Chuan Cai

Figure 7. A noisy image (left) and an example of the partition of
the image into 8 sub-images (right).

Table 6. Comparison of the NiOS and NKS for the 3D image
denoising. The image size is 181× 217× 181. “Sp” refers to the
compute time speedup of the NiOS method compared with the
NKS method.

np
NKS NiOS

Sp
Newton GMRES Time(s) Newton GMRES Time(s)

32 35 17 38.5 35 12 22.0 1.8
64 36 17 24.5 31 11 12.4 2.0
128 36 18 12.0 29 10 5.0 2.4
256 36 18 6.6 26 9 3.3 2.0
512 39 18 3.9 24 8 1.4 2.8
1024 35 19 2.4 22 8 0.7 3.4

Table 7. The effect of various choices of the overlapping pa-
rameter δ in the NiOS method for the 3D image. The number
of processors is 64 and the image size is 181× 217× 181. The
PSNR of the NKS method is 27.84 for this image denoising. Here
DIFF = ||uNiOS −uNKS||2 is the difference of the solution of NiOS
(uNiOS) and NKS (uNKS)

δ Newton GMRES Time (s) PSNR DIFF
0 14 5 2.7 27.83 5.89
1 14 5 2.8 27.85 1.20
2 14 5 3.1 27.84 0.36
3 14 5 3.4 27.84 0.07

method. We see that a small overlap is good enough in terms of the compute time
and image quality. The last column of Table 7 shows that the difference of the
solutions of NiOS and NKS decreases with the increase of the overlapping size.

To further understand the newly developed method, we combine the NiOS method
and the NKS method by using the solution of the NiOS method as the initial guess
of the NKS method. In Table 8, the “First Stage” refers to the NiOS method and
the “Second Stage” refers to the NKS method with an initial guess obtained by
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Figure 8. Slice 100 of the 3D MR images. From left to right, the
first row: the original T1-w image, the T1-w image with a Racian
noise at 9% and the restored image; second row: the detailed partial
images of the first row images; third row: the original T2-w images,
the T2-w image with a Racian noise at 9%, and the restored image.
The last row: the detailed partial images of the third row images.
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1280 Rongliang Chen, Jizu Huang and Xiao-Chuan Cai

Figure 9. The 3D reconstruction of the MR image. From left to
right: Top: the clean image, the image with 9% Racian noise, and
the restored image; Bottom: the corresponding zoomined images.

Table 8. Parallel performance of the NiOS-NKS algorithm for the
3D image denosing. The image size is 217×217×181.

np
First Stage Second Stage

Newton GMRES Time Newton GMRES Time
32 15 5 4.48 3 7 2.39
64 14 5 3.5 3 7 1.41
128 15 5 1.71 3 7 0.77
256 14 5 1.11 3 7 0.47
512 14 5 0.45 3 7 0.36
1024 14 5 0.26 3 8 0.42

NiOS. We see that the solution of the NiOS method provides a very good initial
guess for the NKS method because the NKS method converges much faster than
starting from the noisy image, as compared with the previous experiment.

5. Conclusion. We developed a new parallel non-iterative domain decomposition
method for large scale image denoising. Numerical results show that the newly
developed method works well for 2D and 3D image denoising problems and a linear
speedup is obtained with up to 1024 processors. Traditional domain decomposition
methods, whether overlapping or nonoverlapping, require several iterations to find
the solution and need at least one coarse grid to achieve linear scalability on parallel
computers. The new method requires neither iteration nor coarse grid to obtain the
solution and is scalable on parallel computers. A theoretical analysis is provided
to show that the error of the method, compared with the classical ROF model, is
proportional to α + β1/4, and the estimate is also confirmed by numerical exper-
iments with two- and three-dimensional images. We have not tested, but would
like to mention that the method can easily be combined with other methods, such
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as the augmented Lagrangian method, the primal-dual method, the split Bregman
iteration, etc.
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