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Abstract

Numerical simulation of blood flows in patient-specific arteries can be useful for

the understanding of vascular diseases, as well as for surgery planning. In this

paper, we simulate blood flows in the full cerebral artery of stroke patients. To

accurately resolve the flow in this rather complex geometry with stenosis is chal-

lenging and it is also important to obtain the results in a short amount of com-

puting time so that the simulation can be used in pre- and/or post-surgery

planning. For this purpose, we introduce a highly scalable, parallel non-nested

two-level domain decomposition method for the three-dimensional unsteady

incompressible Navier-Stokes equations with an impedance outlet boundary

condition. The problem is discretized with a stabilized finite element method on

unstructured meshes in space and a fully implicit method in time, and the large

nonlinear systems are solved by a preconditioned parallel Newton-Krylov

method with a two-level Schwarz method. The key component of the method is

a non-nested coarse problem solved using a subset of processor cores and its

solution is interpolated to the fine space using radial basis functions. To validate

and verify the proposed algorithm and its highly parallel implementation, we

consider a case with available clinical data and show that the computed result

matches with the measured data. Further numerical experiments indicate that

the proposed method works well for realistic geometry and parameters of a full

size cerebral artery of an adult stroke patient on a supercomputers with

thousands of processor cores.
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1 | INTRODUCTION

Hemodynamic analysis of patient-specific artery is useful for the understanding and diagnosis of various vascular dis-
eases, such as angiosclerosis and angiostenosis, as well as for surgery planning. Several statistical studies show that the
hemodynamic flow patters and parameters, such as wall shear stress (WSS), flow separation, regurgitation, vortex, etc.,
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are considered to be closely related to the formation and progression of the cerebrovascular diseases.1,2,3

Four-dimensional magnetic resonance imaging (4D MRI) and computational fluid dynamic (CFD) are the two major
methods to study the hemodynamic. The spatial and temporal resolutions of 4D MRI are 2 to 3 mm and 40 to 50 ms,
respectively. This level of resolution is unable to capture certain small scale features of the fluid and the scan time of
the 4D MRI is relatively long.4,5 On the other hand, CFD is able to provide higher resolution than 4D MRI, except that
it often takes more time to obtain CFD results due to the high computational cost.6

CFD based blood flow simulation is increasingly used to obtain the hemodynamic properties of individual patient.
For example, Dedè et al studied the blood flow in an idealized left human heart.7 Buoso et al introduced a parameter-
ized reduced-order method for the noninvasive functional evaluation of coronary artery diseases.8 Stoter et al used the
Navier-Stokes/Darcy equations to simulate the blood flow of a patient-specific human liver.9 Some recent reviews of
patient-specific blood flow simulations can be found in References 10 and 11. For the cerebral blood flow, there are
some recent works for patients with aneurysms12,13 and stenosis.14,15,16 Due to the computational cost and convergence
issues, most simulations for the cerebral artery consider only a small segment or a few branches of the artery, or using
simplified geometry such as a bifurcating tube to represent the artery. For example, in Reference 17 a short, patient-spe-
cific, segment of the cerebral artery with a zero-one-dimensional boundary condition was considered for the hemody-
namic study. In Reference 18, a Navier-Stokes model for the left internal carotid artery coupled with a one-dimensional
Euler model for the circle of Willis is used to simulate the blood flow in the cerebral artery. Some very large scale simu-
lations were carried out in References 19 and 20, in which the entire cerebral arteries with hundreds of branches were
included under the assumption that the arteries are cylindrical. In this paper, we push the limit further to include the
entire cerebral artery with patient-specific geometry and parameters.

Parallel processing is unavoidable for such large scale simulations, there are several papers devoted to the develop-
ment of parallel algorithms for blood flow simulations, for example, Forti et al introduced a parallel block preconditioner
for a two-branch artery case.21 In paper,22 a parallel one-level Newton-Krylov-Schwarz approach was introduced for an
idealized artery with the stress-free outlet boundary condition and the work was extended later to multilevels in Refer-
ences 23 and 24. Randles et al introduced a parallel lattice Boltzmann method for the hemodynamics simulation of the
systemic arterial tree that scales to 1 572 864 processor cores on a Blue Gene/Q supercomputer.25,26

In this paper, we study a highly scalable algorithm with which the simulation time can be considerably reduced.
We introduce a scalable parallel algorithm based on a two-level domain decomposition method for the simulation of
patient-specific cerebral blood flows with the impedance boundary condition on the outlet boundaries. Two-level over-
lapping Schwarz methods have been used to solve many problems, such as PDE constrained optimization
problems,27,28 fluid-structure interaction problems,29,23 shallow water equations,30 pyramidal quantum dot
simulations,31 etc. In Reference 23, the authors introduced a two-level method for the blood flow simulation where the
stress-free boundary condition is used as the outlet boundary condition. In most two-level methods, the fine mesh and
the coarse mesh are nested, and the coarse mesh is obtained by the coarsening of the fine mesh, and for such a situation
the interpolation and restriction matrices come naturally, without much additional cost, from the coarsening algorithm.
In such an approach, the size of the coarse mesh and the partition of the coarse mesh are both difficult to control, espe-
cially when the geometry is complex and the number of processor cores is large. In our two-level method, we do not
require that the fine mesh and coarse mesh are nested. They are generated independently. The coarse mesh is par-
titioned independent of the fine mesh, and the problem is solved using a subset of processor cores used for the fine
mesh problem. The coarse solution is interpolated to the fine space using radial basis functions which are able to han-
dle the situation when some fine mesh nodes are outside of the coarse mesh domain.

The other challenging issue to be considered in the paper is the use of the impedance outflow boundary condition.
The condition is physiologically more accurate, but it is time-dependent, and non-local since it is an integral taken on
the outlet surface. The dense block matrix could destroy the overall performance if not considered carefully. Most blood
flow simulations only consider a small segment of the blood vessel so that the overall cost of the computation cost is
low, however in such a situation the outlet surface is often large and the matrix from the impedance outflow condition
is quite large and dense. This issue makes the impedance condition not a popular choice. In this paper, since we con-
sider the full size cerebral artery, all the outlets are very small (0.8 � 1.5 mm in diameter). As a result, the dense matri-
ces from the impedance condition are all reasonably small, therefore not causing major problems in load balancing,
large condition numbers, and difficulty in mesh partitioning.

The rest of the paper is organized as follows. In section 2, we describe the system of incompressible Navier-Stokes
equations with impedance boundary conditions as a model for the blood flow, and the corresponding finite element dis-
cretization is also discussed in detail. A two-level domain decomposition solver with a non-nested coarse space and its
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parallel implementation are introduced in section 3. Some numerical experiments are presented in section 4 to show
the efficiency of the proposed method and some final remarks are given in section 5.

2 | MATHEMATICAL MODEL AND DISCRITIZATION

We consider the Newtonian model of the blood flow governed by the time-dependent incompressible Navier-Stokes
equations

ρ
∂u
∂t

+ u�rð Þu
� �

= −rp+ μΔu, in Ω,

r�u =0, in Ω:

8<
: ð1Þ

Here Ω ∈ R3 is the artery as shown in Figure 1, u = (u, v, w)T is the velocity, ρ is the blood density, p is the pressure,
and μ is the viscosity coefficient. To make the system (1) solvable, we need to impose boundary conditions on the inlets
Γinlet, outlets Γoutlet, and the wall Γwall; see Figure 1.

The choice of boundary conditions is important in cerebral blood flow simulations, as the fluid behavior is
influenced greatly by the conditions upstream and downstream. Numerous studies have demonstrated that there are
drastic differences in the computed flow field with different boundary conditions,32,33,34,35,36,37 especially the outflow
boundary conditions. Briefly speaking, there are four popular outflow boundary conditions, namely: (a) stress-free
boundary condition; (b) constant pressure boundary condition; (c) resistance boundary condition, and (d) impedance
boundary condition. The resistance and impedance boundary conditions are derived by modeling the peripheral arteries
with resistance and compliance, and they require certain knowledge of the peripheral arterial network characteristics.
In this paper, we focus on the impedance boundary condition.

On the artery wall, we apply a no-slip boundary condition; that is,

u= 0, on Γwall

and a patient-specific time-dependent flow rate Qinlet(t) is imposed on the inlets. The total flow rate is distributed to the
four inlets based on their relative areas, that is the flow rate for each inlet Qi

inlet tð Þ= Ai
inlet=Ainlet

� �
Qinlet tð Þ (i = 1, � � �, 4),

where Ainlet and Ai
inlet are the total area of the four inlets and the area of the ith inlet, respectively. For each of the outlet

boundary, a three-element Windkessel model38 is used which can be represented by the following ordinary differential
equation

C
dp tð Þ
dt

+
1
Rd

p tð Þ=RC
dQoutlet tð Þ

dt
+Qoutlet tð Þ+

R
Rd

Qoutlet tð Þ+
pb
Rd

, ð2Þ

FIGURE 1 A cerebral artery

with multiple inlets and outlets. A

flow rate is used as the inlet

condition, and an impedance

boundary condition is applied at the

outlets
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where R, Rd, C are the resistances and capacitance shown in Figure 1. p(t) and Qoutlet(t) are the pressure and flow rate
at the outlets, respectively. pb is the pressure at the downstream. The analytic solution of (2) is

p tð Þ= p 0ð Þ−RQoutlet 0ð Þ−pb½ �e− t
τ + pb +RQoutlet tð Þ

+
ðt
0

e− t−sð Þ=τ

C
Qoutlet sð Þds

= p 0ð Þ−RQoutlet 0ð Þ−pb½ �e− t
τ + pb +R

ð
Γoutlet

u tð Þ�ndΓ

+
ðt
0

e− t−sð Þ=τ

C

ð
Γoutlet

u sð Þ�ndΓ

0
B@

1
CAds,

ð3Þ

where τ = RdC, p(0) and Qoutlet(0) are the initial pressure and flow rate, respectively. n is the outward unit surface nor-
mal to Γoutlet. When there are multiple outlets, we split the resistances and capacitances according to the rules for a par-
allel circuit and the area of the corresponding outlet, that is

Ri =
Aoutletð Þ1:5

Ai
outlet

� �1:5Rtotal, Ci =
Ai
outlet

Aoutlet
Ctotal,

where Aoutlet is the sum of all the areas of the outlets, Ai
outlet is the area of the ith outlet, and Rtotal and Ctotal are the total

resistance and capacitance, respectively.39

The Navier-Stokes Equations (1) is discretized by a stabilized P1 − P1 finite element method40 in space. To describe
the finite element method, we first define the trial and weighting function spaces as

U = u �, tð Þ j u �, tð Þ∈ H1 Ωð Þ
� �3

, u �, tð Þ= g on Γinlet

n o
,

U0 = u �, tð Þ j u �, tð Þ∈ H1 Ωð Þ
� �3

, u �, tð Þ= 0 on ∂Ω
n o

,

P= p �, tð Þ j p �, tð Þ∈L2 Ωð Þ
� 	

,

where g is the Dirichlet boundary condition applied on the inlet Γinlet. Then, the weak form takes the form: Find u ∈ U ,
p ∈ P such that

ρ

ð
Ω

∂u
∂t

ΦdΩ+
ð
Ω
u�rð Þu�ΦdΩ

0
@

1
A=

ð
Ω

pr�ΦdΩ−μ

ð
Ω
ru�rΦdΩ

+
ð
Γo

−pI+ μruð Þ�Φ�ndΓ,
ð
Ω

r�uð ÞφdΩ =0

8>>>>>>>>>><
>>>>>>>>>>:

ð4Þ

holds for all Φ ∈ U0 and φ ∈ P , where I is an 3× 3 identity matrix. To apply the impedance boundary condition, we
replace p in the last term of (4) by Equation (3).

We cover the computational domain with an unstructured tetrahedral mesh T h = Kf g. Denote the mesh on the out-
let boundary as Γh

outlet = ΓK
outlet

� 	
. The finite dimensional trial and weighting spaces can then be established as
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U h = uh �, tð Þ j uh �, tð Þ=
XNu

i=1

Φh
i u

h
i �, tð Þ, uh �, tð Þ= g on Γinlet

( )
,

Uh
0 = uh �, tð Þ j uh �, tð Þ=

XNu

i=1

Φh
i u

h
i �, tð Þ, uh �, tð Þ= 0 on ∂Ω

( )
,

Ph = ph �, tð Þ j ph �, tð Þ=
XNp

i=1

φh
i p

h
i �, tð Þ

( )
,

where uh
i ∈ R3 , phi ∈ R are the nodal values of the velocity and pressure functions. Nu and Np are the number of nodes

for the velocity and the pressure, respectively. Each of the three components of Φh
i and φh

i are the basis functions which
are piecewise linear continuous functions. Since the P1−P1 element does not satisfy the Ladyzenskaja-Babuska-Brezzi
(LBB) condition, we need to add suitable stabilization terms. For this purpose, we employ the stabilization technique
introduced in Reference 40. The semi-discrete stabilized finite element formulation of (4) is given as follows: Find
uh∈Uh, p∈Ph such that

ρ
Ð
Ω

∂uh

∂t
�ΦhdΩ+

ð
Ω

uh�r
� �

uh�ΦhdΩ

 !
=

Ð
Ω
phr�ΦhdΩ−μ

Ð
Ω
ruh�rΦhdΩ

+
Ð

Γh
outlet

− p 0ð Þ−RQ 0ð Þ−pb½ �e− t
τ + pb +R

Ð
Γh
outlet

uh tð Þ�ndΓ

0
@

0
@

+
Ðt
0

e− t−sð Þ=τ

C

ð
Γh
outlet

uh sð Þ�ndΓ

0
B@

1
CAds

1
CAI+ μruh

1
CA�Φh�ndΓ

−
P

K∈T h

∂uh

∂t + uh�r
� �

uh +rph, τm uh�rΦh +rφh
� �
 �

K

−
P

K∈T h

r�uh, τcr�Φh
� �

K ,

Ð
Ω

r�uh
� �

φhdΩ=0

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð5Þ

holds for all Φh ∈ Uh
0 and φh ∈ Ph . The underlined terms are the stabilization terms with parameters τc and τm

defined as:

τm =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
Δt2

+ uh�Guh
� �

+36
μ

ρ

� �2

G :G

s0
@

1
A

−1

,

τc =
1

8τmtr Gð Þ :

Here G is the covariant metric tensor whose components are defined as Gij =
P3

k=1
∂ξk
∂xi

∂ξk
∂xj

(i, j = 1,2,3) and ∂ξ
∂x repre-

sents the Jacobian of the mapping between the reference and the physical element. tr(G) is the trace of the matrix G.
The operator “:” is the double inner product defined as G :G=

P3
i=1

P3
j=1GijGij.

For the temporal discretization, a second-order backward differentiation formula (BDF2)41 is applied. For the semi-
discretized system (5).

dX
dt

=L Xð Þ, ð6Þ

the formula is defined as
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Xn− 4
3X

n−1 + 1
3X

n−2

Δt
=
2
3
L Xnð Þ:

BDF2 requires two initial conditions X0 and X1. X0 is given, and X1 is computed from (6) using the backward Euler
method (It is a first order method which only needs one initial condition) with a smaller time step size Δt/2. Because of
the implicitness of the method, a large nonlinear algebraic system needs to be solved at each time step and a parallel
solver for the system will be introduced in the next section.

3 | A SCALABLE PARALLEL SOLVER

Let us denote the nonlinear system at the nth time step as

Fn Xnð Þ= 0, ð7Þ

where Xn is the vector consisting of the nodal values of the velocity and pressure. A Newton-Krylov-Schwarz (NKS)
method is used to solve the nonlinear system (7). A framework of NKS is shown in Algorithm 1, which has three main
components, an inexact Newton method with a line search method is used to handle the nonlinear system, a Krylov
subspace method is introduced to solve the Jacobian system at each Newton step (since the Jacobian system is non-sym-
metric, GMRES42 is used here), and an overlapping Schwarz method is employed as the preconditioner to accelerate
the Krylov method. The Schwarz preconditioner is necessary because the condition number of the Jacobian system is
usually very large, especially when the mesh is very fine. In NKS, the most time consuming step is the solution of the
Jacobian system whose conditioning depends on many factors including the spatial mesh size, the temporal step size,
the complexity of the fluid flow, the geometry of the computational domain, the boundary conditions, and also the
physical parameters. A strong preconditioner is needed to conquer the badness of the Jacobian matrix so that the
Krylov iteration converges in a reasonable number of steps. Many Schwarz type preconditioners are available, but their
coarse component is either too difficult to construct or too large to be scalable for the problem at hand, in this paper we
design a coarse problem suitable for the cerebral flow problems.

Algorithm 1 Newton-Krylov-Schwarz method

Step 1. Use the solution of the previous time step as
the initial guess Xn

0 =Xn−1.
Step 2. For k = 0, 1, � � � until convergence.

• Construct the Jacobian matrix Jnk of F
n(X) at Xn

k .
• Solve the following right-preconditioned Jacobian system.

inexactly by a Krylov subspace method

Jnk Mn
k

� �−1
Mn

kd
n
k = −Fn Xn

k

� �
ð8Þ

• Do a line search to find a step length τnk .
• Set Xn

k+1 =Xn
k + τnkd

n
k

Here Mn
k is a Schwarz preconditioner to be introduced shortly. The inexactness mentioned in Step 2 means that the

solution of the Jacobian system (8) satisfies

k Jnk Mn
k

� �−1
Mn

kS
n
k +Fn Xn

k

� �
k ≤ ηnk kFn Xn

k

� �
k ,

where ηnk >0 is the relative tolerance for the linear solver.
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One particular issue with Equation (1)-(2) is the impedance outlet boundary condition which involves an integra-
tion over the boundary and time. The integration makes the Jacobian system much more difficult to solve. The nonzero
structure of the Jacobian matrices with respect to the stress-free and impedance boundary conditions are shown in
Figure 2, where we can see clearly that there is a relatively dense block in the matrix for the impedance boundary
condition case.

To introduce the preconditioner, we denote the Jacobian system at each Newton step as

Ax=b:

Note that the Jacobian matrix A can be calculated by finite difference method or analytically. In this paper, we use
the analytic version which is very time consuming in terms of the programmer's time, but offer better performance and
robustness. The overlapping restricted additive Schwarz method begins with a partition of the computational mesh into
np nonoverlapping subdomains Ωk, (k = 1, � � �, np), and then extend them into overlapping subdomains
Ωδ

k, k=1, � � �,np
� �

by including δ layers of mesh cells from the neighboring subdomains; see Figure 3 for example. Then
we build the matrix Ak, (k = 1, � � �, np) on each subdomain in a similar way as the construction of the global matrix A.
The one-level restricted additive Schwarz preconditioner is defined as

M−1
one =

Xnp
k=1

R0
k

� �T
B−1
k Rδ

k,

where R0
k and Rδ

k are restriction operators from the global domain Ω to the nonoverlapping subdomain Ωk and over-
lapping subdomain Ωδ

k , respectively. B
−1
k is a subdomain preconditioner for Ak and its product with a vector is com-

puted approximately by solving a subdomain linear system using a point-block ILU factorization.

FIGURE 2 An example of the nonzero structure of the Jacobian matrices for stress-free (left) and impedance (right) boundary

conditions, respectively

FIGURE 3 A sample partition

of the artery into four subdomains

with different colors. The gray mesh

cells refer to the overlap
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The point-block ILU method is based on the point-by-point ordering of the Jacobian matrix, which means that all
the unknowns u and p that belong to one mesh point are ordered together. The nonzero structure of the point-by-point
ordering matrix is shown in Figure 2, which is organized as 4 × 4 blocks (at each mesh point, there are 3 velocity com-
ponents and 1 pressure). During the point-block ILU factorization, each 4 × 4 block is treated as one component and
the corresponding matrix is inverted analytically.

There are many ways to incorporate a coarse preconditioner into a one-level method, such as additive and multipli-
cative methods, here we consider a hybrid Schwarz preconditioner

M−1
two = IhHB

−1
c IhH
� �T

+
Xnp
k=1

R0
k

� �T
B−1
k Rδ

k I−AIhHB
−1
c IhH
� �T
 �

,

where IhH is an interpolation matrix from the coarse mesh to the fine mesh and B−1
c is a coarse-level preconditioner

which is an approximation of the inverse of Ac.
There are several ways to obtain Ac, such as the Galerkin projection Ac = IhH

� �T
AIhH . In this paper, we construct Ac

directly by discretizing the original problem on the coarse mesh. In the two-level method, the key questions are:
(a) how to choose a good coarse mesh? (b) how to efficiently solve the coarse problem? (c) how to interpolate the coarse
solution to the fine mesh and how to restrict the fine mesh solution to the coarse mesh? In most two-level methods,43,30

the fine mesh and coarse mesh are nested. The advantage of the nested approach is that the construction of the restric-
tion and interpolation matrices are simple and comes at nearly no cost, but the disadvantage is that when the geometry
of the artery becomes complicated the coarsening algorithm may not work well. For the patient-specific cerebral artery,
to obtain a nested coarse mesh from the fine mesh is quite difficult because of the complex geometry. In our two-level
method, we generate the coarse and fine meshes independently.

3.1 | The construction of the interpolation/restriction operators

Because the geometry represented by the coarse and fine meshes are not exactly the same, the construction of the inter-
polation and restriction operators between the coarse and fine meshes is nontrivial. With a pair of non-nested unstruc-
tured meshes it may happen that a fine mesh point is not contained in any coarse elements and a coarse mesh point
may also not be in any fine elements; see Figure 4 for example. In these situations, the standard finite element based
interpolation and restriction do not work. To deal with non-nested meshes, we propose to use a meshless method based
on the radial basis function (RBF)44 which works well for the situation when some points are outside of the computa-
tional domain defined by another mesh.

We now describe how the coarse to fine mesh interpolation operator is constructed. The RBF interpolation begins
with finding several nearest coarse mesh points, for example, in Figure 4, to define a value at the fine mesh point Ph,
we first search for the nearest points from the coarse mesh, for example, ., PH

1 , P
H
2 , P

H
3 , and PH

4 . For each of the coarse
mesh points, we define a radial basis function, for example, in this paper, we use the multiquadric function

FIGURE 4 A sample non-

nested fine (pink) and coarse (blue)

meshes. In the zoomin figure, the

value of the function at the fine

mesh point Ph is obtained by RBF

centered at the coarse mesh points

PH
i , i = 1, 2, …, 4. The parameter ε is

chosen as the inscribed sphere of the

polyhedron based on the points PH
i ,

i = 1, 2, …, 4
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ϕPH
i
rð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ εrð Þ2

q
,

where r= k Ph−PH
i k is the distance of the ith interpolation point PH

i and the point that to be interpolated Ph. ε is a con-
trol parameter and is chosen as 1/H, where H is the diameter of the inscribed sphere of the polyhedron based on the
interpolation points, for example, PH

1 , P
H
2 , P

H
3 , and PH

4 in Figure 4. Let nh be the number of fine mesh points and nH the
coarse mesh points, then the coarse to fine interpolation matrix IhH is 4nh× 4nH. Note that there are multiple field values
associated with each mesh point, and they all share the same interpolation. IhH is partitioned into ncp (the number of
partitions of the coarse mesh) submatrices and each processor corresponding to a coarse mesh partition has one of the
submatrices. Figure 5 gives an example of the nonzero structure of IhH

� �T
. In the matrix, each column has 4 nonzero ele-

ments, corresponding to the 4 nodes used for the interpolation. Since we use the point-block ordering for the matrix, all
elements corresponding to the variables defined at a mesh point are grouped together as showed in the zoom-in part of
the figure (at each mesh point, there are 3 velocity and 1 pressure components).

The same RBF method can be used to define the restriction operator since the method does not distinguish whether
the computation is from the coarse mesh to the fine mesh or vice versa. In this paper, the restriction operator is chosen
as the transpose of the interpolation operator.

3.2 | Remark

The number of coarse grid points needed in the interpolation depends on the required accuracy that is often determined
experimentally based on the problems under consideration. In this paper, we use 4 coarse mesh points because when
the fine mesh point is in a coarse element, the 4 vertices will be in the same element. This provides better performance
than using other points outside the element as the communication cost may increase. For each fine mesh point, we loop
through all the coarse mesh points and find the nearest 4 points. In order to reduce the cost of communication, we let
each processor have a full copy of the coarse mesh. The interpolation matrix is constructed offline and then loaded to
the machine once the computation starts. This increases the I/O time, but decreases the communication time.

3.3 | Partitioning and solving the coarse problem

The coarse mesh is much smaller than the fine mesh with a ratio between 50 to 100 for problems considered in this
paper. It is not a good idea to use the same number of processors for the fine and coarse problems especially when the

FIGURE 5 An example of the nonzero structure of the restriction matrix IhH
� �T
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number of processors is large. In this paper, we use a smaller number of processors for the coarse problem. The parti-
tion of the coarse and fine meshes are obtained independently by ParMETIS45; see Figure 6 for an example of the par-
ition. We remark that we use a subset of the fine partition processors to solve the coarse problem and let the other
processors stay idle. This may seem like a waste of resources, but it actually saves a lot of communication time. For the
coarse problem, the one-level additive Schwarz preconditioned GMRES method is used as the solver, where we use the
point-block ILU method with one level of fill-in as the subdomain solver, the overlapping size of the additive Schwarz
method is set to one, and use the maximum iteration number (40) as the stopping condition for GMRES.

4 | NUMERICAL EXPERIMENTS

In this section we present some numerical experiments to validate the proposed algorithm, its implementation, and also
show its robustness and efficiency. The algorithm is implemented on top of PETSc.46 The first experiment is for the ver-
ification and validation of the algorithm and its software implementation, the second set of experiments focuses on the
physics of the fluids of a cerebral artery with stenosis, and the third set of experiments is to show the numerical and
parallel performance of the algorithm.

4.1 | A comparison of computed and clinically measured results

We consider blood flows in a vertebrobasilar artery with a 90% area reduction stenosis. For this particular patient, the
pressure field is measured by a pressure wire at two points, namely the front-end Pa and the back-end Pd of the stenosis
(see Figure 7 for the detail of the artery and the positions of Pa and Pd), as shown in.47 In the numerical experiment,
the total resistance Rtotal and capacitance Ctotal are chosen such that the mean pressure at the inlet boundary matches
with the measured pressure, that is Rtotal = 5 × 105dyne � s/cm5 and Ctotal = 1.0 × 101. The patient-specific inflow
rate for the inlet boundary is shown in the left figure of Figure 7. A finite element mesh with 1.5 × 106 elements is
used and the time step size is 0.01s for the entire cardiac cycle. The results are shown in Figure 8. The computed pres-
sure matches with the measured pressure well at Pa but there is a small discrepancy at Pd. The possible explanation is
that the pressure wire disturbs slightly the downstream flow because the diameter of the artery at the stenosis is about
1.3 mm and the diameter of the pressure wire is about 0.36 mm, which means 8% of the area at the stenosis is blocked
by the pressure wire, but in the simulation, the impact of the pressure wire is not included. The averaged ratios of the
pressure values at Pd and Pa over the cardiac cycle (which is an important parameter to indicate the lack of blood sup-
ply for the downstream area of the brain) obtained from the measured and the computed pressure are 0.8756 and 0.882,
respectively, that are considered the same for clinical purpose.

FIGURE 6 An example of the a fine mesh (left) partitioned into 12 subdomains, and a coarse mesh (right) of the same artery

partitioned into 4 subdomains. The meshes are not nested, and the partitions are obtained independently. Different color refers to different

subdomains
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4.2 | Flow in a full cerebral artery with stenosis

In this section, we compute the blood flow of a full size cerebral artery which has a stenosis in the left middle part of the
artery and the blockage is about 55% in terms of the cross section area; see Figure 9 for details. The computational domain
and the boundary conditions are shown in Figure 1. The artery has four inlet boundaries and 38 outlet boundaries. On the
inlet boundaries, a patient-specific flow rate is given; see Figure 10. For this computation, we use a finite element mesh
with 1.1 × 107 elements and the time step size Δt = 0.01 (sec) for the entire cardiac cycle (1.0 second). The average mesh
size is around 0.02 mm, and the resolution is higher than MRI which is around 0.5 mm. The total resistance Rtotal and
capacitance Ctotal in the impedance boundary condition are 3.0 × 104 dyne � s/cm5 and 2.5 × 10−5 cm5/dyne, respec-
tively. The stopping condition for the linear and nonlinear solvers are 10−3 and 10−6 (relative condition), respectively.

The computed pressure distributions at the systolic stage (t = 0.2s) for the impedance and stress-free boundary con-
ditions are shown in Figure 11 and the fractional pressure ratio (FPR) distribution is shown in Figure 12. FPR is a
parameter to show the drop of the pressure defined as

FIGURE 7 The geometry of the vertebrobasilar artery (left) and the patient-specific flow rate at the inlet boundary (right). Pa and Pd

are the two points where the pressure is measured by the pressure wire

FIGURE 8 The left figure is the measured pressures at two points Pa and Pd (see Figure 7 for the position of Pa and Pd) for 12 cardiac

cycles. The right figure is the comparison of the measured and computed pressures at these two points for one of the cardiac cycle (the boxed

cycle in the left figure)
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FPR=
p

maxΩp
,

that is the ratio of the pointwise pressure and its maximum over the computational domain at a given time.15 From the
pressure and FPR distributions, we observe that there are two areas with obvious pressure drops at the posterior

FIGURE 9 The MR medical image of a stroke case. The circled area has a 55% area reduction stenosis

FIGURE 10 The inflow rate at the inlet boundaries

FIGURE 11 The pressure distribution at the systolic stage (t = 0.2s) with different outlet boundary conditions. The left figure is

computed with the impedance boundary and the right figure is computed with the stress-free boundary condition
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cerebral arteries. This is an indication that the downstream blood supply is not sufficient. Detecting the locations of the
stenosis is very important and it is usually very difficult to do by just looking at the images (such as Figure 9), especially
in small arteries. On the other hand, the computed pressure drop can be used to identify these stenosis easily. More-
over, there are growing evidences suggesting that the pressure drop is a better indication than the area reduction about
the severity of the disease, that is if a functional measurement, such as FPR, shows that the flow is not significantly
blocked (eg, FPR > 0.8), the blockage or lesion does not need to be surgically repaired (angioplasty/stenting), and the
medical therapy is a safe treatment for the patient.48,47 The computed pressure with the impedance boundary condition
(43 � 120 mmHg) is higher than the one computed with the stress-free boundary condition (0 � 25 mmHg). From the
pressure distribution, we see that the results of the impedance boundary condition is more reasonable than the stress-
free boundary condition because the pressure is too low (the systolic pressure should be higher than 90 mmHg) and the
pressure drop of the arteries without stenosis is too large (FPR < 0.5) for the stress-free boundary condition case (FPR
should be close to 1 for arteries without stenosis).15,47 For the rest of the experiment, we only consider the impedance
boundary condition.

The wall shear stress (WSS) is an important parameter, which is believed to be related to the formation of the
plaques and also the stability of existing plaques. The definition of pointwise WSS and spatially averaged wall shear
stress (WSS) are

WSS= σn− σn�nð Þn and WSS=
1

Awall

ð
Γwall

WSSdΓ:

Here σ = − pI + 2με(u) is the Cauchy stress tensor where I is an 3 × 3 identity matrix and ε uð Þ= 1
2 ru+ruTð Þ.49

Awall is the total area of the artery wall. Figure 13 shows that the WSS near the stenosis is higher than other areas,
which means that if the plaque is unstable it may break away easily because of the large WSS. Figure 14 shows the
time-dependent wall shear stress for some branches. The values are different for different branches, but they are all cor-
related to the inflow rate, and this may deserve further study that is beyond the scope of this paper. The time-dependent
spatially averaged wall shear stress WSS is shown in Figure 15 which has a similar profile as the inflow rate (Figure 10).
From this observation, we conclude that one can control the WSS by controlling the flow rate at the inlets.

The velocity and streamline distributions are shown in Figures 16-17. We observe that the velocity is relatively high
in the stenosis areas and the velocity in the middle of the artery is higher than the area that is near the artery wall and
the distribution is not symmetric. The streamlines show that the flow is screwed in the artery and some vortices are
generated due to the narrowing or non-smoothness of the artery geometry. Our computation is able to capture many
details of the dynamics of the blood flow that is difficult to capture with 4D MRI.

FIGURE 12 The FPR distribution at the systolic stage (t = 0.2s) with impedance (left) and stress-free (right) outlet boundary

conditions
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FIGURE 13 The wall shear stress distribution

FIGURE 14 The time-dependent pointwise wall shear stress at certain locations for a cardiac cycle
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FIGURE 15 The spatially averaged wall shear stress for a cardiac cycle

FIGURE 16 The velocity (left) distribution with some cross section views and the streamline (right) distribution with a local zoomin

view. In the left figure, the lines on the two cross sections are 2D streamlines

FIGURE 17 The velocity (left) distribution with two cross section views and the velocity magnitude value on the cross lines (right)
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4.3 | The performance study

In this section, we show the performance of the algorithm for the case studied in Section 4.1. The experiments are car-
ried out on the Tianhe 2A supercomputer at the China National Supercomputer Center in Guangzhou. Each compute
node has two Intel Xeon E5-2692v2 12-core 2.2GHz processors and 64GB of shared memory. To measure the parallel
performance, we use the speedup and parallel efficiency defined as50

speedup=
tM
tN

and efficiency =
M × tM
N × tN

,

where tM and tN are the total compute time using M and N MPI processes (M ≤ N), respectively. M is the smallest num-
ber of processor cores that can solve the problem. In all the tables, “N-Its” and “L-Its” are the average number of New-
ton iterations per time step and the average number of GMRES iterations per Newton iteration. “Time” and “PC” are
the average total compute time and the time spent on the preconditioner in seconds per time step. “Eff” is the effi-
ciency. “Mem(Mb)” is the average memory usage per processor core in Megabyte. Unlike the linear system on the fine
mesh, the accuracy of the coarse linear system is very loose and we stop the coarse GMRES iteration by setting a maxi-
mum number of iterations. “Coarse Its” refers to the maximum number of GMRES iterations used for the coarse prob-
lem. “np” and “ncp” are the numbers of processor cores used for solving the fine and coarse problems, respectively.

First, we compare the performance of the one-level method and a two-level method in Table 1. In this experiment,
the fine mesh has 1.1 × 107 elements, the overlap size is 2, the ILU fill-in level is 2. For the coarse problem in the
two-level method, the mesh has 8.0 × 104 elements, the parameters for the fine-level solver is the same as the one-
level method and for the coarse-level solver, the overlap size is 1, the ILU fill-in level is 1 and Coarse Its is 40. The com-
parison is carried out for 10 time steps, and the results show that the two-level method is faster in terms of the number
of iterations and also the total compute time. For the stress-free boundary condition, the saving is about 1/2, and for
the impedance boundary condition it is about 2/3. By comparing the number of linear and nonlinear iterations, we see
clearly that the impedance boundary condition case is much more difficult to solve than the stress-free boundary condi-
tion case. Table 2 shows that with the increase of Coarse Its, the number of GMRES iterations decreases, which means
the preconditioner is stronger, however the total compute time first decreases and then increases. The best choice of
Coarse Its is 40 for the case in Table 2 for the optimal compute time.

As pointed out in Section 3, we do not need to use the same number of processor cores for the fine and coarse prob-
lems, since the coarse problem is much smaller than the fine problem (the ratio of the problem sizes is between 50 to
100). Table 3 shows the performance of the algorithm using different number of processor cores for solving the coarse
problem when the number of processor cores for the fine mesh problem is fixed to 1200. We observe that when ncp
increases from 600 to 1200, the number of GMRES iterations increases from 29 to 83. The reason is that the increase of
ncp slows down the one-level additive Schwarz preconditioned GMRES method for the coarse problem. Since we fix
Coarse Its to be 40 for all cases, the accuracy of the coarse problem solution decreases and the global preconditioner
becomes weaker. The best choice of ncp is 600 for this case in Table 3.

TABLE 1 Comparison of the one-

level and two-level methods. The

number of elements for the fine and

coarse meshes are 1.1 × 107 and

8.0 × 104, respectively

np

Stress-free BC Impedance BC

N-Its L-Its Time N-Its L-Its Time

One-level method

240 3 283 166.2 4 624 338.2

280 3 328 98.2 4 722 202.5

960 3 375 61.6 4 902 129.4

1920 3 447 41.1 4 1254 98.5

Two-level method

240 3 36 75.5 4 61 167.5

480 3 29 37.9 4 34 51.8

960 3 34 24.9 4 41 34.0

1920 3 45 20.1 4 50 28.2
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Table 4 shows the parallel performance of the one-level and two-level algorithms. We consider two meshes. The first
mesh has 1.9 × 107 tetrahedral elements and the second one has 2.6 × 107 elements. The results show that with
the increase of the number of processor cores, the number of Newton iterations stays a constant, the numbers of
GMRES iterations for the one-level and two-level methods increase about 80% and 50%, respectively, when the number
of processor cores increases from 480 to 3840, and the total compute time decreases. The efficiency of the one-level and
two-level algorithms are around 34% and 57%, respectively, when the number of processor cores reaches 3840.

Figure 18 shows the speedup of the algorithm. The blue line is the ideal speedup and the green and red lines are the
actual speedups for the two meshes. The speedup starts to drop when the number of processor cores is over 960 because
the problem size is too small (the size of the subdomain problem is smaller than 1 × 104 and each processor core can
handle about 5 × 104 unknowns) for the case with larger processor counts. But overall, the speedup is about 47% of
the ideal speedup that is good for such a complicated case.

TABLE 4 Parallel performance

np

One-level Two-level

N-Its L-Its Time Eff PC Mem (Mb) N-Its L-Its Time Eff PC Mem (Mb)

Mesh 1: Number of Elements = 1.9 × 107

480 4 373 178.6 100% 64.1 841.0 4 50 73.1 100% 52.4 1186.9

960 4 441 118.5 75.4% 44.6 439.5 4 58 45.1 81.0% 30.6 611.6

1920 4 536 95.7 46.7% 37.6 240.2 4 70 34.0 53.8% 23.5 331.0

3840 4 691 84.6 26.4% 33.4 123.2 4 76 19.2 47.6% 17.1 175.3

Mesh 2: Number of Elements = 2.6 × 107

480 4 393 259.7 100% 91.7 1144.5 4 57 101.2 100% 72.9 1534.1

960 4 474 167.6 77.5% 62.4 597.6 4 67 55.5 91.2% 41.4 802.5

1920 4 569 124.4 52.2% 48.8 322.4 4 76 38.8 65.2% 30.8 440.0

3840 4 756 95.4 34.0% 38.7 163.3 4 82 22.2 57.0% 19.2 221.2

Note: The number of elements for the coarse mesh is 8.0 × 104.

TABLE 2 Comparison using

different number of GMRES iterations

for the coarse problem. The number of

processor cores is 480

Coarse Its N-Its L-Its Time

20 4 34 50.1

30 4 28 45.6

40 4 25 45.1

50 4 26 46.0

60 4 25 48.7

Note: The number of elements for the fine and coarse meshes are 1.1 × 107 and 8.0 × 104,
respectively.

TABLE 3 Comparison of different

number of processor cores allocated for

the coarse problem

ncp N-Its L-Its Time

75 4 29 32.4

150 4 29 27.6

300 4 29 25.0

600 4 29 24.6

1200 4 83 39.7

Note: The number of processor cores for the fine mesh problem is fixed at 1200. The number of
elements for the fine and coarse meshes are 1.1 × 107 and 8.0 × 104, respectively.
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5 | FINAL REMARKS

We introduced a parallel two-level domain decomposition method with non-nested coarse space for solving three-
dimensional Navier-Stokes equations for the simulation of blood flows in full size cerebral artery with an integral type
boundary condition on a large scale supercomputer. We compared our computation with some clinical studies and the
results agree well. The numerical experiments also show that the proposed method outperforms the one-level method
in terms of the number of linear and nonlinear iterations and also the total compute time. The algorithm scales up to
3840 processor cores with a parallel efficiency higher than 47%. For patient-specific geometry and parameters, the pro-
posed algorithm is able to carried out the flow simulation for a cardiac cycle in less than 1 hour, and the resolution is
higher than 4D MRI. This takes us one step closer to the application of parallel CFD in the study of strokes and other
diseases in the cerebral artery and provides a better way to identify the severity of the disease.
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