
INEXACT NEWTON METHODS WITH RESTRICTED ADDITIVE

SCHWARZ BASED NONLINEAR ELIMINATION FOR PROBLEMS

WITH HIGH LOCAL NONLINEARITY∗

XIAO-CHUAN CAI† AND XUEFENG LI‡

Abstract. The classical inexact Newton algorithm is an efficient and popular technique for
solving large sparse nonlinear system of equations. When the nonlinearities in the system are well-
balanced, a near quadratic convergence is often observed, however, if some of the equations are
much more nonlinear than the others in the system, the convergence is much slower. The slow
convergence (or sometimes divergence) is often determined by the small number of equations in the
system with the highest nonlinearities. The idea of nonlinear preconditioning has been proven to
be very useful. Through subspace nonlinear solves, the local high nonlinearities are removed, and
the fast convergence can then be restored when the inexact Newton algorithm is called after the
preconditioning. Recently a left preconditioned inexact Newton’s method was proposed in which
the nonlinear function is replaced by a preconditioned function with more balanced nonlinearities.
In this paper, we combine an inexact Newton with a restricted additive Schwarz based nonlinear
elimination. The new approach is easier to implement than the left preconditioned method since
the nonlinear function doesn’t have to be replaced, and further more, the nonlinear elimination step
doesn’t have to be called at every outer Newton iteration. We show numerically that it performs well
for, as an example, solving the incompressible Navier-Stokes equations with high Reynolds numbers
and on machines with large number of processors.

Key words. Nonlinear elimination, inexact Newton method, nonlinear restricted additive
Schwarz, domain decomposition, nonlinear equations, parallel computing, incompressible flows

1. Introduction. In this paper we consider scalable and robust parallel algo-
rithms for solving large sparse nonlinear systems of equations arising from the dis-
cretization of partial differential equations. In particular, we focus on the type of
systems in which a small number of equations are more nonlinear than the rest of the
equations. This type of problems appears quite often in many areas of computational
science and engineering. For example, if a Newton method is used in an implicit CFD
calculation, it happens very often that when there is a local high nonlinearity such as a
boundary layer or a corner singularity, the convergence stagnates by the small number
of residual functions associated with the local high nonlinearities [5, 15, 20, 25, 28, 29].
Recent progress in developing nonlinear algorithms that are not too sensitive to local
high nonlinearities include the ideas of nonlinear elimination and nonlinear precondi-
tioning. In nonlinear elimination [19, 24], the local high nonlinearities are removed
implicitly so that they don’t participate in the global Newton iterations which act
only on a subset of the equations in the system. The idea of nonlinear precondi-
tioning [6] is to reduce the global impact of these few highly nonlinear components
using a local nonlinear preconditioner. The global Newton is used for the entire set of
equations in the system. In this paper, we propose and study numerically a different
nonlinear preconditioning technique in which the nonlinear function doesn’t need to
be changed, as in ([6]), and we show that this approach is considerably easier to imple-
ment. Consider the nonlinear system of equations F (u) = 0, in this new approach, we
introduce a nonlinear elimination technique a ‘right’ preconditioner which attempts

∗The research was supported in part by DOE under DE-FC02-04ER25595, and in part by NSF
under grants EAR-0934647, CNS-0722023, DMS-0913089.

†Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309
(cai@cs.colorado.edu).

‡Department of Mathematics and Computer Science, Loyola University New Orleans, New Or-
leans, LA 70118 (li@loyno.edu).

1

2 X.-C. CAI AND X. Li

to make the variable u more acceptable as compared to the approach in ([6]) which
uses a ‘left’ preconditioner on the nonlinear function F (·). Since F (·) doesn’t have
to be changed at all, the new approach can be incorporated into existing software
packages for solving nonlinear systems without requiring too much additional effort.
Physically speaking, left preconditioning and the new nonlinear elimination carry dif-
ferent meanings. For example, if F (u) is derived from fluid dynamics, u is often the
basic flow field such as the velocity and F often represents the conservation laws. In
this situation, left preconditioning means the change of the conservative quantities,
such as the total mass, and nonlinear elimination means the change of the velocity
field.

To construct the nonlinear elimination operator, we introduce a nonlinear version
of the linear restricted additive Schwarz preconditioner [8], which has an interesting
property that is not shared with its sibling algorithms such as the additive or the
multiplicative Schwarz algorithms. Let us briefly describe this property which we
refer to as the reduced boundary effect property, which is something we discovered
while running the numerical experiments. Suppose the nonlinear function, denoted
as F (u), is the discretization of a second order partial differential equation defined on
the domain Ω. Let ω be a subdomain in Ω. When defining the overlapping domain
decomposition preconditioner, a subdomain problem has to be solved in ω with an
artificial boundary condition imposed on ∂ω. Let uc be the current approximate
solution on Ω and uω the solution on ω. After the subdomain solve, a new approximate
solution can be defined as unew which equals to uω in ω and uc in Ω \ ω. For the
new approximate solution the corresponding residual function F (unew) has a very
distinctive feature, that is, it has a large jump along the interface ∂ω; see the right
figure in Fig.2.1 for an illustrative one dimensional example. To reduce the interface
jump on the boundary of ω, we introduce a larger domain ω′ (ω ⊂ ω′ ⊂ Ω) and solve
the subdomain problem defined on ω

′

and then only keep the part of the solution
inside ω; i.e., throw away the bad part of the solution in ω′ \ ω. Of course, to have
a good approximation for the whole domain, we need many such subdomain solves
covering the entire Ω.

Note that by throwing away the bad part of the solution we obtain not only a
better solution but also lower the communication cost when the algorithm is imple-
mented on a distributed memory computer. The theoretical understanding of the
nonlinear restricted additive Schwarz preconditioner is out of the scope of this paper,
and we believe it may not be a trivial matter because a satisfactory theory for the
linear restricted additive Schwarz preconditioner is yet to be established.

Consider a given nonlinear function F : Rn → Rn, we are interested in finding a
vector u∗ ∈ Rn, such that

F (u∗) = 0,(1.1)

starting from an initial guess u(0) ∈ Rn. Here F = (F1, . . . , Fn)
T , Fi = Fi(u1, . . . , un),

and u = (u1, . . . , un)
T . Inexact Newton algorithms (IN) [10, 13, 21] are commonly

used for solving such systems and can briefly be described here. Suppose u(k) is the
current approximate solution; a new approximate solution u(k+1) can be computed
through

u(k+1) = u(k) + λ(k)p(k),(1.2)

where the inexact Newton direction p(k) satisfies

‖F (u(k)) + F ′(u(k))p(k)‖ ≤ ηk‖F (u(k))‖.(1.3)

INEXACT NEWTON WITH NONLINEAR RAS ELIMINATION 3

Here ηk ∈ [0, 1) is a scalar that determines how accurately the Jacobian system needs
to be solved using, for example, Krylov subspace methods [2, 3, 13, 14], and λ(k) is
another scalar that determines how far one should go in the selected inexact Newton
direction [13]. In an ideal case, λ(k) = 1, which means that a full inexact Newton step
is taken, however, in many practical situations, λ(k) is much smaller than 1, and this
is often due to the fact that some dominate terms of the residual vector F (u(k)) can’t
be sufficiently reduced by following the Newton search direction. Small λ(k) implies
slow convergence, or stagnation, in some cases. We will show in the paper that once
nonlinear elimination is used, full inexact Newton steps become acceptable even for
some difficult problems, such as incompressible Navier-Stokes with high Reynolds
numbers.

The rest of the paper is organized as follows. In section 2, we introduce the
nonlinear additive Schwarz preconditioned system and show how it reduces in certain
special cases to known methods. In section 3, we discuss the details of the algorithm.
Numerical examples are given in section 4. Some concluding remarks are given in
Section 5.

2. A nonlinear restricted additive Schwarz algorithm. Restricted additive
Schwarz (RAS) was first introduced in [8] as a linear preconditioner for solving sparse
linear system of equations. It is a modification of the classical additive Schwarz
method (AS, [27]). Comparing with AS, RAS needs less communication, and often
less number of iterations, when implemented on distributed memory computers. In
this section, we extend RAS to nonlinear problems and the motivation is completely
different from what we had for linear problems.

To motivate the work, we first discuss a nonlinear elimination algorithm [24] and
some of its features. Let F (·) be the discretization of a one-dimensional nonlinear
boundary value problem (Poisson, for example) defined on a domain Ω = (0, 1) and
uc be an approximate solution of the nonlinear system F (u) = 0 defined on Ω with
the corresponding residual F (uc). To illustrate the situation, we provide a picture of
uc and F (uc) in Fig.2.1 (the blue curves or the curves marked with “o”). It is clear
that uc is not close to the desired solution, since F (uc) is not close to zero. The idea
of nonlinear elimination is to make some components of F (uc) zero, or close to zero.
Let us denote by ω ⊂ Ω as the interval in which F (uc) is to be reduced, then we can
describe the algorithm as follows.
Step 1: Find uω, which approximately solves

Fω(uω) = 0,(2.1)

where Fω is the restriction of F (·) in the subdomain ω. We assume uω satisfies
the boundary condition

uω|∂ω = uc|∂ω.(2.2)

Step 2: Obtain a new global approximate solution

unew =

{

uω in ω

uc in Ω \ ω.

The new solution unew is shown in Fig.2.1 (the red curve on the left marked with
“x”). The interesting thing is that the corresponding residual function F (unew) (the
red curve of the right figure in Fig.2.1 marked with “x”), which is indeed very small
inside the subdomain ω and is not changed outside of ω. However, on the boundary

4 X.-C. CAI AND X. Li

0 10 20 30 40 50 60 70 80 90 100
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0 10 20 30 40 50 60 70 80 90 100
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fig. 2.1. The left figures are for u and the right figures are the residuals F (u).

of ω, the function values increase quite a bit. This is not unexpected. the transition
from uω to uc may be hardly noticeable, but the first and second derivatives change a
lot. The calculation of F (unew) involves second derivatives at the boundary points of
ω, and therefore F (unew) has sharp jumps. The jumps need to be removed or reduced
for the algorithm to be useful.

Below we introduce a nonlinear restricted additive Schwarz technique which is
based on the nonlinear elimination idea just outlined, but with two key differences:
(1) We do not assume we know which components to eliminate before hand; (2) After
the local nonlinear elimination we keep the solution in the “true” interior of ω and
throw away values near the boundary of ω.

For the purpose of parallel computing, we decompose the domain into subdomains
and the eliminations are carried out on every subdomains in parallel. More precisely,
if any components in a subdomain need to be eliminated, then all components in the
subdomain are eliminated. Suppose the system to be solved has n unknowns and n

equations. Let

S = (1, . . . , n)

be an index set; i.e., one integer for each unknown ui and Fi. We assume that
S1, . . . , SN is a non-overlapping partition of S in the sense that

N
⋃

i=1

Si = S, Si ∩ Sj = ∅ if i 6= j, and Si ⊂ S.

Let ni be the dimension of Si; then,

N
∑

i=1

ni = n.

Using the partition of S, we introduce subspaces of Rn and the corresponding restric-
tion and extension matrices. For each Si we define Vi ⊂ Rn as

Vi = {v|v = (v1, . . . , vn)
T ∈ Rn, vk = 0, if k 6∈ Si}

and R0
i as an n×n restriction (also extension) matrix whose kth column is either the

kth column of the n × n identity matrix In×n if k ∈ Si or zero if k 6∈ Si. We next

INEXACT NEWTON WITH NONLINEAR RAS ELIMINATION 5

introduce an overlapping partition of S. Let Sδ
i be an extension of Si; i.e.,

Si ⊂ Sδ
i , for i = 1, · · · , N.

where δ is an positive integer indicating the size of the overlap. In the case that S is
from a finite element mesh we usually assign some meaning to the integer δ as follows.
If δ = 0, then S0

i = Si. If δ = 1, we say the overlap is 1, which means only nodes in
S that have distance 1 to Si are included in S1

i . In general, Sδ
i contains all nodes in

S whose distances to Si are no more than δ. Because of the recursive definition, we
have

Sδ1
i ⊂ Sδ2

i , if δ2 > δ1, for i = 1, · · · , N.

For each Sδ
i , we define Rδ

i as a restriction matrix whose kth column is either the kth
column of the n× n identity matrix In×n if k ∈ Sδ

i or zero if k 6∈ Sδ
i . We denote by

nδ
i as the dimension of Sδ

i . Similarly, we can define the subspace V δ
i for Sδ

i .
Using the restriction operator, we define the subdomain nonlinear function as

F δ
i (u) = Rδ

iF (u).

We next define the major component of the algorithm, namely the nonlinearly pre-
conditioned function. For any given v ∈ Rn, in each overlapping subspace we find a
vector vδi ∈ V δ

i that solves the subdomain nonlinear system

F δ
i (v + vδi) = 0.(2.3)

Note that the dimension of the problem is nδ
i and v is considered as a given vector.

Then, we define

wi = R0
i (v + vδi)(2.4)

and the nonlinear preconditioning operator G as

w = G(v) = w1 + w2 + · · ·+ wN .(2.5)

We will refer to G as the nonlinear restricted additive Schwarz operator, or simply
restricted additive Schwarz (RAS). Note that the evaluation of the function G(v),
for a given v, involves the solution of nonlinear systems on all subdomains Sδ

i . Very
often, these nonlinear systems don’t need to be solved very accurately. If the overlap
is zero, then this is simply a nonlinear block Jacobi algorithm.

In (2.4), ifR0
i is replaced byRδ

i , the resulting nonlinear elimination operator would
be the regular nonlinear additive Schwarz method. We tested the regular method for
several nonlinear equations but didn’t obtain satisfactory results.

In the linear case, this algorithm is the same as the restricted additive Schwarz
preconditioned Richardson’s method. Using the usual notation, if

F (v) = Av − b,

then, with a simple calculation, we have

G(v) = v −M−1
RASF (v),

6 X.-C. CAI AND X. Li

where

M−1
RAS =

N
∑

i=1

R0
iA

−1
i Rδ

i

and A−1
i is the subspace inverse of Ai = Rδ

iAR
δ
i . We mention that in the linear case,

there is another version of RAS, if we switch the operators R0
i with Rδ

i . We haven’t
studied this version for nonlinear problems.

3. The NKS-RAS algorithm. In this section we first give a high level descrip-
tion of the general algorithm and then discuss the details of each major component.

3.1. The basic algorithm. The goal is to solve equation (1.1) with a given
initial guess u(0). Suppose we are at iteration k and u(k) is the current approximate
solution.

Algorithm 3.1 (NKS-RAS).
Step 1 (The Nonlinearity Checking Step): Check the local and global stopping
conditions.

• If the global condition is satisfied, stop.
• If the local conditions indicate that nonlinearities are not balanced, go to
Step 2.

• If the local conditions indicate that nonlinearities are balanced, set ũ(k) =
u(k), go to Step 3.

Step 2 (The RAS Step): Solve local nonlinear problems on the overlapping sub-
domains to obtain the subdomain correction vδi

Rδ
iF (u(k) + vδi) = 0

for i = 1, · · · , N .
Drop the solution in the overlapping part of the subdomain and compute the
global function G(u(k))

G(u(k)) =

N
∑

i=1

R0
i (u

(k) + vδi), and set ũ(k) = G(u(k)).

Go to Step 3.

Step 3 (The NKS Step): Compute the next approximate solution u(k+1) by ap-
proximately solving the following equation

F (u) = 0

with one step of NKS iteration using ũ(k) as the initial guess.
Go to Step 1.

3.2. The nonlinearity checking step. To check the balance of the nonlinearity
is difficult, if not impossible. At the current approximate solution u(k), if we take the
Taylor’s expansion of the function as

F (u(k)) + F ′(u(k))(u− u(k)) +
1

2
F ′′(u(k))(u− u(k), u− u(k)) +O(‖u − u(k)‖3),

then the values of the bilinear form, F ′′(u(k))(u−u(k), u−u(k)), tell us how nonlinear
the function is in the neighborhood of u(k), however, the desired values are often too

INEXACT NEWTON WITH NONLINEAR RAS ELIMINATION 7

expensive to compute. We use the following algorithm to check the balance of the
nonlinearity.

Algorithm 3.2 (Nonlinearity-checking). At the k-th iteration,
1. Compute ‖F δ

1 (u
(k))‖, . . ., ‖F δ

N(u(k))‖.
2. Determine m such that ‖F δ

m(u(k))‖ = max{ ‖F δ
i (u

(k))‖ | 1 ≤ i ≤ N }.
3. Nonlinearity is not balanced if

‖F δ
m(u(k))‖ > ρ‖F (u(k))‖

where 0 < ρ < 1 is a pre-chosen constant; or else it is balanced.
The above mentioned algorithm is based purely on the partitioned domain. For

the problems that we are working on (to be reported in the Numerical experiments
section), F (·) arises from the discretization of the Navier-Stokes equations. The point-
wise values of the residual F (·) represents how well the conservation laws are satisfied.
F δ
i (·) represents how well the conservation laws are satisfied in the ith subdomain.

Other techniques may be used. For example, if there are multiple physical fields,
such as velocity, vorticity, etc., then we can also check the residual values for each of
the field separately and determine which field equations are more nonlinear than the
others. A combination of the domain-based and field-based approaches may provide
another choice in certain applications.

3.3. The RAS step. This is the nonlinear elimination step, and is called be-
tween two outer Newton iterations when the nonlinearity is not balanced. Its purpose
is to provide a better “initial” guess for the next outer Newton iteration. When the
nonlinearity is well-balanced, the global Newton method should work well by itself
and this RAS step can be skipped. There are several issues: (1) how to define the
subdomains? (2) how big an overlap to use? (3) how accurately the subdomain non-
linear systems should be solved? In this paper, the subdomains are all obtained via
domain decomposition without considering the physical meanings of the equations.
As to the size of the overlap, we will show some computational experiments in the
next section using different sizes.

On each subdomain, the nonlinear subsystem to be solved takes the form

Gi(v
δ
i) ≡ Rδ

iF (u(k) + vδi) = 0,(3.1)

which can be solved using Newton method with zero initial guess, (vδi)
(0) = 0. Let

(vδi)
k be the current solution, then a new solution is computed by first finding a search

direction p
(k)
i satisfying

G′
i

(

(vδi)
(k)

)

p
(k)
i = −Gi

(

(vδi)
(k)

)

(3.2)

and then compute

(vδi)
(k+1) = (vδi)

(k) + λ
(k)
i p

(k)
i .(3.3)

Here λ
(k)
i is a linesearch parameter. Since the solution vδi is a correction to the outer

Newton solution, it should be close to zero when u(k) is approaching the solution of the
global system. If the subsystem is not too large, the Jacobian system can be solved
simply with Gaussian elimination on a single processor. In some situations, if the
subsystem is too large for a single processor, NKS can be used, with possibly further
partitioning and another level of elimination for the purpose of parallel processing.

8 X.-C. CAI AND X. Li

A subsystem is set up for each subdomain, but not all of them need to actually
be “solved”. Very often, after checking the initial residual ‖Gi((v

δ
i)

0)‖, the subsystem
can immediately be declared as solved since the stopping condition is satisfied

∥

∥

∥Gi((v
δ
i)

(k))
∥

∥

∥ ≤ max
{

εr‖Gi((v
δ
i)

(0))‖, εa
}

,

where εr and εa are the relative and absolute tolerances for the subdomain nonlinear
problem. Once all the subsystems are solved, the solutions are gathered to form a
global correction

N
∑

i=1

R0
i v

δ
i(3.4)

to be added to the current solution u(k). The operation (3.4) is mathematically very
important as it removes the values in the overlapping regions. Computationally, it
involves nothing: neither computation nor communication.

We note that the RAS based nonlinear elimination operator G has an interesting
property that is

G2 = G,

which simply means that the elimination step doesn’t need to be performed more
than once per Newton iteration. The proof is straightforward.

Because S1, . . ., SN is a non-overlapping partition of S, and R0
j is an n × n

matrix whose k-th column is either the k-th column of the n×n identity matrix In×n

if k ∈ Sj , or zero if k 6∈ Sj ,

N
∑

j=1

R0
jv = In×nv = v(3.5)

Therefore, from equations (2.5) and (2.4),

w = G(v) =

N
∑

j=1

R0
j (v + vδj) = v +

N
∑

j=1

R0
jv

δ
j(3.6)

When the nonlinear elimination procedure (2.5) is applied twice in a row,

w′ = G(G(v)) = G(w) =

N
∑

i=1

R0
i (w + wδ

i) =

N
∑

i=1

R0
i

v +

N
∑

j=1

R0
jv

δ
j + wδ

i

(3.7)

where wδ
i is the solution to

F δ
i (w + wδ

i) = 0, or, F δ
i (v +

N
∑

j=1

R0
jv

δ
j + wδ

i) = 0.(3.8)

Assume that solution to equation (2.3) is unique, we then conclude that

N
∑

j=1

R0
jv

δ
j + wδ

i = vδi .(3.9)

INEXACT NEWTON WITH NONLINEAR RAS ELIMINATION 9

Substitute the result from equation (3.9) back into equation (3.7),

w′ = G(G(v)) = G(w) =

N
∑

i=1

R0
i

v +

N
∑

j=1

R0
jv

δ
j + wδ

i

(3.10)

=

N
∑

i=1

R0
i

(

v + vδi
)

= w = G(v)(3.11)

3.4. The NKS step. This is the step to solve the global nonlinear system (1.1).
The only connection of this step and the RAS step is the initial guess; otherwise they
are fairly independent, except in practice, they often use the same data structure. Let
u(k) be the current approximate solution, and J the Jacobian of F (·) at u(k),

J = F ′ =

(

∂Fi

∂uj

)

n×n

and Ji, the restriction of the global Jacobian to the subdomain Ωδ
i , i.e.,

Ji = (Rδ
iJR

δ
i)nδ

i
×nδ

i

for i = 1, . . . , N. To advance the solution from the current solution u(k), we first find
p̃(k) satisfying

‖F (u(k)) + J(u(k))M−1p̃(k)‖ ≤ η‖F (u(k))‖(3.12)

and then compute

u(k+1) = u(k) + λ(k)p(k),(3.13)

where p(k) = M−1p̃(k) and λ(k) is a linesearch parameter. M−1 can be any precondi-
tioner for J . Since the Schwarz framework is used at the nonlinear elimination step,
it is natural to use the same framework for M . To define the additive Schwarz pre-
conditioner, let M−1

i be the inverse of Ji or some approximation of the inverse, then
the additive Schwarz preconditioner can be written as

M−1
AS =

N
∑

i=1

Rδ
iM

−1
i Rδ

i .(3.14)

We remark that this overlapping factor δ doesn’t have to be the same as the one in
the nonlinear RAS step. In principle, the partition of the subdomains for building
the preconditioner (3.14) doesn’t have to be the same partition as in the nonlinear
RAS step, but for the convenience of the implementation, we simply use the same
partition. Many other linear preconditioners, such as the linear RAS, can also be
used in (3.12), instead of (3.14).

4. Numerical experiments. We report some results of our numerical exper-
iments in this section using the new algorithm, NKS-RAS, and we also compare
the new results with those obtained using a standard inexact Newton method. We
consider a two-dimensional driven cavity flow problem [16], in the velocity-vorticity

10 X.-C. CAI AND X. Li

e e e e e e e e e

e e e e e e e e e

e e e e e e e e e

e e e u u u e e e

e e e u u u e e e

e e e u u u e e e

e

e

e e

e

e e e e e e e e

e e e e e e e

e e e e e e e -

6

x

y

Fig. 4.1. This is a 9-subdomain partition of the unit square. The middle subdomain contains
all 25 mesh points marked with either ◦ or •. The subdomain nonlinear problem is solved using all
25 mesh points, but the solution is kept only at the 9 interior points marked with •.

formulation, in terms of the velocity u, v, and the vorticity ω, defined on the unit
square Ω = (0, 1)× (0, 1),

−∆u−
∂ω

∂y
= 0

−∆v +
∂ω

∂x
= 0

−
1

Re
∆ω + u

∂ω

∂x
+ v

∂ω

∂y
= 0.

(4.1)

The boundary conditions are: u = v = 0 for the bottom, left and right part of the
boundary; and u = 1, v = 0 for the top boundary. The boundary condition on ω is
given by its definition:

ω(x, y) = −
∂u

∂y
+

∂v

∂x
.(4.2)

We vary the Reynolds number Re in the experiments because, in general, as Re

increases the problem becomes harder to solve.

The usual uniform mesh finite difference approximation with the 5-point stencil is
used to discretize the boundary value problem. Upwinding is used for the divergence
(convective) terms and central differencing for the gradient (source) terms. To obtain
a nonlinear algebraic system of equations F , we use natural ordering for the mesh
points, and at each mesh point, we arrange the unknowns in the order of u, v, and ω.
The partitioning of F is through the partitioning of the mesh points. Fig. 4.1 shows
a typical mesh, together with an overlapping partition with interior points marked as

INEXACT NEWTON WITH NONLINEAR RAS ELIMINATION 11

0 2 4 6 8 10 12 14 16 18 20
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

16x16=256 processors on 256x256 grids. *=SchwP, o=Newton.

Step

R
es

id
ua

l

Re=103
Re=5x103

Re=104
Re=5x104

Re=105

Re=103Re=5x103

Re=104

Re=5x104

Re=105

Fig. 4.2. Nonlinear residual history for the flow problem with different Reynolds numbers.

“•”. The size of the overlap is as indicated in Fig.4.1. The implementation is done
using PETSc [1], and the results are obtained on an IBM BG/L.

In all tests, the initial guess for the global Newton iteration is zero for u, v and
ω. We stop the global Newton iterations if

‖F (u(k))‖ ≤ max{10−6‖F (u(0))‖, 10−10}.

In the nonlinear RAS step of the algorithm, we stop the subdomain Newton iterations
if

‖F δ
i (u

(k) + vδi)‖ ≤ max{10−6‖F δ
i (u

(k))‖, 10−10}.

The global Jacobian system is solved with GMRES(30). The global linear iteration
is stopped if the relative tolerance

‖F (u(k)) + F ′(u(k))p(k)‖ ≤ max{10−4‖F (u(k))‖, 10−10}

is satisfied. In the nonlinearity checking step, we use

ρ = 0.75.

In practice, there is usually a range of ρ that one can choose from.
We first present a comparison of NKS-RAS with the regular NKS. In NKS the

preconditioner is the regular additive Schwarz (3.14). In Fig.4.2, we show the history
of the norm of the residual of several test runs with different Reynolds numbers on
a 256 × 256 mesh using the regular NKS (marked with ◦) and NKS-RAS (marked
with ∗). The mesh is partitioned into 256 subdomains (16 in each direction) and

12 X.-C. CAI AND X. Li

each subdomain is assigned to one processor. As the Reynolds number increases, the
nonlinear system becomes more difficult to solve. NKS with the standard line search
fails to converge once the Reynolds number passes a certain value. We did not try
to employ other techniques, such as pseudo-time stepping [22] or parameter/mesh
continuations [28, 29], to improve the convergence of NKS. On the other hand, NKS-
RAS converges for a much larger range of Reynolds numbers as shown in Fig.4.2
without employing any special techniques. The number of global Newton iterations
does not change much as we increase the Reynolds number, and in all tests, the
nonlinear RAS is called only once at the very first iteration. During the RAS iteration,
the number of local Newton iterations ranges from 0 to 10.

An interesting question is why the use of the nonlinear RAS helps so much the
convergence of the outer Newton iteration. To answer the question theoretically is
beyond the scope of the paper. A similar question about why the linear RAS works
so well as a linear preconditioner is still an unanswered question, as far as we know.
Some recent papers show that in some special cases, a version of the linear RAS is in
fact closely related to the parallel Schwarz algorithm of Lions [12, 23]. Sometimes the
norm of the residual ‖F (u(k))‖, as shown in Fig.4.2, does not tell us much about the
pointwise value of the residual function F (u(k)) itself. As a matter of fact, the work
in this paper is mostly motivated by inspecting the surface plots (not just the norm)
of the residual function for each of the physical fields. In Fig 4.3, we show the surface
plots for each of the three components of F (u(k)) corresponding to the two velocity
components u and v and the vorticity component ω. The top three figures are for the
residual functions from the regular NKS iterations, and the bottom three figures are
for the residual functions from the new algorithm.

For this particular mesh and Reynolds number, both algorithms converge and
NKS takes a few more iterations than NKS-RAS. For the NKS run, we observe that
the dominant part of the residual is the vorticity component near the top corner of
the computational domain. For the NKS-RAS run, the dominant component of the
vorticity function near the corner is removed by the RAS iteration (see the bottom
figure of Fig. 4.3). Once the dominant component is removed, the global Newton
algorithm converges in a small number of iterations. Six iterations are needed to reach
convergence in this case. RAS is used in the first iteration to remove the dominant
peak in the nonlinear residual. In the other five iterations, there are no dominant
nonlinear components according to the nonlinearity-checking condition and therefore
RAS is not used.

The side effect of the RAS iteration includes the spreading of the dominant resid-
ual to other components, and to other areas of the computational domain, near the
boundary of the subdomains. The interesting thing is that the newly created peaks
in the residual functions do not seem to decrease the overall convergence rate.

We next address various scalability issues of the algorithm. In Tables 4.1 and 4.2,
we present the numbers of global Newton iterations, the average numbers of global
GMRES iterations, the ranges of local Newton iterations in RAS, the overlap size,
and the total compute times for various Reynolds numbers, the number of processors,
and mesh sizes.

As the Reynolds number increases, the nonlinearity is more concentrated near
the two top corners of the computational domain. That makes the distribution of
nonlinearity more unbalanced. In fact, the classical NKS method starts to show
divergent behaviors once the Reynolds number exceeds 3× 104 on all of our test runs.
On the other hand, NKS-RAS converges on all of our test runs for all the Reynolds

INEXACT NEWTON WITH NONLINEAR RAS ELIMINATION 13

Table 4.1
The numbers of iterations and total compute times. Mesh size 128 × 128 on 64, 128 and 256

processors. The overlapping size is 3 for all cases.

of processors Re = 103 Re = 5 · 103 Re = 104 Re = 5 · 104 Re = 105

Global Newton iterations
8× 8 4 6 6 7 8
8× 16 4 5 5 7 7
16× 16 4 5 6 7 9

Average GMRES iterations
8× 8 48 39 38 39 38
8× 16 56 50 52 42 40
16× 16 77 67 68 61 51

Ranges of subdomain Newton iterations in RAS
8× 8 0 ∼ 4 0 ∼ 6 0 ∼ 7 0 ∼ 8 0 ∼ 9
8× 16 0 ∼ 4 0 ∼ 5 0 ∼ 5 0 ∼ 5 0 ∼ 7
16× 16 0 ∼ 4 0 ∼ 5 0 ∼ 6 0 ∼ 7 0 ∼ 8

Total compute times (sec)
8× 8 0.9761 1.2520 1.2810 1.5050 1.6620
8× 16 0.5846 0.6716 0.7078 0.8208 0.8292
16× 16 0.4659 0.5268 0.6226 0.6661 0.7472

numbers ranging from Re = 103 to Re = 105. This shows that the RAS step has
indeed provided some balancing of the nonlinearities to the nonlinear problem under
consideration. Note that for large Re, bifurcation may happen, but we do not intend
to deal with that in this paper.

There are two overlap parameters in the algorithms; one for the nonlinear RAS
step and one for the linear Schwarz preconditioner in the NKS step. They don’t have
to be the same, and in some situations, much better results can be obtained by using
different values of overlap. To find the best combination is often a trial and error
step.

Here we consider a case where the RAS overlap is fixed to be 4 and the effect
of the NKS overlap is given in Table 4.3. We can see that in general, the algorithm
converges better as the overlap increases. On the other hand, a larger overlap also
increases inter-process communications. Consequently, choices for overlap width are
usually between 2 and 4.

14 X.-C. CAI AND X. Li

Table 4.2
The numbers of iterations and total compute times. Mesh size 256 × 256 on 128, 256 and 512

processors. The overlapping size is 3 for all cases.

of processors Re = 103 Re = 5 · 103 Re = 104 Re = 5 · 104 Re = 105

Global Newton iterations
8× 16 5 5 6 9 9
16× 16 5 5 6 7 9

16× 32 5† 4 5 7 7
Average GMRES iterations

8× 16 85 65 62 49 45
16× 16 107 90 98 96 97
16× 32 121† 115 103 94 97

Ranges of subdomain Newton iterations in RAS
8× 16 0 ∼ 3 0 ∼ 4 0 ∼ 4 0 ∼ 5 0 ∼ 5
16× 16 0 ∼ 3 0 ∼ 5 0 ∼ 5 0 ∼ 6 0 ∼ 6

16× 32 0 ∼ 2† 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4
Total compute times (sec)

8× 16 3.082 2.720 3.108 3.914 3.749
16× 16 1.888 1.752 2.131 2.440 3.030
16× 32 1.868 1.088 1.214 1.515 1.550
†Overlapping size of 6 used in this case.

Table 4.3
Effect of the overlapping size δ. Mesh size 256 × 256, Re = 104, on 128, 256 and 512 processors.

of processors δ = 1 δ = 2 δ = 3 δ = 4 δ = 5
Global Newton iterations

8× 16 6 6 6 6 6
16× 16 6 6 6 6 6
16× 32 5 5 5 5 5

Average GMRES iterations
8× 16 96 77 62 54 51
16× 16 169 111 98 86 78
16× 32 165 134 103 87 80

Ranges of subdomain Newton iterations in RAS
8× 16 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4
16× 16 0 ∼ 5 0 ∼ 5 0 ∼ 5 0 ∼ 5 0 ∼ 5
16× 32 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4 0 ∼ 4

Total compute times (sec)
8× 16 2.992 2.999 3.108 3.211 3.567
16× 16 2.246 2.013 2.131 2.209 2.369
16× 32 1.169 1.230 1.214 1.222 1.315

IN
E
X
A
C
T

N
E
W

T
O
N

W
IT

H
N
O
N
L
IN

E
A
R

R
A
S
E
L
IM

IN
A
T
IO

N
1
5

0

10

20

30

40

0

10

20

30

40
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x 10
−3

0

10

20

30

40

0

10

20

30

40
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x 10
−3

0

10

20

30

40

0

10

20

30

40
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x 10
−3

0

10

20

30

40

0

10

20

30

40
−1

0

1

x 10
−4

0

10

20

30

40

0

10

20

30

40
−1

0

1

x 10
−4

0

10

20

30

40

0

10

20

30

40
−1

0

1

x 10
−4

Fig. 4.3. A comparison of the residual surfaces obtained from Newton’s method (top three figures) and the NKS-RAS method (bottom three figures). The left
figures correspond to the ω component of the residual function, the middle figures correspond to the u component of the residual function, and the right figures
correspond to the v component of the residual function. The results are for the 5th iteration of both methods. The calculation was carried out for Re = 5.0× 103

on a 256 × 256 mesh, partitioned into 16× 16 subdomains. Note that the scale for the top figures is 10−3 and the scale for the bottom figures is 10−4.

16 X.-C. CAI AND X. Li

Finally we present a comparison, in Table 4.4, of the algorithm when RAS is used
only once, with the case when RAS is used at every iteration. In most situations, it
is enough to use RAS once. This suggests that once the local highly unbalanced com-
ponents are removed, Newton method converges well without requiring any further
intervention.

Table 4.4
A comparison of the numbers of Newton iterations when RAS is used only once and used at

every iteration. The mesh size is 256× 256, with 16× 16 = 256 processors. The overlapping size is
3 for all cases.

Re RAS once RAS every step
1 · 102 4 3
5 · 102 5 6
1 · 103 5 5
5 · 103 5 6
1 · 104 6 9
5 · 104 7 8
1 · 105 9 11

5. Final remarks. A robust and fully parallel inexact Newton method was
introduced using a restricted additive Schwarz based nonlinear elimination method
and the inexact Newton-Krylov-Schwarz method. We demonstrated in this paper
that this new RAS-NKS algorithm can be used to solve difficult nonlinear problems
by balancing the distribution of nonlinearities in the system. As an example, we
studied the performance of the new algorithm for solving the high Reynolds num-
ber incompressible Navier-Stokes equations. We observed that once the local high
nonlinearity caused by the high Reynolds number is eliminated, the overall conver-
gence becomes completely independent of the Reynolds number. Comparing with the
previously introduced left-preconditioning method (additive Schwarz preconditioned
inexact Newton method [6, 17, 18]), the new method has similar robustness and scal-
ability properties, but is considerably easier to implement and is more flexible since
it can be turned on and off during some of the outer Newton iterations.

As future work, we will consider two improvements of the algorithm. First, when
the number of processors is very small, the subdomain problems become too large
and the subdomain nonlinear iterations used in nonlinear RAS may fail to converge.
Some adaptivity may be necessary to recursively use the NKS-RAS idea to solve the
nonlinear subproblems on large subdomains. Second, when the number of processors
is very large, multilevel versions for the algorithm is needed to obtain good parallel
scalability.

Acknowledgements. We would like to thank Professor Frederic Nataf, and the
referees for their insightful and constructive suggestions.

REFERENCES

[1] S. Balay, K. Buschelman, W. Gropp, D. Kaushik, M. Knepley, L. McInnes, B. Smith,
and H. Zhang, PETSc Users Manual, Argonne National Laboratory, 2008.

[2] P. N. Brown and Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM
J. Sci. Stat. Comput., 11 (1990), pp. 59–71.

INEXACT NEWTON WITH NONLINEAR RAS ELIMINATION 17

[3] P. N. Brown and Y. Saad, Convergence theory of nonlinear Newton-Krylov algorithms, SIAM
J. Optimization, 4 (1994), pp. 297–330.

[4] X.-C. Cai and M. Dryja, Domain decomposition methods for monotone nonlinear elliptic
problems, Contemporary Math., 180 (1994), pp. 21–27.

[5] X.-C. Cai, W. D. Gropp, D. E. Keyes, R. G. Melvin, and D. P. Young, Parallel Newton–
Krylov–Schwarz algorithms for the transonic full potential equation, SIAM J. Sci. Comput.,
19 (1998), pp. 246–265.

[6] X.-C. Cai and D. E. Keyes, Nonlinearly preconditioned inexact Newton algorithm, SIAM J.
Sci. Comput., 24 (2002), pp. 183-200.

[7] X.-C. Cai, D. E. Keyes, and D. P. Young, A nonlinear additive Schwarz preconditioned inex-
act Newton method for shocked duct flow, Proceedings of the 13th International Conference
on Domain Decomposition Methods, 2001.

[8] X.-C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse
linear systems, SIAM J. Sci. Comput., 21 (1999), pp. 792-797.

[9] T. Chan and K. Jackson, Nonlinearly preconditioned Krylov subspace methods for discrete
Newton algorithms, SIAM J. Sci. Stat. Comput., 5 (1984), pp. 533–542.

[10] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer.
Anal., 19 (1982), pp. 400–408.

[11] M. Dryja and W. Hackbusch, On the nonlinear domain decomposition method, BIT, (1997),
pp. 296-311.

[12] E. Efstathiou and M. Gander, Why restricted additive Schwarz converges faster than addi-
tive Schwarz, BIT Numer. Math., 43 (2003), pp. 945-959.

[13] S. C. Eisenstat and H. F. Walker, Globally convergent inexact Newton methods, SIAM J.
Optimization, 4 (1994), pp. 393–422.

[14] S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inexact Newton method,
SIAM J. Sci. Comput., 17 (1996), pp. 16-32.

[15] W. D. Gropp, D. E. Keyes, L. C. McInnes and M. D. Tidriri, Globalized Newton-Krylov-
Schwarz algorithms and software for parallel implicit CFD, Int. J. High Performance Com-
puting Applications, 14 (2000), pp. 102-136.

[16] C. Hirsch, Numerical Computation of Internal and External Flows, John Wiley & Sons, New
York, 1990.

[17] F.-N. Hwang and X.-C. Cai, A parallel nonlinear additive Schwarz preconditioned inex-
act Newton algorithm for incompressible Navier-Stokes equations, J. Comput. Phys., 204
(2005), pp. 666-691.

[18] F.-N. Hwang and X.-C. Cai, A class of parallel two-level nonlinear Schwarz preconditioned
inexact Newton algorithms, Comp. Methods Appl. Mech. Engin., 196 (2007), pp. 1603-
1611.

[19] F.-N. Hwang, H.-L. Lin, and X.-C. Cai, Two-level nonlinear elimination based precondition-
ers for inexact Newton methods with application in shocked duct flow calculation, ETNA,
37 (2010), pp. 239-251.

[20] H. Jiang and P. A. Forsyth, Robust linear and nonlinear strategies for solution of the tran-
sonic Euler equations, Computer and Fluids, 24 (1995), pp. 753-770.

[21] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia,
1995.

[22] C. T. Kelley and D. E. Keyes, Convergence analysis of pseudo-transient continuation, SIAM
J. Num. Anal., 35 (1998), pp. 508-523.

[23] F. Kwok, Is additive Schwarz with harmonic extension just Lions method in disguise? Lecture
Notes in Comput. Sci. Engin., 78 (2010), pp. 439-446.

[24] P. J. Lanzkron, D. J. Rose, and J. T. Wilkes, An analysis of approximate nonlinear elim-
ination, SIAM J. Sci. Comput., 17 (1996), pp. 538–559.

[25] M. Paraschivoiu, X.-C. Cai, M. Sarkis, D. P. Young, and D. Keyes, Multi-domain mul-
timodel formulation for compressible flows: Conservative interface coupling and parallel
implicit solvers for 3D unstructured meshes, AIAA Paper 99-0784, 1999.

[26] M. Pernice and H. Walker, NITSOL: A Newton iterative solver for nonlinear systems, SIAM
J. Sci. Comput., 19 (1998), pp. 302–318.

[27] B. F. Smith, P. E. Bjørstad, and W. D. Gropp, Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations, Cambridge University Press, 1996.

[28] D. P. Young, R. G. Melvin, M. B. Bieterman, F. T. Johnson, and S. S. Samant, Global
convergence of inexact Newton methods for transonic flow, Int. J. Numer. Meths. Fluids,
11 (1990), pp. 1075-1095.

[29] D. P. Young, R. G. Mervin, M. B. Bieterman, F. T. Johnson, S. S. Samant and J.
E. Bussoletti, A locally refined rectangular grid finite element method: Application to

18 X.-C. CAI AND X. Li

computational fluid dynamics and computational physics, J. Comput. Phys., 92 (1991),
pp. 1-66.

