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SUMMARY

In this paper we investigate some fully coupled parallel two-grid Lagrange-Newton-Krylov-Schwarz
(LNKSz) algorithms for the suboptimal distributed control of unsteady incompressible flows governed
by the Navier-Stokes equations. The algorithms include two major parts: a two-grid Newton method for the
nonlinear part of the problem and a two-level Schwarz preconditioner for the linear part of the problem. Most
of the existing approaches for distributed control problems are based on the so-called reduced space method
which is easier to implement but may have convergence issues in some situations. In the full space approach
we couple the state variables, the control variables, and the adjoint variables in a single large system of
nonlinear equations. The coupled system is considerably more ill-conditioned than its sub-systems, however,
with the powerful two-grid approach, we are able to solve these difficult systems efficiently on large scale
parallel computers. We show numerically that such an approach is scalable in the sense that the number
of Newton iterations and the number of linear iterations are both nearly independent of the grid size, the
number of processors, and the Reynolds numbers. We present numerical experiments for some suboptimal
control problems obtained on supercomputers with more than two thousand processors. Copyright c© 0000
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Flow optimal control problems have attracted substantial interests in recent years due to their wide
ranging applications [16, 24]. Flow control problems can be described in many different forms
such as flow matching, vorticity minimization, viscous drag minimization, avoiding hot spots,
stabilization enhancement, mixing maximization, and so on. In this paper we focus on the distributed
control problem, which is to control the fluid flow by computing the external force applied to
the flow. Such problems are extremely demanding in terms of computational resources. Popular
approaches for solving unsteady flow control problems are explicit or semi-implicit methods, both
have limitations on the time step size imposed by the Courant-Friedrichs-Lewy (CFL) condition. For
many applications, it is desirable to use algorithms that allow large time steps that are determined
by the desired accuracy, but not the stability condition. Moreover, the algorithm is also required to
be robust with respect to some of physical parameters, such as the Reynolds number. Hence, the
focuses of the paper are algorithms that allow large time steps, are robust with respect to physical
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2 H. YANG AND X.-C. CAI

parameters, and scalable on machines with a large number of processors. Many attempts have
been made in the past few years to mathematically understand the flow control problems and to
numerically solve the flow control problems in various forms; see e.g., [13, 14, 15, 19, 25, 26]. In
[20], a boundary control problem is first transformed into a distributed control problem and then the
distributed control problem is solved by a class of multigrid methods. In [15], a gradient method is
proposed for the numerical solution of a time-dependent distributed control problem associated with
the tracking of the velocity of a Navier-Stokes flow in a bounded two-dimensional domain. In [18], a
numerically inexpensive globalization strategy of sequential quadratic programming methods for the
unsteady distributed control problem is investigated. Although these numerical algorithms are stable
and reliable for solving various unsteady distributed control problems, there are some restrictions on
the time step size due to the semi-implicit nature of the algorithms. Flow optimal control problems
are computationally expensive. In this paper we propose a class of fully implicit algorithms for the
distributed control of unsteady incompressible flows. Since we use a fully implicit scheme that is
suitable for large scale supercomputers, the CFL condition can be completely relaxed. We show
numerically that the proposed method is stable and converges well with relatively large times steps,
and it is robust with respect to some of the physical parameters, such as the Reynolds number.

The class of full space Lagrange-Newton-Krylov type algorithms was introduced for boundary
control of incompressible flows [4, 5, 22, 23, 31, 32]. The methods include two parts: a Lagrange-
Newton method for the nonlinear system obtained from the optimization problem and a Krylov
subspace method for the Jacobian system arising from the Newton method. For the class of nonlinear
constrained optimization problems, the scalability of the method requires mesh independent
convergence of the outer Newton iterations. To fix this issue, we use a grid sequencing method
which employs an interpolated coarse grid solution as the initial guess for the fine grid system. Our
experiments show that this strategy provides a good improvement of the overall method in terms of
the total computing time and Newton iterations. In other words, the impact of grid sequencing is
restricted to the nonlinear solver part of the algorithm, and its influence to the linear solver part is
very small.

The rest of the paper is organized as follows. In Section 2, we present the unsteady distributed
control problems and introduce a fully implicit discretization scheme. Section 3 is devoted to the
main components and features of LNKSz and then describes the details of the two-level Schwarz
preconditioner. Some numerical results are given in Section 4. We end the paper with some
concluding remarks in Section 5.

2. MATHEMATICAL MODEL AND DISCRETIZATION

In this section, we first describe a general distributed control problem governed by the unsteady
incompressible Navier-Stokes equations, and then introduce a fully implicit discretization for the
suboptimal control problem.

We consider the unsteady incompressible Navier-Stokes equations in the velocity-vorticity
formulation:

−∆v1 −
∂ω

∂y
= 0 in [0, T ]× Ω, (1)

−∆v2 +
∂ω

∂x
= 0 in [0, T ]× Ω, (2)

∂ω

∂t
− 1

Re
∆ω + v1

∂ω

∂x
+ v2

∂ω

∂y
− curl f = 0 in [0, T ]× Ω, (3)

where Ω is a bounded domain in R2, and T denotes the final time. In the above equations the
velocity field v = (v1, v2) and the vorticity ω are the state variables, f = (f1, f2) is the external
force, curl f = −∂f1/∂y + ∂f2/∂x, and Re is the Reynolds number. With some given initial and
boundary conditions, the equations (1)-(3) are often referred to as the simulation or the forward
problem.
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TWO-LEVEL METHOD FOR UNSTEADY INCOMPRESSIBLE FLOWS 3

In the distributed control problem we try to find an external force f over the whole or part of Ω in
order to achieve the goal [15, 18]

min F(v, ω, f) =
1

2

∫ T

0

G(v, ω) dt+
γ

2

∫ T

0

∫
Ωf

‖f‖22 dΩ dt (4)

subject to the constraints (1), (2), and (3) with the following boundary and initial conditions

v − vD = 0 on [0, T ]× Γ,

ω +
∂v1

∂y
− ∂v2

∂x
= 0 on [0, T ]× Γ,

v(0, x, y)− v0 = 0 in Ω,

ω(0, x, y) +
∂v1

∂y
(0, x, y)− ∂v2

∂x
(0, x, y) = 0 in Ω.

(5)

Here, Γ is the boundary of Ω, Ωf ⊆ Ω is the control domain, vD and v0 are given velocities, G(v, ω)
is the goal of the optimal control problem. γ > 0 is a regularization parameter used to adjust the
relative importance of the control norms in achieving the minimization, thus indirectly constraining
their magnitudes.

For solving optimization problems constrained by time dependent nonlinear partial differential
equations, it typically requires a combination of a discretization technique in space and time with
an optimization method. We follow the discretize-then-optimize approach in this paper, namely we
first fully discretize the differential equations and then apply an optimization method to solve the
discrete finite dimensional problem. The computational cost for solving the problem is enormous,
even for the latest massively parallel computers it is a very difficult job to solve the unsteady control
problem at once for the whole time interval [0, T ], we therefore replace the original full-time-interval
problem by a sequence of suboptimal problems [27], which are similar to the original problem
but only defined on the time interval [t(k−1), t(k)], k = 1, . . . , kmax, with t(0) = 0 and t(kmax) = T .
Note that in the suboptimal approach the sequence of subproblems’ objectives are the same as the
objective of the original control problem. We refer interested readers to the papers [2, 3, 21] on the
suboptimal approach. On each time interval, we write

min F (k)(v, ω, f) =
1

2

∫ t(k)

t(k−1)

G(v, ω) dt+
γ

2

∫ t(k)

t(k−1)

∫
Ωf

‖f‖22 dΩ dt (6)

which is subject to the constraints (1)-(3) and the boundary conditions (5) defined on the short time
interval [t(k−1), t(k)]. The initial condition is taken as the final solution from the previous time step,
except in the first time interval in which the given initial condition in (5) is available.

For the time discretization, by using a second-order backward differentiation formula [17] with a
uniform step size ∆t ≡ t(k) − t(k−1), we have

min F (k)(v(k), ω(k), f (k)) = ∆t G(v(k), ω(k)) +
γ

2
∆t

∫
Ωf

‖f (k)‖22 dΩ (7)

with the constraints:

−∆v
(k)
1 − ∂ω(k)

∂y
= 0 in Ω,

−∆v
(k)
2 +

∂ω(k)

∂x
= 0 in Ω,

1

∆t

[
3

2
ω(k) − 2ω(k−1) +

1

2
ω(k−2)

]
− 1

Re
∆ω(k)

+v
(k)
1

∂ω(k)

∂x
+ v

(k)
2

∂ω(k)

∂y
− curl f (k) = 0 in Ω,

v(k) − v
(k)
D = 0 on Γ,

ω(k) +
∂v

(k)
1

∂y
− ∂v

(k)
2

∂x
= 0 on Γ.

(8)
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4 H. YANG AND X.-C. CAI

Note that, for the first time step (i.e., k = 1), we use the following first-order backward Euler method
to substitute the third constraint in (8):

1

∆t
(ω(k) − ω(k−1))− 1

Re
∆ω(k) + v

(k)
1

∂ω(k)

∂x
+ v

(k)
2

∂ω(k)

∂y
− curl f (k) = 0.

A major advantage of the fully implicit method is that the time step size ∆t is not constrained by a
CFL condition, which is often required by explicit or semi-implicit techniques.

For the spatial discretization, we use a second-order five-point finite difference method on a
uniform mesh. Let us write the suboptimal problem as{

min F (k)
h (x)

s.t. C
(k)
h (x) = 0,

(9)

where x = (v, ω, f). In fact, (9) can be viewed as a steady state control problem. Those interested
in the details of the spatial disctrization can read [22, 23].

By introducing the Lagrange multipliers λ with respect to the state and control variables, we
define the following Lagrangian functional

L(k)(x, λ) ≡ F (k)
h (x) +

(
λ,C

(k)
h (x)

)
. (10)

LetX ≡ (x, λ). Then, for k = 1, . . . , kmax, the KKT system obtained by differentiating (10) becomes

G(k)(X) =

(
∇xL(k)(x, λ)
∇λL(k)(x, λ)

)
= 0. (11)

The optimality system (11) is a large, nonlinear, coupled, and muti-components system, which
is much more complicated than the corresponding simulation problem. In the next section we
introduce an iterative method that is capable of dealing with the high nonlinearity of the system
and also the severe ill-conditionness of its Jacobian matrix.

3. TWO-GRID NEWTON AND TWO-LEVEL SCHWARZ PRECONDITIONERS

In this section, we introduce a parallel scalable solution algorithm for solving (11). After many
numerical experiments, we observe that, because of the high nonlinearity, the traditional Newton
method doesn’t work well for this class of problems, no matter how accurately or inaccurately we
solve the Jacobian system. However, if we borrow the coarse space (which is originally used to
build the two-level preconditioner for the Jacobian matrix) and use it as a coarse Newton solver,
then the nonlinear iteration suddenly become acceptable. Below we first discuss the class of full
space Lagrange-Newton-Krylov-Schwarz (LNKSz) method and then focus on the two-grid Newton
method.

For each time step k = 1, . . . , kmax, the nonlinear system (11) is solved by an inexact Newton
method, and the Newton step is computed by{

J
(k)
n S

(k)
n = −G(k)(X

(k)
n ),

X
(k)
n+1 = X

(k)
n + α

(k)
n S

(k)
n , n = 0, 1, ....,

(12)

where α(k)
n is the steplength determined by a linesearch procedure [9, 10], the Jacobian matrix

J
(k)
n = J

(k)
n (X

(k)
n ) is computed by a finite difference approximation, and the initial guess X(k)

0 is
the solution of the previous time step. Note that at the first time step, we choose the initial condition
(i.e., at t = 0) as the initial guess. We continue the iteration (12) until the following convergence
criterion is satisfied

||G(k)(X
(k)
n+1)|| ≤ max{εr||G(k)(X

(k)
0 )||, εa},
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TWO-LEVEL METHOD FOR UNSTEADY INCOMPRESSIBLE FLOWS 5

where εr (εa) is the relative (absolute) solver tolerance for the Newton iteration. A Krylov subspace
method is applied to approximately solve the following right-preconditioned linear system

‖G(k)(X
(k)
n ) + J

(k)
n (M

(k)
n )−1(M

(k)
n S

(k)
n )‖ ≤ max{ηr‖G(k)(X

(k)
n )‖, ηa},

where (M
(k)
n )−1 is the one-level or two-level Schwarz preconditioner, and ηr (ηa) is the relative

(absolute) solver tolerance for the linear iteration. We will refer to the above method as the one-
level or two-level LNKSz method.

When using the above Newton’s method to solve the nonlinear system (11), one big problem is the
deterioration of the convergence rate (i.e., The number of Newton iterations to satisfy the stopping
condition.) when the grid is refined, specially for the first time step, since in this case the initial
guess is not good enough for Newton iterations. It turns out the classical idea of grid sequencing
works quite well in this situation.

In order to use the grid-sequencing method, we assume there are two grids covering Ω, a coarse
grid and a fine grid, and we assume there is a coarse to fine grid interpolation operator IhH . We
construct the optimization problem on the coarse and fine grids, respectively. We first use the one-
level LNKSz to solve the nonlinear problem on the coarse grid with the initial guess obtained
as a restriction of the fine-grid solution from the previous timestep. Of course, at the first time
step, we choose the initial condition as the initial guess. Then, we interpolate the solution to the
next fine grid and use it as an initial guess for the nonlinear problem on that grid. Moreover, the
optimization problem on the fine grid is solved by the two-level LNKSz. We refer to this LNKSz
method combined with the grid-sequencing technique as a two-grid LNKSz method.

We remark that the two purposes of the coarse grid are (1) as a part of grid-sequencing technique
for the Newton iteration; (2) as a part of the two-level Schwarz preconditioner for solving the linear
Jacobian problem.

In the following, we define the Schwarz preconditioners. First, we define the one-level additive
Schwarz method. More precisely, we first partition Ω into non-overlapping subdomains Ωi, i =
1, . . . , Ns. Then each subdomain Ωi is extended with δ > 0 layers of grid points to a larger
subdomain Ωδi that overlaps with its neighbors. Subdomain boundaries that coincide with the
physical boundary are not extended. Suppose the total number of unknowns associated with Ω is N
and let Ni be the number of unknowns in Ωδi . The Jacobian matrix J is an N ×N sparse matrix in
the system

JS = −G. (13)

A restriction operator Rδi is an Ni ×N matrix that maps a vector defined on the entire domain
to a smaller vector defined on the subdomain Ωδi by discarding all components corresponding to
mesh points outside Ωδi . Specifically, R0

i is also an Ni ×N matrix that is similarly defined, with the
difference that its application to a N × 1 vector also zeroes all those components corresponding to
mesh points outside Ωi. The subdomain matrix is an Ni ×Ni matrix that is defined as

Ji = Rδi J (Rδi )
T .

In general, it is difficult to prove theoretically that the matrix J is nonsingular for a particular flow
problem, but in our experiments, J is indeed nonsingular. We also assume that Ji is nonsingular
and denote by B−1

i either the inverse of or a preconditioner for Ji. The one-level restricted additive
Schwarz (RAS) preconditioner for J is defined as [7]

M−1
RAS = (R0

1)TB−1
1 Rδ1 + · · ·+ (R0

Ns
)TB−1

Ns
RδNs

. (14)

In this paper the matrices B−1
i are obtained by LU or ILU factorization. More details of this case

will be discussed in the numerical experiments section of this paper.
Next, we define the multiplicative type two-level Schwarz preconditioner. Let I denote the

identity operator, IhH be a linear interpolation operator from the coarse grid to the fine grid, and
IHh be a restriction operator from the fine grid to the coarse grid. Here, we let IHh = (IhH)T . Similar
to the Jacobian matrix J defined on the fine grid, there is also the Jacobian matrix Jc defined on
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6 H. YANG AND X.-C. CAI

the coarse grid. Then, the multiplicative type two-level Schwarz preconditioner can be defined as
[29, 30]

M−1 =
(
I − (I −M−1

RASJ)(I −M−1
c J)(I −M−1

RASJ)
)
J−1 (15)

where M−1
c = IhHJ−1

c IHh . The preconditioner (15) is additive among all fine or coarse mesh
subdomains, and multiplicative between the fine and coarse preconditioners. In fact, the
preconditioner (15) can be seen symbolically as a V-cycle multigrid algorithm [6].

Note that, in the two-level Schwarz preconditioner (15), a linear problem on the coarse grid
Jcv0 = b0 needs to be solved. In our applications, the problem is too large for direct methods.
We use a restarted GMRES, preconditioned with a one-level additive Schwarz method to solve the
coarse problem, using the same number of subdomains (and therefore processors) as on the fine grid.
Similar to the one-level preconditioner on the fine grid, we introduce a one-level preconditioner on
the coarse grid

B−1
c =

Ns∑
i=1

(R0
c,i)

TB−1
c,i R

δc
c,i.

HereBc,i is the restriction of Jc on the subdomain Ωδci , andRδcc,i andR0
c,i are the restriction operators

on the coarse grids defined on Ωδci and Ωi, respectively. eH = J−1
c rH is computed by approximately

solving the following problem

‖rH − JcB−1
c x′c‖ ≤ max{ηcr‖rH‖, ηca},

where ηcr (ηca) is the relative (absolute) solver tolerance for the linear iteration on the coarse grid.
The purpose of the coarse grid problem is for the coarse grid correction to help the fine grid problem.
Hence, we can solve the coarse problem with a much larger error tolerance than the fine problem
if it can save computational cost while still is an effective preconditioner for (15). More discussion
will be given in the numerical experiments section of the paper. When an iterative method is used
for solving the coarse grid problem, the overall preconditioner is an iterative procedure. In other
words, the preconditioner changes from iteration to iteration. Hence, in this paper, we use GMRES
for all one-level cases and FGMRES for all two-level and two-grid cases [28].

4. NUMERICAL EXPERIMENTS

Our algorithms are implemented based on the Portable Extensible Toolkit for Scientific computation
(PETSc) [1]. All computations are performed on an IBM BlueGene/L supercomputer.

4.1. Test cases

We consider two model problems: a flow matching problem [11, 14, 15, 18] and a backward-facing
step flow control problem [19, 25, 27].

In the flow matching problem we attempt to have the velocity field agree with a desired flow in
the domain Ω. In other words, we compute an external force f over the interior of Ω such that the
corresponding velocity field is as close to the given velocity field vss as possible, and at the same
time satisfy the constraints. Thus the problem under consideration is to find (v1, v2, ω, f1, f2) such
that the minimization

min F(v, f) =
1

2

∫ T

0

∫
Ω

‖v − vss‖22 dΩ dt+
γ

2

∫ T

0

∫
Ω

‖f‖22 dΩ dt (16)
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TWO-LEVEL METHOD FOR UNSTEADY INCOMPRESSIBLE FLOWS 7

is achieved subject to the constraints (1), (2), and (3) with the boundary and initial conditions as
follows: 

v − vD = 0 on [0, T ]× Γ,

ω +
∂v1

∂y
− ∂v2

∂x
= 0 on [0, T ]× Γ,

v(0, x, y)− v0 = 0 in Ω,

ω(0, x, y) +
∂v1

∂y
(0, x, y)− ∂v2

∂x
(0, x, y) = 0 in Ω,

(17)

where Γ is the boundary of the domain Ω = (0, 1)× (0, 1), T = 1. Let Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4

where Γ1,Γ2,Γ3 and Γ4 are disjoint portions of the boundary Γ of the domain Ω,C1 ∪ C2 ∪ C3 ∪ C4

its corners. The geometry for the flow matching problem is shown in Figure 1.

t t

tt

C1 : (0,0) C2 : (1,0)

C3 : (1,1)C4 : (0,1)

Γ1 ⇒ v = 0

Γ2 ⇒ v = 0

Γ3 ⇒ v = 0

v = 0⇐ Γ4 Ω: the control domain

Figure 1. Square domain Ω = (0, 1) × (0, 1) for the flow matching problem.

Similar to [18], the boundary condition is vD = 0 and the initial condition is chosen as

v0 = e

(
(cos(2πx)− 1) sin(2πy)
−(cos(2πy)− 1) sin(2πx)

)
,

where e is the Euler number, and the target velocity is given by

vss(t, x, y) =

(
ϕy(t, x, y)
−ϕx(t, x, y)

)
,

where ϕ is defined by the following function

ϕ(t, x, y) = (1− x)2(1− y)2 (1− cos(2πtx)) (1− cos(2πty)) .

The second test case is a backward-facing step flow control problem, in which we minimize
the vorticity of the flow by computing an external force in a subdomain. We apply the control
to the subdomain Ωf and in the non-control subdomain Ω\Ωf the external force f is chosen
as 0. Let Ω = (0, 6)× (0, 1), Ωf = (0, 1)× (0, 0.5), T = 1, Γ2 = {(x, y) ∈ Γ : 0 < y < 1, x = 6},
Γ4 = {(x, y) ∈ Γ : 0 < y < 1, x = 0}, and Γ4,a = {(x, y) ∈ Γ4 : 0.5 ≤ y < 1}. Then the problem
consists of finding (v1, v2, ω, f1, f2) such that

min F(ω, f) =
1

2

∫ T

0

∫
Ω

ω2 dΩ dt+
γ

2

∫ T

0

∫
Ωf

‖f‖22 dΩ dt (18)
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8 H. YANG AND X.-C. CAI

is achieved subject to the constraints (1), (2), and (3) with the following boundary and initial
conditions: 

v1 = vin on [0, T ]× Γ4,a,
v1 = vout on [0, T ]× Γ2,
v1 = 0 on [0, T ]× Γu,
v2 = 0 on [0, T ]× Γ,

ω +
∂v1

∂y
− ∂v2

∂x
= 0 on [0, T ]× Γ,

v(0, x, y)− v0 = 0 in Ω,

ω(0, x, y) +
∂v0,1

∂y
− ∂v0,2

∂x
= 0 in Ω,

(19)

where Γu = Γ\(Γ4,a ∪ Γ2). The geometry is shown in Figure 2.

t t

t t

C1 : (0,0) C2 : (6,0)

C4 : (0,1) C3 : (6,1)

Γ1

Γ2

=⇒ vout

=⇒ vout
Γ3

Γ4

=⇒ vin

Ω
Ωf

Figure 2. Rectangular domain Ω = (0, 6) × (0, 1) for the backward-facing step channel flow, Ωf = (0, 1) ×
(0, 0.5) is the control domain.

At the inflow boundary, a parabolic velocity profile vin = 8(1− y)(y − 1
2 ) cos(t) is imposed. At

the outflow boundary, vout = y(1− y) cos(t) is applied. The following initial velocity is defined by
v0 = (v0,1, v0,2) with

v0,1 =


y(1− y) +

1

16
y if 0 6 y 6

1

2
,

y(1− y) +
1

16
(1− y) if

1

2
6 y 6 1,

and
v0,2(x, y) = 0.

4.2. Details of numerical experiments

For the time discretization we apply the second-order backward differentiation formula as described
in Section 2. For the spatial discretization we use a five-point finite difference method on a uniform
mesh. In order to form the algebraic system generated from finite difference equations obtained
for each of the mesh points, we need to order both the unknowns and the corresponding functions.
In contrast to ordering the unknowns component-wise that is usually required by other methods,
we order the unknowns mesh point by mesh point and the mesh points are ordered subdomain by
subdomain for the purpose of parallel processing. The unknowns at each mesh point are ordered in
the order of v1, v2, ω, f1, f2, λ1, λ2, λ3, and the corresponding functions are ordered in the order of
∇λ1
L,∇λ2

L,∇λ3
L,∇f1L,∇f2L,∇v1L,∇v2L,∇ωL.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
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TWO-LEVEL METHOD FOR UNSTEADY INCOMPRESSIBLE FLOWS 9

In the experiments, we compare the following algorithms which are introduced in Section 3:

• One-level LNKSz: one-level additive Schwarz is used as the preconditioner, and inexact
Newton is carried out on the fine grid;

• Two-level LNKSz: two-level multiplicative Schwarz is used as the preconditioner, and
inexact Newton is carried out on the fine grid;

• Two-grid LNKSz: two-level multiplicative Schwarz is used as the preconditioner on the fine
grid, inexact Newton is used on the coarse grid to generate the initial guess for the inexact
Newton on the fine grid.

The Jacobian matrices are constructed approximately using a multi-colored finite difference method,
i.e., we take the following numerical differentiation procedure to evaluate Jk, which is defined by

J
(k)
i,j =

G
(k)
i (Xj + α)−G(k)

i (Xj − α)

2α
,

where 0 < α 6 1 is a small constant. Many such calculations at points not related to each other can
be carried out at the same time by using the multi coloring technique [8].

The size of the coarse grid H is taken as 4h, where h is the size of the fine grid. GMRES(90) and
FGMRES(90) are used to solve the linear system at each Newton step on the coarse and the fine
grids, respectively. There are several nested iterative procedures in the proposed algorithms, and
each requires a proper stopping condition. We use 10−10 (10−6) as the absolute (relative) condition
for all linear and nonlinear solves, except for the linear coarse solve of the two-level preconditioner,
for which we use 10−2 (10−1) as the absolute (relative) condition for the flow matching problem
(16)-(17) and 10−4 (10−2) as the absolute (relative) condition for the backward-facing step control
problem (18)-(19), respectively. The subdomain problems are solved with a sparse LU or ILU
factorization. For Newton iterations, line search is performed with cubic backtracking [9, 10]. Note
that the Reynolds continuation is not used in any of the algorithms.

Scalability is an important issue in parallel computing, and the issue is more significant when
solving large-scale problems with many processors. To evaluate the parallel performance of the
proposed methods, we consider the following parallel efficiency:

Ef =
Np,1 × T1

Np,2 × T2
,

where T1 and T2 are the execution times obtained by running the parallel code with Np,1 and Np,2
processors (Np,1 ≤ Np,2), respectively. We also report speedup defined as

Speedup =
T1

T2
.

Throughout this paper, “Np” stands for the number of processors which is the same as the number
of subdomains, “IN” is the average number of inexact Newton iterations per time step, “RAS” is the
average number of the preconditioned GMRES iterations per Newton iteration, and “RUN” is the
total computing time in seconds, which includes the total CPU time for solving all the nonlinear
systems. We also use the following notations:

• “−−”: for some cases that the tests are not carried out because of the lack of memory;
• “++”: for some cases that the tests are not convergent because of the divergence of GMRES;
• “δ”: the distance between ∂Ωδi and ∂Ωi on the fine grid in terms of the number of mesh cells,

and δc for the coarse grid.

4.3. Comparing one-level and two-level Schwarz preconditioning

We first study the application of the one-level and two-level LNKSz to the flow matching problem
(16)-(17). In particular, we look at the performance of the algorithms with respect to the change of
some of the physical and algorithmic parameters.
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In Table I, we show the performance of the one-level and two-level LNKSz when the number of
processors and the size of the overlap change. For these experiments we use a fix 512× 512 mesh,
γ = 0.1, Re = 200, ILU(3), and ∆t = 0.1. First we observe that the number of Newton iterations is
completely independent of the number of processors and the overlapping size in both one-level and
two-level approaches. However, the number of GMRES iterations changes a lot. In the one-level
tests, if the overlap is too small, GMRES sometimes fails to converge. Even though the number
of GMRES iterations goes down as the overlap increases, but the total compute doesn’t always
decrease when δ increases. For each fixed processor count, there is an optimal choice of δ. In the
two-level tests, we fix the coarse mesh as 128× 128. The performance is considerably better than
the one-level method in terms of both the number of iterations and the total compute time, and δ = 2
produces the best timing results for all processor counts.

Table I. Effect of overlap size δ for the flow matching problem (16)-(17) by using the one-level and two-level
LNKSz. γ = 0.1, Re = 200, 512 × 512 grid, ILU(3), and ∆t = 0.1 (i.e., there are 10 time steps). δc = 2 and
the coarse subdomain solve is ILU(3). In the one-level method, the fine mesh is 512 × 512. In the two-level
method, the coarse mesh is 128 × 128 and the fine mesh is 512 × 512. “ + +” means the divergence of

GMRES.

Np IN RAS RUN IN RAS RUN IN RAS RUN
δ = 1 δ = 2 δ = 3

One-level
64 2.8 771.8 2712.9 2.8 709.5 2599.6 2.8 663.6 2557.5
128 2.8 904.1 1614.2 2.8 787.3 1491.9 2.8 735.9 1494.7
256 2.8 1028.4 938.1 2.8 896.2 893.3 2.8 819.1 874.7
512 2.8 1262.3 595.1 2.8 1098.5 581.8 2.8 1009.4 585.4
1024 ++ 2.8 1164.8 335.2 2.8 1020.6 330.7
2048 ++ 2.8 1465.3 220.6 2.8 1275.1 240.0

Two-level
64 2.8 56.7 1324.4 2.8 38.4 1026.0 2.8 38.1 1033.3
128 2.8 59.9 728.8 2.8 38.8 573.1 2.8 39.3 595.7
256 2.8 58.7 405.6 2.8 40.1 323.5 2.8 40.0 334.5
512 2.8 60.6 258.1 2.8 41.6 212.5 2.8 41.1 219.3
1024 2.8 62.2 162.0 2.8 43.5 136.8 2.8 42.1 141.3
2048 2.8 72.0 120.5 2.8 45.5 93.1 2.8 47.2 102.0

The per processor performance of LNKSz depends heavily on how the subdomain problems are
solved. In the following set of the tests, we compare several different subdomain solvers based
a sparse LU factorization, and sparse incomplete LU factorizations with varying level of fill-ins.
In the tests, we use a fixed mesh 512× 512. In Table II, we summarize the results with different
number of processors and level of fill-ins. As expected, the two-level method outperforms the one-
level method. ILU with small level of fill-in offers the best results in terms of the total compute
time.

Table III shows the effect of ∆t on the performance of the one-level and two-level LNKSz, for
fixed γ = 0.1, Re = 200, 512× 512 grid, ILU(3), and δ = 2. For the scaling studies, we experiment
with several different time steps, and report the total computing time, the nonlinear iteration counts
per time step, and the average GMRES iterations per Newton step. As the timestep size ∆t is
increased, the number of iterations for the one-level method increases, while those for the two-level
method are fairly stable. Note that LNKSz converges well with small and large time steps.

Table IV summarizes the impact of the fine mesh size on the performance of LNKSz, for fixed
γ = 0.1, Re = 200, ∆t = 0.1 (i.e., there are 10 time steps), and δ = 2. We see that the number
of nonlinear iterations per time step does not change with respect to the fine mesh size and is
independent of the number of processors. For the linear solver, the number of linear iterations

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
Prepared using fldauth.cls DOI: 10.1002/fld



TWO-LEVEL METHOD FOR UNSTEADY INCOMPRESSIBLE FLOWS 11

Table II. Effect of the different subdomain solvers for the flow matching problem (16)-(17) by using the
one-level and two-level LNKSz. γ = 0.1, Re = 200, 512 × 512 grid, δ = 2, and ∆t = 0.1 (i.e., there are 10

time steps). “ −−” means not enough memory.

Np IN RAS RUN IN RAS RUN IN RAS RUN
ILU(2) ILU(4) LU

One-level
64 2.8 907.4 2952.0 2.8 584.1 2471.6 2.8 247.1 3549.9
128 2.8 1005.0 1703.9 2.8 682.9 1484.3 2.8 383.1 2109.2
256 2.8 1124.4 980.7 2.8 784.8 891.0 2.8 493.9 1009.8
512 2.8 1295.9 614.4 2.8 986.3 595.0 2.8 765.8 692.2
1024 2.8 1284.0 324.9 2.8 1054.4 344.8 2.8 878.6 364.3
2048 2.8 1645.9 219.8 2.8 1353.9 233.4 2.8 1279.7 269.0

Two-level
64 2.8 47.1 1079.2 2.8 37.8 1158.6 −−
128 2.8 47.7 605.2 2.8 38.9 647.3 2.8 36.3 1565.9
256 2.8 47.8 336.8 2.8 39.9 359.0 2.8 37.3 610.5
512 2.8 48.4 220.4 2.8 42.0 230.9 2.8 38.3 333.8
1024 2.8 49.3 139.4 2.8 43.3 143.7 2.8 38.8 164.3
2048 2.8 52.0 101.3 2.8 47.8 103.2 2.8 49.6 121.8

Table III. Effect of the time steps for the flow matching problem (16)-(17) by using the one-level and two-
level LNKSz. γ = 0.1, Re = 200, 512 × 512 grid, ILU(3), and δ = 2.

Np IN RAS RUN IN RAS RUN IN RAS RUN
∆t = 0.1 ∆t = 0.05 ∆t = 0.025

One-level
64 2.8 709.5 2599.6 2.4 455.4 2949.1 2.1 310.7 3877.8
128 2.8 787.3 1491.9 2.4 520.6 1728.0 2.1 342.4 2188.5
256 2.8 896.2 893.3 2.4 601.2 1042.2 2.1 378.5 1259.9
512 2.8 1098.5 581.8 2.4 715.5 657.1 2.1 460.5 802.8
1024 2.8 1164.8 335.2 2.4 781.8 390.0 2.1 519.5 490.6
2048 2.8 1465.3 220.6 2.4 1046.3 276.7 2.1 709.0 342.1

Two-level
64 2.8 38.4 1026.0 2.4 38.0 1624.2 2.1 36.8 2806.1
128 2.8 38.8 573.1 2.4 38.5 894.7 2.1 36.8 1521.5
256 2.8 40.1 323.5 2.4 39.4 497.0 2.1 37.9 837.2
512 2.8 41.6 212.5 2.4 41.0 310.8 2.1 39.2 510.2
1024 2.8 43.5 136.8 2.4 42.9 197.2 2.1 41.7 314.2
2048 2.8 45.5 93.1 2.4 45.2 133.5 2.1 43.8 214.7

grows with the the number of processors, which is expected from the convergence theory of one-
level domain decomposition methods. From Table IV, we also observe: (1) for the linear solver, the
number of iterations for the one-level LNKSz is much larger than that for the two-level LNKSz, and
the number of iterations for the one-level LNKSz grows rapidly with the mesh refinement while the
two-level LNKSz is fairly stable; (2) compared with the one-level LNKSz, the total computing time
of the two-level LNKSz is much smaller, specially for the cases of 1024× 1024 grid. The two-level
method is clearly more attractive for large scale calculations.

In order to study the impact of the Reynolds number on the performance of LNKSz, in the next
experiment we increase Re to 400 and keep all other values unchanged. Results are summarized in

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
Prepared using fldauth.cls DOI: 10.1002/fld



12 H. YANG AND X.-C. CAI

Table IV. Effect of the mesh size for the flow matching problem (16)-(17) by using the one-level and two-
level LNKSz. γ = 0.1, Re = 200, ILU(3), δ = 2, and ∆t = 0.1 (i.e., there are 10 time steps). The total
degrees of freedom for the two grids are 2, 097, 152 and 8, 388, 608, respectively. “ −−” means not enough

memory.

Np IN RAS RUN IN RAS RUN
512× 512 1024× 1024

One-level
64 2.8 709.5 2599.6 −−
128 2.8 787.3 1491.9 2.8 2179.1 14972.7
256 2.8 896.2 893.3 2.8 2343.1 8066.1
512 2.8 1098.5 581.8 2.8 2666.7 4882.2
1024 2.8 1164.8 335.2 2.8 2610.2 2454.2
2048 2.8 1465.3 220.6 2.8 3520.9 1797.0

Two-level
64 2.8 38.4 1026.0 −−
128 2.8 38.8 573.1 −−
256 2.8 40.1 323.5 2.8 58.6 1737.8
512 2.8 41.6 212.5 2.8 59.0 994.7
1024 2.8 43.5 136.8 2.8 61.4 602.7
2048 2.8 45.5 93.1 2.8 63.5 464.4

Table V. Comparing it to Table IV, we see that the average number of Newton iterations, the average
number of linear iterations and the total computing time become larger.

Table V. Effect of a larger Reynolds number for the flow matching problem (16)-(17) by using the one-level
and two-level LNKSz. γ = 0.1, Re = 400, ILU(3), δ = 2, and ∆t = 0.1 (i.e., there are 10 time steps). The
total degrees of freedom for the two grids are 2, 097, 152 and 8, 388, 608, respectively. “ −−” means not

enough memory.

Np IN RAS RUN IN RAS RUN
512× 512 1024× 1024

One-level
64 3.0 747.9 2920.8 −−
128 3.0 857.0 1728.1 3.0 2103.2 15492.5
256 3.0 985.7 1044.8 3.0 2361.4 8783.9
512 3.0 1291.8 726.0 3.0 2839.5 5560.5
1024 3.0 1337.8 409.3 3.0 3102.6 3109.6
2048 3.0 1738.6 278.3 3.0 4221.1 2296.7

Two-level
64 3.0 50.2 1347.5 −−
128 3.0 51.7 764.0 −−
256 3.0 53.6 433.6 3.0 70.9 2177.5
512 3.0 56.0 283.8 3.0 70.0 1251.8
1024 3.0 58.8 187.7 3.0 72.5 750.8
2048 3.0 58.9 130.7 3.0 75.9 569.3

The difficulty of the control problem changes with the regularization parameter γ. Table VI shows
the effect of γ on the performance of the one-level and two-level LNKSz, for fixed Re = 200,
512× 512 grid, ∆t = 0.1 (i.e., there are 10 time steps), ILU(3), and δ = 2. We observe that, as
γ decreases, the average numbers of Newton and linear iterations become larger and the total
computing time increases. In other words, the control problem is more difficult to solve for smaller
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γ values. In practice the value of γ can not be too small since the size of a control is limited
by technological constraints, if the size of the control (measured in an appropriate norm) is not
a priori constrained to be within some specified bounds, optimal controls found as solutions of
the optimization problem are usually unbounded, and therefore not physically realizable. More
discussions about this issue can be found in references [12, 15, 19, 27].

Table VI. Effect of the parameter γ for the flow matching problem (16)-(17) by using the one-level and two-
level LNKSz. Re = 200, 512 × 512 grid, ILU(3), δ = 2, and ∆t = 0.1 (i.e., there are 10 time steps). “ + +”

means the divergence of GMRES.

Np IN RAS RUN IN RAS RUN IN RAS RUN
γ = 1 γ = 0.1 γ = 0.01

One-level
64 2.7 596.7 2148.6 2.8 709.5 2599.6 3.1 1014.4 3996.9
128 2.7 691.6 1279.3 2.8 787.3 1491.9 3.1 945.7 1954.8
256 2.7 793.0 769.0 2.8 896.2 893.3 3.1 1046.4 1141.4
512 2.7 983.1 505.8 2.8 1098.5 581.8 3.1 995.6 587.5
1024 2.7 1044.7 292.0 2.8 1164.8 335.2 3.1 1091.6 349.7
2048 2.7 1357.3 197.8 2.8 1465.3 220.6 ++

Two-level
64 2.7 31.7 872.4 2.8 38.4 1026.0 3.1 65.2 1756.5
128 2.7 31.1 477.8 2.8 38.8 573.1 3.1 67.5 996.1
256 2.7 32.4 268.5 2.8 40.1 323.5 3.1 70.1 564.8
512 2.7 33.0 173.0 2.8 41.6 212.5 3.1 77.4 436.0
1024 2.7 34.7 113.2 2.8 43.5 136.8 3.1 80.7 257.3
2048 2.7 37.3 78.4 2.8 45.5 93.1 3.1 79.7 160.3

Figures 3 and 4 present the velocity field of the controlled and target flows at several different
times. The target flow at t = 0 is not at rest and its direction of motion is anti-clockwise, while the
trajectory of the flow that we want to control opposites to the target flow, resulting in increasing the
difficulty of the control problem. By using distributed control, we can control the velocity in the
each point of the domain and find that this kind of control can be effective for the flow matching
problem. From Figures 3 and 4, we can see that the controlled flow keeps the opposite of the target
flow at t = 0.2 and t = 0.4. But, with the help of the distributed control, the trajectory of the fluid
becomes the same as the target velocity at t = 0.6, and the controlled flow is further improvement
to the optimal flow pattern at t = 0.8 and t = 1.0. Figure 5 presents the computed external force
at several different times. As shown in Figure 5, the quiver of the computing external force is also
anti-clockwise from beginning to end, in order to make the controlled flow as close to the target
flow as possible.

We next consider the parallel scalability issue of the one-level and two-level methods. Figure 6
shows the speedup and the total computing time for the one-level and two-level LNKSz, with a
fixed γ = 0.1, Re = 200, 512× 512 grid, ILU(3), and ∆t = 0.1 (i.e., there are 10 time steps). The
number of processors is varied from 64 to 2048 and the time for the case of Np,1 = 64 is taken as
a reference timing. When Np increases from 64 to 2048, the total computing time decreases at a
reasonably good rate, which indicates that LNKSz has a good speedup for this range of processor
counts. Observing from Figure 6, we highlight that: in comparison with the one-level method, the
total computing time of the two-level method is much smaller.

Figure 7 shows the efficiency and the average number of linear iterations for the one-level and
two-level LNKSz, with a fixed γ = 0.1,Re = 200, 512× 512 grid, ILU(3), and ∆t = 0.1 (i.e., there
are 10 time steps). The left figure is for the parallel efficiency and the right figure is for the average
number of linear iterations. The one-level and two-level methods have similar parallel efficiency,
which drops to about 35% when the number of processors reaches 2048. The number of linear
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iterations increases a lot for the one-level method, and stay more or less the same for the two-level
method.

In summary, for the flow matching problem, the two-level method results in a very sharp reduction
in the number of linear iterations and a good reduction in compute time and is much more effective
than the one-level method. The experiments in the subsection also show that the two-level LNKSz
has an excellent linear and nonlinear convergence and is more robust than the one-level LNKSz with
respect to certain parameters such as the Reynolds number, the parameter γ, the mesh size, and the
number of processors.

4.4. The two-grid inexact Newton method

In this subsection, we present some numerical results by using the two-grid inexact Newton method
in which a coarse grid is used in the nonlinear solver for generating a better initial guess and also in
the linear solver for generating a part of the two-level Schwarz preconditioner. We report results for
the flow matching problem (16)-(17) and the backward-facing step flow control problem (18)-(19).
We show that the numerical behavior of the two-grid approach is better than that of the one-level
and two-level approaches reported in the previous subsection. For all the numerical tests in this
subsection, the subdomain solver is fixed to LU and the regularization parameter is set to γ = 0.1.

4.4.1. The flow matching problem. First, we present results for the flow matching problem (16)-
(17) by using one-level, two-level, and two-grid methods. In this subsection, the overlapping sizes
of the coarse grid and the fine grid are δc = 2 and δ = 2, respectively, and the relative (absolute)
solver tolerance ηcr = 10−1 (ηca = 10−2) is set for the linear iteration on the coarse grid of two-level
proconditioners.

Table VII shows some results obtained with the three methods when we increase the number
of processors from 64 to 2048 and refine the fine grid size from 512× 512 to 1024× 1024. It is
clear that the performance of the two-grid method is better than that of the one-level and two-level
methods, and the two-grid LNKSz takes fewer number of inexact Newton iterations. Table VIII
shows the effect of ∆t on the performance of the two-grid method. On the nonlinear solver, the
number of Newton iterations is independent of ∆t and the number of processors. For the linear
solver, the number of linear iterations stays near a constant as ∆t changes. Also, the computing
time increases when ∆t is reduced since the total number of time steps is larger. From Tables VII
and VIII, we see that the two-grid LNKSz converges well for different time steps and mesh sizes,
and is unconditionally stable, which is a big improvement in terms of Newton iterations and the
computing time over the single grid method.

Similarly to the two-level method, comparing to the results of the one-level preconditioner, the
performance of the two-grid method is much better. As we increase the number of processors
from 64 to 2048, for the two-grid method the average number of linear iterations per Newton step
stays small, while for the one-level method the average number increases quickly. Similar results
are observed in the terms of the computing time. More importantly, the performance of the two-
grid method is better than that of the two-level method with respect to Newton iterations and the
computing time.

4.4.2. The backward-facing step flow control problem. In the following, we consider the backward-
facing step control problem (18)-(19) and discuss some more details of the two-grid method. In
the one-level method, the overlapping size is δ = 6. In the two-level and two-grid methods, the
overlapping sizes of the coarse grid and the fine grids are δc = 4 and δ = 6, respectively. The relative
(absolute) solver tolerance ηcr = 10−2 (ηca = 10−4) is set for the linear iteration on the coarse grid
of two-level proconditioners for this case.

First, we compare the one-level, two-level and two-grid methods for the backward-facing step
control problem (18)-(19) in Table IX. Note that, the one-level method doesn’t converge when
Np = 1024, which is caused by the divergence of GMRES. Moreover, we note that: (1) for the linear
solver, the number of linear iterations for the one-level LNKSz is much larger than that for the two-
level and two-grid methods; (2) for the nonlinear solver, the numbers of Newton iterations for the
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Table VII. A comparison of the three methods for the flow matching problem (16)-(17) with respect to the
fine grid size. Re = 200, LU, δc = 2, δ = 2, and ∆t = 0.1 (i.e., there are 10 time steps). “ −−” means not

enough memory.

Np IN RAS RUN IN RAS RUN IN RAS RUN
One-level Two-level Two-grid

512× 512 grid
64 2.8 247.1 3549.9 −− −−
128 2.8 383.1 2109.2 2.8 36.2 1565.9 2.0 48.6 1330.5
256 2.8 493.9 1009.8 2.8 37.3 610.5 2.0 49.4 528.1
512 2.8 765.8 692.2 2.8 38.3 333.8 2.0 52.0 296.4
1024 2.8 878.6 364.3 2.8 38.8 164.3 2.0 51.8 149.8
2048 2.8 1279.7 1269.0 2.8 49.6 121.8 2.0 74.6 119.3

1024× 1024 grid
256 2.8 691.5 6560.3 −− −−
512 2.8 1046.9 4331.0 2.8 46.3 2037.5 2.0 53.8 1603.1
1024 2.8 1230.4 2149.0 2.8 47.2 855.1 2.0 54.5 692.3
2048 2.8 1942.6 1643.3 2.8 49.6 557.9 2.0 56.7 433.2

Table VIII. Effect of the time steps for the flow matching problem (16)-(17) by using the two-grid method.
Re = 200, 512 × 512 grid, LU, δc = 2, δ = 2, T = 1. The tests with processors Np = 64 are not carried out

because of the lack of memory.

Np IN RAS RUN IN RAS RUN IN RAS RUN
∆t = 0.1 ∆t = 0.05 ∆t = 0.025

128 2.0 48.6 1330.5 2.0 49.2 2592.4 2.0 48.4 5060.4
256 2.0 49.4 528.1 2.0 48.9 1003.3 2.0 48.3 1953.5
512 2.0 52.0 296.4 2.0 52.3 554.9 2.0 51.9 1063.9
1024 2.0 51.8 149.8 2.0 51.6 270.3 2.0 52.6 516.1
2048 2.0 74.6 119.3 2.0 75.3 220.1 2.0 75.4 413.3

one-level and two-level methods are also larger than that for the two-grid method; and (3) compared
with the one-level and two-level methods, the total computing time for the two-grid method is much
smaller. When the Reynolds number increases from 200 to 400, for the one-level and two-level
methods, the average number of Newton iterations and the total computing time become larger.
With the help of grid-sequencing, the convergence of the two-grid method is less sensitive to the
Reynolds number. Based on the results of Table IX, it is clear that the two-grid method is better than
the others.

An important implementation detail to consider in designing two-grid LNKSz is to balance the
quality of the initial guess for the fine grid Newton iterations and the computing time spent on the
coarse grid nonlinear solver. In Table X, we present a comparison of the computing time for the two-
level and two-grid methods. In this table, we report the total time spent on the Newton iterations at
several time steps, the time spent on the coarse grid Newton iterations, and the percentage between
these two values. We observe that the cost of the coarse grid Newton iterations is very small
compared with the total computational cost. It is important to note that the coarse grid has to be
sufficiently fine so that the coarse solution has a reasonable accuracy, otherwise, it won’t be able to
provide a good initial guess for the fine grid nonlinear solver.

One of the difficulties in the nonlinear solver is the choice of the initial guess. In Figure 8, we
show the nonlinear residual history by using three different methods at the first time step (i.e.,
k = 1). One can see that the nonlinear system is difficult to solve by using the one-level or two-level
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Table IX. A comparison of the three methods for the backward-facing step control problem (18)-(19).
768 × 128 grid, LU, δc = 4, δ = 6, and ∆t = 0.1 (i.e., there are 10 time steps). “ + +” means the divergence

of GMRES.

Np Method IN RAS RUN IN RAS RUN
Re=200 Re=400

64 One-level 3.2 165.4 1370.4 3.7 158.9 1557.5
64 Two-level 3.2 20.4 1342.8 3.7 19.2 1528.0
64 Two-grid 2.1 18.7 898.2 2.0 18.0 836.4
256 One-level 3.2 531.3 795.5 3.7 632.9 1052.3
256 Two-level 3.2 27.4 479.9 3.7 27.1 560.1
256 Two-grid 2.1 25.5 317.5 2.0 26.1 313.2
1024 One-level ++ ++
1024 Two-level 3.2 66.3 314.3 3.7 67.9 376.9
1024 Two-grid 2.1 64.2 208.5 2.0 68.5 209.8

Table X. A comparison of the computing time for the backward-facing step control problem (18)-(19).
Re = 400, 768 × 128 grid, LU, δc = 4, δ = 6, and ∆t = 0.1 (i.e., there are 10 time steps). The heading
“Timestep(k)” represents the time step k, “Time” is the total time spent on the the Newton iteration at the
time step k, “Coarse time” is the time spent on the Newton iteration on the coarse solver as a fraction of total

time at the time step k, and “Percent(%)” is the percentage of “Coarse time”/“Time”.

Np Timestep(k) Time Coarse time Percent(%) Time
Two-grid Two-level

64 k = 1 110.0 3.87 3.52% 458.9
64 k = 2 80.0 2.39 2.99% 117.0
64 k = 5 82.5 2.50 3.03% 118.0
64 k = 10 84.7 2.51 2.96% 119.0
256 k = 1 38.6 1.71 4.43% 172.8
256 k = 2 29.7 0.99 3.33% 41.4
256 k = 5 30.0 1.04 3.43% 41.6
256 k = 10 30.8 1.06 3.44% 42.3
1024 k = 1 23.3 1.37 5.88% 115.1
1024 k = 2 20.6 0.68 3.30% 28.1
1024 k = 5 21.2 0.72 3.39% 28.4
1024 k = 10 21.5 0.74 3.44% 30.8

method. In fact, it takes 11 iterations for the one-level or two-level method to converge. By using
the two-grid method only 3 Newton iterations are required to satisfy the desired stopping condition.

To see the major difference among the three methods, in Figure 9 we show the linear, nonlinear
iterations, and the total computing time for the backward-facing step control problem (18)-(19) on
a 768× 128 grid and 256 processors for 10 time steps. The most difficult part of the computation is
at the first time step. The one-level and two-level methods take lots of Newton iterations to finally
find the solution, while with the help of grid-sequencing, the two-grid method converges quickly.
Note that, in the upper left drawing of Figure 9, since the Newton iterations for the one-level and
two-level methods are exactly the same, the corresponding lines coincide with each other. Similar
results appear in the upper right drawing of Figure 9, where the numbers of GMRES iterations for
the two-level and two-grid methods are very close to each other.
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5. CONCLUSIONS

In this paper, we developed a family of parallel, fully implicit, fully coupled, two-grid algorithms
for the distributed suboptimal control of unsteady incompressible flows governed by the Navier-
Stokes equations. With the help of the two-grid Newton method and the two-level multiplicative-
type Schwarz preconditioner, we showed numerically that our proposed algorithms have a fast and
robust convergence and the rate of convergence is nearly independent of the number of unknowns
of the problem, the time steps, the number of processors, and the Reynolds numbers. Good results
were obtained for solving a flow matching problem and a backward-facing step flow problem with
millions of unknowns and on a parallel machine with up to 2048 processors. Our future research
includes the extension of the methods to some more complicated models, such as the optimal control
of thermally convected fluid flows [12, 19].

ACKNOWLEDGEMENT

This research was supported in part by DOE under grant DE-SC0001774, and in part by NSF under grant
DMS-0913089. H. Yang was also supported in part by the TianYuan Special Funds of NSFC under grant
11126196, in part by HNNSF under grant 12JJ4002, and by the Planned Science and Technology Project
of Hunan Province under grant 2011GK3135. The authors would like to thank the anonymous referees for
their valuable suggestions to improve the paper.

REFERENCES

1. Balay S, Buschelman K, Gropp WD, Kaushik D, Knepley M, McInnes LC, Smith BF, Zhang H. PETSc Users
Manual. Argonne National Laboratory: Illinois, 2011.

2. Bewley TR, Temam R, Ziane M. A general framework for robust control in fluid mechanics. Physica D 2000;
138:360–392.

3. Bewley TR. Flow control: new challenges for a new renaissance. Progress in Aerospace Sciences 2001; 37:21–58.
4. Biros G, Ghattas O. Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization, part I: The

Krylov-Schur solver. SIAM Journal on Scientific Computing 2005; 27:687–713.
5. Biros G, Ghattas O. Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization, part II: The

Lagrange-Newton solver and its application to optimal control of steady viscous flows. SIAM Journal on Scientific
Computing 2005; 27:714–739.

6. Briggs WL, Henson VE, McCormick SF. A Multigrid Tutorial. 2nd ed. SIAM, 2000.
7. Cai X-C, Sarkis M. A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM Journal on

Scientific Computing 1999; 21:92–797.
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25. Ravindran SS. Adaptive reduced-order controllers for a thermal flow system. SIAM Journal on Scientific Computing
2002; 23:1925–1943.

26. Ravindran SS. Adaptive reduced-order controllers for a thermal flow system using proper orthogonal decomposition.
SIAM Journal on Scientific Computing 2002; 23:1924–1942.

27. Ravindran SS. Numerical approximation of optimal control of unsteady flows using SQP and time decomposition.
International Journal for Numerical Methods in Fluids 2004; 45:21–42.

28. Saad Y. Iterative Methods for Sparse Linear Systems. 2nd ed. SIAM: Philadelphia, 2003.
29. Smith B, Bjørstad P, Gropp W. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential

Equations. Cambridge University Press, 1996.
30. Toselli A, Widlund O. Domain Decomposition Methods-Algorithms and Theory. Springe: Berlin, 2005.
31. Yang H, Prudencio E, Cai X-C. Fully implicit Lagrange-Newton-Krylov-Schwarz algorithms for boundary control

of unsteady incompressible flows. International Journal for Numerical Methods in Engineering (2012); 91:644–665.
32. Yang H, Cai X-C. Scalable parallel algorithms for boundary control of thermally convective flows. 13th IEEE

International Workshop on Parallel and Distributed Scientific and Engineering Computing, 2012.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
Prepared using fldauth.cls DOI: 10.1002/fld



TWO-LEVEL METHOD FOR UNSTEADY INCOMPRESSIBLE FLOWS 19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

t=0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

t=0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

t=0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

t=0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

t=0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

t=0.6

Figure 3. The streamslice and contour drawing for flow matching problem (16)-(17): the velocity field of
the controlled (left column) and target (right column) flows at several different times, for fixed γ = 0.01,
Re = 200, T = 1.0, and ∆t = 0.2 (i.e, there are 5 time steps). The first, second and third rows correspond
to t = 0.2, t = 0.4 and t = 0.6, respectively. In the figure, the colored part is the contour drawing for the

vorticity ω and the streamline part is for the velocity field v.
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Figure 4. The streamslice and contour drawing for flow matching problem (16)-(17): the velocity field of
the controlled (left column) and target (right column) flows at several different times, for fixed γ = 0.01,
Re = 200, and ∆t = 0.2 (i.e, there are 5 time steps). The first and second rows correspond to t = 0.8 and
t = 1.0, respectively. In the figure, the colored part is the contour drawing for the ω component and the

streamline part is for the velocity field v.
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Figure 5. The quiver and contour drawing for flow matching problem (16)-(17): the computing external
force f at several different times, for fixed γ = 0.01, Re = 200, and ∆t = 0.2 (i.e, there are 5 time steps).
The first row corresponds to t = 0.2 and 0.4. The second row corresponds to t = 0.6 and 0.8. The third row
corresponds to t = 1.0. In the figure, the colored part is the contour drawing for curl f and the quiver part is

for the computing external force f .
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Figure 6. The speedup and the total computing time for the flow matching problem (16)-(17). γ = 0.1,
Re = 200, 512 × 512 grid, ILU(3), and ∆t = 0.1 (i.e., there are 10 time steps).
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Figure 7. The efficiency and the average number of linear iterations for the flow matching problem (16)-(17).
γ = 0.1, Re = 200, 512 × 512 grid, ILU(3), and ∆t = 0.1 (i.e., there are 10 time steps)
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Figure 8. Nonlinear residual history for the backward-facing step control problem (18)-(19) using different
methods for the first time step, for fixed Re = 200, 768 × 128 grid, 64 processors, LU, and ∆t = 0.1 (i.e.,

there are 10 time steps).
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Figure 9. A comparison of the linear, nonlinear iterations, and the computing time for the backward-facing
step control problem (18)-(19) by using three methods, for fixed Re = 400, 768 × 128 grid, 256 processors,

LU, and ∆t = 0.1 (i.e., there are 10 time steps).
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