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Abstract. Accurate numerical simulation of fluid flows around wind turbine plays an
important role in understanding the performance and also the design of the wind tur-
bine. The computation is challenging because of the large size of the blades, the large
computational mesh, the moving geometry, and the high Reynolds number. In this
paper, we develop a highly parallel numerical algorithm for the simulation of fluid
flows passing three-dimensional full size wind turbine including the rotor, nacelle,
and tower with realistic geometry and Reynolds number. The flow in the moving do-
main is modeled by unsteady incompressible Navier-Stokes equations in the arbitrary
Lagrangian-Eulerian form and a non-overlapping sliding-interface method is used to
handle the relative motion of the rotor and the tower. A stabilized moving mesh fi-
nite element method is introduced to discretize the problem in space, and a fully im-
plicit scheme is used to discretize the temporal variable. A parallel Newton-Krylov
method with a new domain decomposition type preconditioner, which combines a
non-overlapping method across the rotating interface and an overlapping Schwarz
method in the remaining subdomains, is applied to solve the fully coupled nonlin-
ear algebraic system at each time step. To understand the efficiency of the algorithm,
we test the algorithm on a supercomputer for the simulation of a realistic 5MW wind
turbine. The numerical results show that the newly developed algorithm is scalable
with over 8000 processor cores for problems with tens of millions of unknowns.
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1 Introduction

Wind power is becoming more popular as a renewable energy. The global wind energy
council’s data shows that the worldwide installed wind power capacity has grown ex-
ponentially during the last decade and will continue to grow at a high rate [16]. Wind
turbines are the main facility designed to exploit the wind energy. As the demand in-
creases, the industry is moving in the direction of large-scale designs, such as the Vestas
V164-8.0MW offshore turbine [40], whose blade length is 80 meters. In the design pro-
cess, high resolution aerodynamic simulation plays an important role and the computing
is challenging because of the large computational domain, the high Reynolds number,
and the relative motion of the computational subdomains. Computation at such scales
requires large-scale parallel computers and scalable parallel algorithms.

In the last decades, most of the wind turbine aerodynamic simulation research fo-
cused on low fidelity methods, such as the blade element momentum method [19,20,33],
based on the blade element theory and the momentum theory, which is simple to im-
plement and computationally inexpensive, but is unable to adequately resolve the de-
tails of the complex flow structures. Recently, with the rapid development of supercom-
puters, some high fidelity simulation methods based on the 3D unsteady Navier-Stokes
equations are proposed. In 2002, Sorensen et al. [38] introduced a framework based on
the Reynolds-Averaged Navier-Stokes model, discretized with an implicit finite volume
method for the 3D wind turbine rotor aerodynamic study, where the tower is ignored in
the calculation. Bazilevs et al. [4,5,21] combined the large eddy simulation, finite element
method, and fully implicit time integration to study the fluid-structure interaction issues
of the wind turbine rotor. In simulating wind turbine aerodynamics, only a handful of
researchers considered a full wind turbine system, in which the rotor, nacelle, and tower
are all included. This is due to the additional computational challenges associated with
the simulation of objects in relative motion. For the full wind turbine system, Bazilevs et
al. proposed an ALE-VMS technique coupled with a non-overlapping sliding-interface
method and a non-uniform rational B-splines based method in [22,23]; Li et al. [32] inves-
tigated the detached eddy method with semi-implicit temporal discretization and finite
difference spatial discretization based on the dynamic overset grids for the grid defor-
mation and relative motions. Some more studies for full wind turbine systems can be
found in [17,45]. Most of the works just mentioned focused on the model accuracy of the
methods, not on the parallel scalability which is very important in order to obtain high
resolution simulations.

In high fidelity simulations, in order to obtain sufficiently accurate solutions, fine
computational meshes are needed, thus requiring large scale parallel computers for their
memory capacity and processing speed. It is clear by now that the increase of comput-
ing power is no longer from faster processor cores, but from the increase of the number
of processor cores. In this study, we focus on developing a scalable parallel method for
the simulation of 3D unsteady incompressible flows around a full wind turbine system
involving rotor and tower. To deal with objects with relative motion, generally speak-
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ing, there are two approaches; i.e., the shear-slip mesh update method which keeps the
mesh connectivity by introducing a regular, typically remeshing layer between the two
domains in relative motion [7], and the non-overlapping sliding-interface method where
an interpolation is used to transfer information between the two sets of variables defined
on the interface [6]. In this paper, we choose the latter approach. For the discretiza-
tion, a stabilized unstructured finite element method is used in the spatial domain and a
fully implicit finite difference scheme is employed in the temporal direction. A parallel
Newton-Krylov-Schwarz (NKS) method [8, 25, 26] is proposed to solve the large sparse
nonlinear system at each time step, where an inexact Newton method is employed as the
nonlinear solver, a Krylov subspace method is used as the linear Jacobian system solver
in the Newton steps, and a new domain decomposition method, that combines a non-
overlapping method across the rotating interface and an overlapping Schwarz method
for the other subdomains, is used as a preconditioner to accelerate the convergence of the
linear solver. NKS has been used to solve a wide range of problems, such as PDE con-
strained optimization problems [10,43], fluid-structure interaction problems [2,29,31,42],
elasticity problems [30], shallow water equations [44] and so on. But it has not been stud-
ied for problems considered in this paper which involve moving domain and relative
motions in a single configuration. We mainly investigate the parallel performance of the
solution methods, including their robustness, stability and scalability.

The rest of the paper is organized as follows. In Section 2, we briefly introduce the
mathematical model, and the discretization of the mathematical model is discussed in
Section 3. In Section 4, the Newton-Krylov-Schwarz algorithm is introduced, and some
numerical results are presented in Section 5. Some concluding remarks are given in Sec-
tion 6.

2 Mathematical model

As shown in Fig. 1, the computational domain consists of a stationary domain Ωs and a
rotating domain Ωr. The rotor is in Ωr and the domain Ωs encloses the tower. The flow
comes in from the right side Γinlet, goes out at the left side Γoutlet. We follow the stan-
dard approach to introduce an rotating interface Γinter f ace to separate the stationary and
rotating domains, use separate fluid flow models in the two subdomains, and connect
them using a boundary condition on the interface. For simplicity, we assume the entire
domain Ωr rotates in the x-z plane and does not move in the y direction (the direction of
the tower is parallel to the z-axis and the rotor faces to the y-axis).

For the stationary domain, the standard incompressible Navier-Stokes equations read
as:

ρ

(

∂us

∂t
+us ·∇us

)

+∇·σs = f in Ωs×(0, T),

∇·us =0 in Ωs×(0, T),

us=0 on Γwall×(0, T),
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Figure 1: The computational domain consists of two subdomains. One (Ωt
r) moves at the same angular velocity

with the rotor and the other one (Ωs) stays still with the tower.

σs ·n=0 on Γoutlet×(0, T),

us=u0 in Ωs at t=0, (2.1)

where n is the unit outward normal, σs =−psI+µ
(

∇us+(∇us)T
)

is the Cauchy stress
tensor, and us, ps are the velocity and pressure of the flow. For the rotating domain,
the governing equations are the incompressible Navier-Stokes equations in the arbitrary
Lagrangian-Eulerian (ALE) form [12,24]. Let Y be the ALE coordinate, then the equations
read as:

ρ

(

∂ur

∂t

∣

∣

∣

∣

Y

+(ur−ω)·∇ur

)

+∇·σr = f in Ωt
r×(0, T),

∇·ur =0 in Ωt
r×(0, T),

ur =g on Γt
inlet×(0, T),

ur =0 on Γt
wall×(0, T),

ur =u0 in Ωt
r at t=0, (2.2)

where ω= ∂x
∂t is the velocity of the moving domain, σr =−prI+µ

(

∇ur+(∇ur)T
)

, ur and

pr are the velocity and pressure, and ∂ur
∂t

∣

∣

∣

Y
indicates that the time derivative is to be taken

with respect to the ALE coordinate Y. u0 is a given initial condition which is zero in our
test cases.

In addition to (2.1) and (2.2), two coupling conditions are needed on Γinter f ace to insure
the continuity of the flow across the interface [6]. The first condition is the continuity of
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the velocity,

us=ur on Γinter f ace, (2.3)

and the second condition is the continuity of the traction force,

σs ·ns =−σr ·nr on Γinter f ace. (2.4)

Here ns and nr are the unit outward normals to the stationary and rotating subdomains,
respectively.

3 Fully-implicit finite element discretization

We consider a weak formulation of the coupled incompressible Navier-Stokes systems
(2.1) and (2.2) [6]. Let U·(Ω·) and U0

· (Ω·) denote the trial and weighting function spaces
of the velocity, and P· for the pressure, where “·” represents s or r which refers to as the
stationary subdomain or the rotating subdomain, respectively. Then, the weak form of
the Navier-Stokes equations takes the form: Find us∈Us, ur∈Ur , ps∈Ps, and pr∈Pr, such
that

Bs(us,ps;Φs,ψs)+Br(ur,pr ;Φr,ψr)−Fs(Φs,ψs)−Fr(Φr,ψr)=0 (3.1)

holds for any Φs ∈U0
s , Φr ∈U0

r , ψr ∈Pr, and ψs ∈Ps, where

Bs(us,ps;Φs,ψs)=ρ
∫

Ωs

∂us

∂t
·ΦsdΩs+µ

∫

Ωs

∇us :∇ΦsdΩs+ρ
∫

Ωs

(us ·∇)us ·ΦsdΩs

−
∫

Ωs

ph
s∇·ΦsdΩs+

∫

Ωs

(∇·us)ϕsdΩs+
∫

Γinter f ace

Φs ·(σs ·ns)dΓ,

Br(ur,pr ;Φr,ψr)=ρ
∫

Ωt
r

∂ur

∂t

∣

∣

∣

∣

Y

·ΦrdΩt
r+µ

∫

Ωt
r

∇ur :∇ΦrdΩt
r+ρ

∫

Ωt
r

(ur−ω)·∇)ur ·ΦrdΩt
r

−
∫

Ωt
r

p∇·ΦrdΩt
r+

∫

Ωt
r

(∇·ur)ϕrdΩt
r+

∫

Γinter f ace

Φr ·(σr ·nr)dΓ,

Fr(Φr ,ψr)=
∫

Ωt
r

f·ΦrdΩt
r, Fs(Φs,ψs)=

∫

Ωs

f·ΦsdΩs.

Note that the coupling condition (2.4) is implicitly enforced as part of (3.1) by the relation
[42]

∫

Γinter f ace

Φs ·(σs ·ns)dΓ+
∫

Γinter f ace

Φr ·(σr ·nr)dΓ=0.

We use a P1−P1 finite element method to discretize Eq. (3.1) in the spatial domain.
Since the P1−P1 element method does not satisfy the Ladyzenskaja-Babuska-Brezzi (LBB)
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condition, additional stabilization terms are needed in the formulation with equal-order
interpolation of the velocity and the pressure as described in [3, 15, 41, 42].

In the spatial discretization, the interface condition (2.3) needs to be handled care-
fully since the mesh from the left side (denoted as Γhs

inter f ace) and the right side (denoted

as Γhr
inter f ace) do not match on Γinter f ace; see Fig. 2, we assume the rotating side as the mas-

ter side whose value is exact, and other side is the slave side whose value is obtained
by interpolation. We use a radial basis function (RBF) interpolation method [11, 14] to
enforce the interface condition, that is

us(xk
s )=

m

∑
i=1

wiφ
(

‖xk
s −xi

r ‖
)

ur(xi
r),

where xk
s and xi

r are the mesh points on the tower and the rotor side respectively, and
m= 4 is the number of points used for the interpolation, that is all the nodes of the el-
ement containing the slave node. wi (i= 1,··· ,m) are the interpolation weights for each
point that are obtained by solving a m dimensional linear system analytically. The func-
tion φ(r)=

√

1+(ǫr)2 is the multiquadric RBF basis function and ǫ is a parameter which
is proportional to 1/h where h is the mesh size [14]. In this paper, h is chosen as the
maximum distance between two adjacent points in {xi

r ,i=1,··· ,m}.

Remark 3.1. Standard interpolation using the finite element basis functions does not
work well for several reasons:

1. Since we use a P1−P1 finite element method, we can only have a first-order in-
terpolation if we use the finite element basis function (which is a linear function)
as the interpolation basis function, while the RBF based interpolation can have a
higher order. For cases with large Reynolds number, the flow is quite complex, the
first-order interpolation is not accurate enough to insure the continuity across the
interface.

2. Some nodes on Γhs
inter f ace are outside of Γhr

inter f ace; see, for example, node B on the

boundary of Γhs
inter f ace in Fig. 2 is outside of Γhr

inter f ace. Standard interpolation would

miss part of the solution since the node is not in any elements, while RBF is able to
capture this since it is based on the distance to a node, not restricted by the elements.

Remark 3.2. The interpolation is carried out implicitly. In other words, the values on both
sides of the interface are unknowns at the time of the interpolation. The actual values are
obtained by solving the coupled system at each time step.

Remark 3.3. In our current implementation, the values from Ωr are taken as the master
side and values on Ωs side are obtained by the interpolation. Switching the master side
does not change the accuracy, but it does change the structure of the Jacobian matrix.
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Figure 2: An example of the meshes on the interface Γinter f ace. The mesh with solid lines is denoted as Γhs
inter f ace

and the mesh with dashed lines is denoted as Γhr
inter f ace. The value of us at point A is interpolated by the values

of ur at points P1, P2, and P3.

Remark 3.4. Since the slave nodes on the tower side move from element to element of
the rotor side, and on each time step we need to identify the element that each slave
node belongs to. To make the search more efficient, we scatter the rotor side interface
boundary information Γhr

inter f ace to all processor cores, that is every processor core has all

the information of Γhr
inter f ace. We then carry out the search in parallel based on the tower

side interface boundary.

For the temporal discretization, we use a fully implicit second-order backward dif-
ferentiation formula (BDF2) with a fixed time step size ∆t. For a given semi-discretized
system

dX

dt
=L(X),

the formula is defined as

Xn− 4
3 Xn−1+ 1

3 Xn−2

∆t
=

2

3
L(Xn). (3.2)

In BDF2, at each time step (the nth step), we need to solve a large sparse nonlinear alge-
braic system, denoted as

Fn(Xn)=0, (3.3)

using solutions from the previous time steps Xn−1 and Xn−2 (the solution of the (n−1)th

and (n−2)th time step), to obtain the solution of the nth time step Xn, which includes the
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nodal values of the velocity and pressure for both flow domains. For the first time step,
a backward Euler scheme is used since there is only one previous solution available.

4 Monolithic Newton-Krylov-Schwarz algorithm

The nonlinear system (3.3) is solved by a Newton-Krylov-Schwarz method which uses an
inexact Newton method [13] as the nonlinear solver, a Krylov subspace method GMRES
[36] as the linear solver at each Newton step, and a non-standard Schwarz method as the
preconditioner to accelerate the convergence of the linear solver. The main components
of the algorithm read as follows:

• Find an initial condition U0 for both domains and set n=0 (n refers to as the nth time step)

• For n=1, 2, ··· , do

– Rotate the domain (Ωn−1
r →Ωn

r ) and its mesh T n
h :

The coordinate of each mesh point at the current time step

xn is obtained by rotating the initial mesh point x0

xn =





cos(ωn∆t) 0 −sin(ωn∆t)
0 1 0

sin(ωn∆t) 0 cos(ωn∆t)



x0

– Setup the initial guess for Newton Un
0 =Un−1 and let k=0

– For k=1, 2, ··· , until convergence, do

∗ Compute the nonlinear function Fn(Un
k−1) and form the corresponding Jacobian

matrix Jn
k =∇Fn(Un

k−1) analytically including all terms

∗ Find dn
k such that

‖ Jn
k (M

n
k )

−1(Mn
k dn

k )+Fn(Un
k−1)‖≤η ‖Fn(Un

k−1)‖ (4.1)

∗ Set Un
k =Un

k−1+τn
k dn

k

– Set Un =Un
k

Here (Mn
k )

−1 is a preconditioner to be introduced below, η is the relative tolerance for the
linear solver, U :=(ur,pr,us,ps), and 0≤τn

k ≤1 is the step length obtained by a linesearch
method. Note that the interface condition is applied in the function evaluation and the
Jacobian calculation.

The Jacobian matrix Jn
k includes three main blocks, two for the two flow subdomains,

and one for the interpolation on the interface. If the unknowns are ordered field by field
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and all the unknowns related to the rotating interface are put together at the middle, then
the structure of the Jacobian matrix Jn

k takes the form

















Kr −Qr Dr1 0 0 0
QT

r Rr Dr2 0 0 0
DT

r1 DT
r2 DrI 0 0 0

0 0 DrsI DsI 0 0
0 0 0 Ds1 Ks −Qs

0 0 0 Ds2 QT
s Rs

















,

where Ks, Qs, Rs, and QT
s are for the velocity and pressure, respectively, in the stationary

flow domain, Kr, Qr, Rr, and QT
r are for the rotating flow domain, and DrsI , Ds1, Ds2,

Dr1, and Dr2 correspond to the interface. Rs and Rr are from the stabilization terms. This
ordering is easy to understand, but if used in the code, the performance is not good. In
order to improve the cache performance we use a point-block ordering which orders the
variables mesh point by mesh point and all the variables associated with the same mesh
point are ordered together. An example of the matrix structure is show in Fig. 3. Note
that the non-zero pattern of the matrix is non-symmetric. This is because we apply the
interpolation from only one side.

The most time-consuming step of the algorithm is the solution of the large, sparse,
and nonsymmetric linear system (4.1) which is solved by a Krylov subspace method
(GMRES) in this paper. To accelerate the convergence of GMRES, we introduce a non-
standard restricted additive Schwarz preconditioner [9], which begins with a partition of
the finite element mesh in the entire computational domain Ω (including Ωs and Ω0

r ) into
N nonoverlapping subdomains Ωl (l=1,··· ,N); see Fig. 4, and then extending each sub-
domain Ωl to an overlapping subdomain Ωδ

l by including δ layers of elements belonging
to its neighbors. Note that, the nonoverlapping partitions of the two fluid domains are
obtained by a single call of the partitioning software, as a result, the load is balanced,
but the partitions of the two fluid domains are independent of each other because their
associated graphs are not connected. When we extend the nonoverlapping subdomains
to overlapping subdomains, we do not allow the partition to go through the interface,
which means that the neighboring subdomains associated with the interface are nonover-
lapping. It is, of course, possible to obtain a standard overlapping partition which will
go through the interface, and define the standard overlapping domain decomposition
preconditioners based on this partition. But then at each time step, we would have to
do a global search of the interface elements to find the neighboring subdomains and add
the overlaps because the neighboring subdomains change due to the rotation, which will
take extra time for computation and communication. In our new domain decomposition
method, since we ignore the overlapping parts on the other side of the interface, the par-
tition for Ω0

r is usable for all Ωt
r (for any t>0), because the mesh topology does not change

when the rotating part of the domain changes from Ω0
r to Ωt

r. We let the total number of
subdomains N equal to the number of processor cores np. In each overlapping subdo-
main, we define a local Jacobian matrix (Jn

k )l which is obtained by taking the derivatives
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Figure 3: An example of the non-zero structure of the Jacobian matrix plotted by the Matlab function “spy”.
The non-zero elements are shown in blue. The 4×4 dense blocks are due to the point-block ordering.

Figure 4: A sample partition obtained by ParMETIS. Since we use nonuniform meshes in our test cases, the
mesh near the wind turbine is relative finer than the mesh in the far field. All subdomains have nearly the same
number of elements for the purpose of load balancing.
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of the discretized equations (3.1) in subdomain Ωδ
l with homogeneous Dirichlet bound-

ary conditions on the interior boundary ∂Ωδ
l \∂Ω, and the physical boundary conditions

on ∂Ωδ
l

⋂

∂Ω. The non-standard restricted additive Schwarz preconditioner is defined as

the summation of the local preconditioners B−1
l of (Jn

k )l as

(Mn
k )

−1=
np

∑
l=1

(R0
l )

TB−1
l Rδ

l , (4.2)

where the restriction operators Rδ
l and R0

l are matrices which map the global vector of
unknowns to those belonging to Ωδ

l and Ωl respectively, by simply extracting the un-

knowns that lie inside the subdomain [9]. Since B−1
l is used as a preconditioner here, it

can be solved exactly or approximately, for example, by LU or incomplete LU factoriza-
tion (ILU) methods. LU factorization is a commonly used method but is computationally
expensive and requires a lot of memory when the local matrix (Jn

k )l is large. To improve
the efficiency of such factorization, we use an ILU method [35] which reduces the com-
putational cost and memory requirement by dropping some nonzero elements in some
predetermined nondiagonal positions. In this paper, we use a point-block version of
ILU as the subdomain solver, where we group all physical components associated with a
mesh point as a block and always use an exact inverse for this small block which is done
before the ILU is carried out, in addition, all components in the block are either kept or
dropped together.

Remark 4.1. When constructing the preconditioner, we ignore the interface condition in
(2.3) and (2.4). The reason is that the variables us and ur are on different processor cores
and it saves communication time if we simply set us=0 instead of us =ur.

Remark 4.2. Since the Jacobian matrix Jn
k is used for computing the Newton search di-

rection and preconditioner, it can be derived exactly or approximately. There are several
approaches to calculate Jn

k , such as the automatic differentiation [34], the finite difference
method, and the analytic differentiation of all terms of the nonlinear function or some
of the terms (for example, by dropping the stabilization terms). After lots of testing, we
find that the analytic differentiation of all terms is most efficient in terms of the number
of iterations and the total compute time.

5 Numerical experiments

In this section, we report some numerical experiments using the proposed algorithm.
Our solver is implemented on top of the Portable Extensible Toolkit for Scientific com-
putation (PETSc) [1]. The unstructured tetrahedral mesh is generated with ANSYS. The
mesh partition for parallel computing is obtained with ParMETIS [28]. The results showed
in this section are obtained on the Tianhe-2 supercomputer at the National Supercom-
puter Center in Guangzhou, China. The compute node consists of a dual six-core Intel
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Xeon X5650@2.76GHz processor and has 24GB of memory. The stopping conditions for
the nonlinear and linear solvers are that when the residuals of the nonlinear and linear
equations are reduced by a factor of 10−6 and 10−4, respectively. In GMRES, the restart
r= 30 [35]. For the point-block ILU, the block size is 4 by 4 (each mesh point has 4 un-
knowns: three velocity components and one pressure).

5.1 The rotor only calculation

Our first test case is to compute the flow passing a wind turbine rotor without the tower,
see Fig. 5 for the detailed geometry and the computational domain. In this calculation,
only the Navier-Stokes equations in the moving domain (2.2) are solved.

63m 300m

600m

Figure 5: A three-blade wind turbine with NREL S807 root region and NREL S806 tip region [18] (left) and
the computational domain (right).

In this numerical experiment, we set the far field wind speed to be uniform at 15m/s
and the rotor speed at 22rpm (revolutions per minute). For the fluid, we set the kinematic
viscosity µ=1.831×10−5kg/(ms) and the density ρ=1.185kg/m3 . Fig. 6 shows the com-
puted flow field at four different times obtained on a mesh with about 1.1×107 elements
with a fixed time step size ∆t=0.01s.

The left column of Fig. 6 shows the velocity magnitude of the flow at four different
time points. From this figure, we see that the largest velocity magnitudes are located in
the vicinity of the rotor tips and a low speed region is formed behind the rotor, indicating
the wake region, because of the incoming airflow is blocked by the rotor. The maximum
width of the wake region is about half of the rotor diameter. The vortical structure of the
flow is shown in the right column of Fig. 6.

5.2 The full turbine system calculation

Our second test case is the simulation of a full turbine system, see Fig. 7, including the
rotor (blades and hub), nacelle, and tower. The land-based tower is assumed to be rigid,
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Figure 6: The distribution of the velocity magnitude (left) and the isosurface (right) of the velocity field at four
different moments: t=2.0, t=6.0, t=8.0, t=10.0 (from top to bottom).
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Figure 7: The geometry model (left) and a sample computational mesh (right) for the full wind turbine calcu-
lation.

and has a base diameter of 6m and a top diameter of 3.87m. The tower height is 87.6m
and the hub height is 90m [27]. The rotor used in this test case is the same as the one in
the first test case.

We set the wind speed to be 11.4m/s, the rotor speed to be 12.1rpm, and the air prop-
erties to be the same as in the first test case [23]. Non-uniform meshes are used for this
calculation where a finer mesh is used at the vicinity of the wind turbine in order to cap-
ture the details of the complex flow structure, for example, for the 1.2×107 case, the mesh
size at the vicinity of the wind turbine is about 0.07m and it is about 20m in the farfield.
The computed velocity distribution at t=10.0s from two different view of points is shown
in Fig. 8. The 3D streamline and 2D streamline on three different planes z= 0, z=−10,
and z =−20 at t = 10.0 are plotted in Fig. 9, which shows that a complex 3D vortex is
generated behind the wind turbine and several vortices appear in the downwind area of
the blade and tower.

5.3 Parallel performance and robustness

The parallel performance of our algorithm is shown in Table 1 where (as in all the ta-
bles) “DOF” refers to the degree of freedoms, “np” refers to as the number of processor
cores which is the same as the number of subdomains, “Newton” is the average number
of Newton iterations per time step, “GMRES” is the number of GMRES iterations per
Newton step for solving the Jacobian system, “Time” is the average compute time (in
seconds) per time step, “Mem” is the maximum memory usage of each processor core (in
megabits), and “Speedup” and “Ideal” are the actual speedup and ideal speedup, respec-
tively. The time step size for this section is ∆t= 0.01. This table shows that the number
of GMRES iterations increases slightly with the increase of the number of subdomains,
which is often the case in one-level Schwarz methods [39]. The reason is that the overlap
between adjacent subdomains is not sufficient for global information transfer when the
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Figure 8: The velocity magnitude contour plot of the flow from different points of view. The left figure is the
plane x=0 and the right figure is the plane z=−20 (the direction of the tower is parallel to the z-axis).

Figure 9: The 3D streamline distribution around the wind turbine (left). The 2D velocity magnitude contour
and streamline on three different planes z=0, z=−10, and z=−20 (right) and some local zoom-in figures (far
right).
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Table 1: Parallel scalability and efficiency for the full wind turbine system simulation.

np Newton GMRES Time (s) Mem (Mb) Speedup Ideal Efficiency

DOF = 7.5×106

512 2.3 38.0 19.0 988 1 1 100%

1024 2.3 38.2 10.8 490 1.8 2 90%

2048 2.3 40.3 6.8 273 2.8 4 70%

4096 2.3 41.5 4.5 147 4.2 8 53%

DOF = 1.2×107

1024 2.3 54.7 20.1 786 1 1 100%

2048 2.3 57.2 11.7 425 1.7 2 85%

4096 2.3 58.5 7.4 227 2.7 4 68%

8192 2.3 63.2 5.3 96 3.8 8 48%

number of subdomain increases, which makes the conditioning of the Jacobian system
worse. From this table, we also see that the parallel efficiency “Efficiency” of the algo-
rithm is nearly 70% when the number of processor cores is up to 4096 and the efficiency
decreases with the increase of the number of processor cores, because the communication
time among processor cores increasingly dominates the total compute time.

In the overlapping domain decomposition method, there are several parameters to
consider, such as the overlapping parameter and the ILU level in the subdomain prob-
lem solver, and all of them may have some impact on the overall performance. Table 2
shows the effect of the overlapping parameter for the standard DD method and the non-
standard DD method introduced in this paper, where larger overlapping means faster
convergence in terms of the number of iterations, but the total compute time grows be-
cause the size of the subdomain problems increases. Here the standard DD method refers
to the method that the overlap is added based on the matrix instead of the mesh. In the
standard DD method, some of the overlapping subdomains cross over the interface be-
tween the stationary and rotating domains. Table 2 shows that the non-standard DD
method is faster than the standard one, especially when the overlapping size is large,
and the memory requirement of the standard DD method is larger than the non-standard
one. Note that for the case δ = 0, the RAS preconditioner equals to the Jacobi precon-
ditioner [37]. As mentioned in Section 4, a point-block ILU method is used as the sub-
domain solver. In the ILU method, the fill-in levels l, is used to balance the strength of
the preconditioner and the computational cost. Larger l means fewer fill-in elements are
dropped during the factorization, a stronger preconditioner is thus obtained, which im-
plies faster convergence. But the additional arithmetic operations may increase the total
compute time. The effect of various choices of the ILU fill-in levels and a comparison
of the point-wise and point-block ILU method are shown in Table 3. It is clear that the
point-block version is much better than the point-wise version in terms of the compute
time, due to the much improved cache performance. Table 4 shows the robustness of
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Table 2: The effect of various choices of the overlapping parameter δ for the full wind turbine system simulation.
Here δ=0.5 means the neighboring subdomains only share a layer of faces. DOF=1.2×107 and np=1024.

Standard DD Non-standard DD

δ Newton GMRES Time (s) Mem (Mb) Newton GMRES Time (s) Mem (Mb)

0 — >300 — — — >300 — —

0.5 — — — — 2.3 82.0 22.5 625

1 2.3 52.8 22.5 857 2.3 59.0 22.4 709

2 2.3 44.8 25.8 1112 2.3 54.7 23.0 786

3 2.3 41.5 44.5 1485 2.3 52.0 23.9 843

4 2.3 40.1 68.3 1946 2.3 48.0 24.5 942

Table 3: Tests for various choices of the ILU fill-in levels l for the full wind turbine system simulation with fixed
problem size (DOF=1.2×107) and fixed overlapping size δ=2 and np=1024.

Point-wise ILU Point-block ILU

l Newton GMRES Time (s) Mem (Mb) Newton GMRES Time (s) Mem (Mb)

0 — >300 — — — >300 — —

1 2.3 67.8 548.6 43 2.3 67.6 17.6 377

2 2.3 55.7 576.9 86 2.3 54.7 21.6 786

3 2.3 48.0 568.6 151 2.3 48.0 34.7 1393

Table 4: The robustness of the algorithm with respect to the Reynolds number Re for the full wind turbine
system simulation. The problem size is DOF=1.2×107, the overlapping size δ=2, and np =1024.

Re Newton GMRES Time (s)

4.0×105 3.3 71.7 35.6

8.0×105 3.3 72.2 35.7

1.5×106 3.4 72.9 35.6

3.0×106 3.4 74.6 35.9

6.0×106 3.4 74.8 36.3

1.2×107 3.4 78.4 37.6

2.3×107 3.5 83.6 40.7

4.5×107 4.0 94.8 49.7

9.0×107 4.6 93.5 56.4

the proposed algorithm with respect to the Reynolds number. The number of Newton
and GMRES iterations and the compute time increase reasonably with the increase of the
Reynolds number.
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6 Concluding remarks

In this paper, a Newton-Krylov-Schwarz based parallel algorithm, combined with a finite
element method on unstructured moving meshes for spatial discretization and a fully im-
plicit method for temporal discretization, was developed for the aerodynamic simulation
of a full wind turbine system including rotor, nacelle, and tower. The computational do-
main is divided into two subdomains, one contains the rotating rotor and one for the
far field. The meshes across the subdomains do not match. To insure the continuity of
the flow across the rotating interface, a RBF based second-order interpolation was devel-
oped to pass function values between the two subdomains in relative motion. To solve
the large sparse Jacobian system, we introduced a non-standard domain decomposition
method which uses overlapping subdomains away from the rotating interface and non-
overlapping subdomains near the rotating interface, and numerical experiments confirm
the effectiveness of the preconditioning technique. The numerical results show that the
proposed algorithm converges well in terms of the nonlinear and linear number of it-
erations for the problem with realistic geometry and Reynolds number. Good parallel
efficiency is obtained for a problem with over 1.2×107 unknowns and 8192 processor
cores. The overall approach is robust and scalable and has the potential to be used for
solving larger problems for higher fidelity simulations on supercomputers.
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