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1 Introduction

Numerical simulations of unsteady three-dimensional compressible flow problems require
the solution of large, sparse, nonlinear systems of equations arising from the discretization
of Euler or Navier-Stokes equations on unstructured, possibly dynamic, meshes. In this
paper we study a highly parallel, scalable, and robust nonlinear iterative method based on
the Defect Correction method (DeC), the Krylov subspace method (Krylov), the minimum
overlap restricted additive Schwarz method (RAS), and the incomplete LU factorization
technique (ILU). To demonstrate the robustness of the method, we test the capability of
the DeC-Krylov-RAS solver for several flow regimes including transonic and supersonic flows
around an oscillating wing and a moving aircraft. The parallel scalability is also tested on
a multiprocessor computer. We consider the unsteady 3D Euler’s equation

∂W

∂t
+ div(F (W )) = 0 (1)

with certain initial and boundary conditions. Unstructured mesh and variable time stepping
are used in our numerical simulation, however, for the sake of simplicity in the discussion,
we let ∆t and h be the fixed time and spatial discretization parameters, and Φ(2nd)

h a second
order MUSCL discretization of div(F (·)). A fully discretized scheme, which is of second
order in both space and time, can be written as

3Wn+1
h − 4Wn

h + Wn−1
h

2∆t
+ Φ(2nd)

h (Wn+1
h ) = 0. (2)

Here n is a running time step index and W 0
h is the given initial solution. Assuming that

Wn
h and Wn−1

h are known, (2) is a large, sparse, nonlinear algebraic system of equations
that has to be solved at every time step to a certain accuracy.

2 Discretization and the nonlinear solver

We are interested in applying the method of DeC-Krylov-RAS to the system of Euler’s
equation:

∂W

∂t
+

∂

∂x
F1(W ) +

∂

∂y
F2(W ) +

∂

∂z
F3(W ) = 0,

∗To appear in The Tenth International Conference on Domain Decomposition Methods for Partial Dif-
ferential Equations, J. Mandel, C. Farhat and X.-C. Cai, eds, AMS, 1998.

†Dept. of Comp. Sci., Univ. of Colorado, Boulder, CO 80309. cai@cs.colorado.edu.
‡Dept. of Aerospace Eng., Univ. of Colorado, Boulder, CO 80309. charbel@alexandra.colorado.edu.
§Dept. of Comp. Sci., Univ. of Colorado, Boulder, CO 80309. msarkis@cs.colorado.edu.

1



where W = (ρ, ρu, ρv, ρw,E)T and (F1, F2, F3)T is the convective flux as defined in [9]. Here
and in the rest of the paper ρ is the density, U = (u, v,w)T is the velocity vector, E is the
total energy per unit volume, and p is the pressure. These variables are related by the state
equation for a perfect gas

p = (γ − 1)
(

E − 1
2
ρ‖U‖2

)
,

where γ denotes the ratio of specific heats (γ = 1.4 for air).
The computational domain is discretized by a tetrahedral grid. We use unstructured

grids since they provide flexibility for tessellating complex, moving geometries and for adapt-
ing to flow features, such as shocks and boundary layers. We locate the variables at the
vertices of the grid, which gives rise to a cell-vertex scheme. The space of solutions is taken
to be the space of piecewise linear continuous functions. The discrete system is obtained
via a finite volume formulation; see e.g., Koobus and Farhat [11]. We determine the nth
time step size ∆tn in the following way. Let CFL be a pre-selected positive number. For
each vertex xi, let hi be the size of the control volume centered at xi, and we define the
local time step size by

∆tni = hi
CFL

Ci + ‖Ui‖2

and then the global time step is defined by

∆tn = min
i
{∆tni }. (3)

Here Ci is the sound speed, and Ui is the velocity vector.
One of the effective techniques for solving (2) is based on the so-called Defect Correction

(DeC) method ([12]): Suppose that we have an initial guess W n+1,0
h for Wn+1

h obtained by
using information calculated at previous time steps, we iterate for j = 0, 1, . . .,

Wn+1,j+1
h = Wn+1,j

h + ξj, (4)

where ξj is the solution of the following linear system of equations

(
3

2∆t
I + ∂W Φ(1st)

h (Wn
h )

)
ξj = −

(
3Wn+1,j

h − 4Wn
h + Wn−1

h

2∆t
+ Φ(2nd)

h (Wn+1,j
h )

)
. (5)

Here I is an identity matrix and Φ(1st)
h (·) is a first order MUSCL discretization of div(F (·)).

To simplify the notation, we use

gn+1,j ≡ −
(

3Wn+1,j
h − 4Wn

h + Wn−1
h

2∆t
+ Φ(2nd)

h (Wn+1,j
h )

)

to denote the nonlinear residual at the jth DeC iteration of the (n + 1)th time step and
re-write (5) as

Anξj = gn+1,j. (6)

We remark that (2) doesn’t have to be solved exactly. All we need is to drive the nonlinear
residual to below a certain nonlinear tolerance τ > 0, i.e.,

‖gn+1,j‖2 ≤ τ‖gn‖2 (7)
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such that Wn+1,j
h gives a second order accurate solution in both space and time. Also (6)

does not need to be solved very accurately either, as its solution provides only a search
direction for the outer DeC iteration. Preconditioned iterative methods are often used for
finding a ξj = M−1

n ηj such that

‖AnM−1
n ηj − gn+1,j‖2 ≤ δ‖gn+1,j‖2 (8)

for certain linear tolerance δ > 0. Here M−1
n is a preconditioner for An.

The effectiveness of the above mentioned method depends heavily, among other things,
on the choice of the preconditioner and a balanced selection of the nonlinear and linear
stopping tolerance τ and δ. In this paper, we focus on the study of a parallel restricted
additive Schwarz preconditioned iterative method for solving (6) with various δ. More
discussions and computational experience with the selection of the nonlinear and linear
stopping tolerance τ and δ can be found in [2].

3 RAS with minimum overlap

We now describe a version of the RAS preconditioner, which was recently introduced in [3],
with the smallest possible non-zero overlap. We consider a sparse linear system

Aξ = g, (9)

where A is an n× n nonsingular sparse matrix obtained by discretizing a system of partial
differential equations, such as (1), on a tetrahedral mesh M = {Ki, i = 1, . . . ,M}, where
Ki are the tetrahedra. Using an element-based partitioning, M can be decomposed into
N nonoverlapping sets of elements, or equivalently into N overlapping sets of nodes (since
tetrahedra in different subsets may share the same nodes). Let us denote the node sets
as Wi, i = 1, . . . ,N . Let W be the set of all the nodes, then we say that the node-based
partition

W =
N⋃

i=1

Wi

is a minimum overlap partition of W . “minimum” refers to the fact that the corresponding
element-based partition has zero overlap. The nodes belonging to more than one subdomains
are called interface nodes. To obtain a node-based nonoverlapping partition, we identify
a unique subdomain as the sole owner of each interface node. This leads to a node-based
nonoverlapping partition of W , as shown in Fig.1 for a 2D mesh, or more precisely W

(0)
i ⊂

Wi, and
N⋃

i=1

W
(0)
i = W and W

(0)
i

⋂
W

(0)
j = ∅ for i �= j.

Let m be the total number of nodes in W . Associated with each W 0
i we define a

restriction operator R0
i . In matrix terms, R0

i is an m × m block-sub-identity matrix whose
diagonal blocks are set to I5×5 if the corresponding node belongs to W 0

i and to a zero 5× 5
block otherwise. Similarly we can define Ri for each Wi. Note that both R0

i and Ri are of
size n × n. With this we define the matrix,

Ai = RiARi .
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Figure 1: A minimum overlap two-subdomain partition. W
(0)
1 contains all the ‘•’ nodes,

and W
(0)
2 contains all the ‘◦’ nodes, therefore W

(0)
1 ∩W

(0)
2 = ∅. W

(1)
1 contains all the nodes

bounded inside the solid curve, and W
(1)
2 contains all the nodes bounded inside the dotted

curve.

Note that although Ai is not invertible, we can invert its restriction to the subspace

A−1
i ≡

(
(Ai)|Li

)−1
,

where Li is the vector space spanned by the set Wi in Rn. Recall that the regular additive
Schwarz (AS) preconditioner is defined as M−1

AS =
∑

RiA
−1
i Ri, e.g., [4, 14]. Our RAS

algorithm can be simply described as follows: Obtain the solution ξ = M−1
RASη by solving

the right-preconditioned system
AM−1

RASη = g

with a Krylov subspace method, where the preconditioner is defined by

M−1
RAS ≡ R1A

−1
1 R0

1 + · · · + RNA−1
N R0

N .

In the numerical experiments to be reported in the next section, all subdomain problems
are solved with ILU(0) and GMRES(5) ([13]) is used as the Krylov solver. Because of the
page limit, we shall restrict our discussion to this particular preconditioner. Other issues
can be found in the papers [1, 2]. We remark that the action of R0

i to a vector does not
involve any communication in a parallel implementation, but Ri does. As a result, RAS is
cheaper than AS in terms of the communication cost. We will show in the next section that
RAS is in fact also cheaper than AS in terms of iteration counts.

4 Numerical studies

In this section, we present several numerical simulations of unsteady 3D flows to demonstrate
the scalability and robustness of the RAS preconditioner. We also include some comparisons
with the regular additive Schwarz method and the simple pointwise Jacobi method (JAC).
Note that a point in the mesh represents an 5× 5 block matrix. Other recent development
in the application of RAS in CFD can be found in [7, 10].
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Table 1: Iteration counts. Euler flow passing an oscillating wing at Mach 0.89. The
mesh contains n = 22014 nodes. subd is the number of subdomains and δ is the stopping
condition.

n = 22014 δ = 10−2 δ = 10−8

subd JAC AS RAS JAC AS RAS
4 26 7 6 129 40 30
8 26 8 6 129 41 30
16 26 9 7 129 44 31
32 26 9 6 129 46 32

4.1 Parallel implementation issues

We implemented the algorithm on a number of parallel machines, and the top-level message-
passing calls are implemented through MPI [8]. We partition the mesh by using the
TOP/DOMDEC package [5]. We require that all subdomains have more or less the same
number of mesh points. An effort is made to reduce the number of mesh points along
the interfaces of subdomains to reduce the communication cost. The mesh generation and
partitioning are considered as pre-processing steps, and therefore not counted toward the
CPU time reported. The sparse matrix defined by (5) is constructed at every time step and
stored in an edge-based sparse format.

4.2 A transonic flow passing a flexible wing

We tested our algorithm for an Euler flow passing a flexible wing at M∞ = 0.89. The
wing is clamped at one end and forced into the harmonic motion We test the algorithm on
two unstructured meshes with 22014 and 331233 nodes, respectively. The two meshes are
generated independently, i.e., one is not a refined version of the other.

We focus on the performance of the algorithm for solving a single linear system. The
results on the coarser grid are summerized in Table 1 with CFL=900. Table 2 is for the
finer mesh with CFL=100. Due to the special choice of the CFL numbers, the time steps
for the two test cases are roughly the same. Comparing the RAS columns in Tables 1 and
2, we see that there is little dependence on the mesh sizes. And, we also see clearly that
JAC has a strong dependence on the mesh sizes. As the number of subdomains grows from
4 to 16 or 32, the number of iterations of RAS stays more or less the same without having
a coarse space in the preconditioner. Another observation is that RAS requires 20% to 30%
fewer number of iterations than AS for the test cases.

4.3 A supersonic flow passing a complete aircraft

We consider a supersonic, M∞ = 1.9, Euler flow passing a complete aircraft. The mesh
contains n = 89144 nodes. In Table 3, we report the number of iterations for solving a single
linear system with JAC, AS and RAS preconditioned GMRES(5) methods. The CPU and
communication (COMM) times are obtained on a SGI Origin 2000 with 4 and 8 processors.
Even though this is a shared memory machine, we still treat it as a message-passing machine.
The results are given in Table 3 for δ = 10−6 and CFL=1000.
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Table 2: Iteration counts. Euler flow passing an oscillating wing at Mach 0.89. The mesh
contains n = 331233 nodes. subd is the number of subdomains and δ is the stopping
condition.

n = 331233 δ = 10−2 δ = 10−8

subd JAC AS RAS JAC AS RAS
4 58 9 7 253 51 36
8 58 9 7 253 52 36
16 58 10 7 253 52 36

Table 3: Supersonic Euler’s flow on a 3D unstructured mesh at Mach 1.90. The number of
processors equals the number of subdomains subd. Number of nodes = 89144. The CPU
(in seconds) time below is for solving one linear system.

n = 89144 subd = 4 subd = 8
JAC AS RAS JAC AS RAS

ITER 96 37 28 96 38 29
CPU 33 29 23 16 14 11

COMM 0.2 0.15 0.1 0.3 0.2 0.15

5 Concluding remarks

We studied the performance of a newly introduced RAS preconditioner and tested it in
several calculations including a transonic flow over an oscillating wing and a supersonic
flow passing a complete aircraft. RAS compares very well against the regular additive
Schwarz method in terms of iteration counts, CPU time and communication time when
implemented on a parallel computer. Even though we do not have a coarse space, the
number of iterations is nearly independent of the number of subdomains for all the test
cases.
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