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1 Introduction

The development of a multi-model formulation to simulate three dimensional
compressible flows on parallel computers is presented. The goal is to reduce the
overall time and memory required to simulate the flow by using locally selected
cheaper and more computational efficient physical models without sacrificing the
global fidelity of the simulation. Our approach involves splitting the computa-
tional domain into different fluid flow regions and using the full potential model
instead of the Euler or Navier-Stokes equations in regions where this approxi-
mation is valid. We show numerically that solving the full potential equation
in regions of irrotational flow is not only more efficient but also improves the
accuracy; avoiding any numerical generation of entropy. The main considera-
tions addressed in this paper are the full potential and the Euler coupling and
the discretization of the interface conditions between these domains. We use
a fully unstructured finite volume discretization for both the full potential and
the Euler equations, and the interface condition is derived by imposing the dis-
crete conservation laws in the control volumes shared by both flow regions. 3D
transonic flow simulations around a NACA0012 airfoil are investigated.

Numerical simulations of fluid flow have sufficiently matured to be considered
accurate for engineering design and analysis. However, for large scale simula-
tions, the response time remains too large for the software to be used as an
interactive tool even on the lastest supercomputers. While parallel computing
reduces computation time proportionally to additional computational resource,
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new algorithms should be constructed to perform faster on new and existing
resources. In this paper we describe the initial steps for the development of a
multi-model formulation to decrease the computation time of three dimensional
compressible flow simulations on unstructured grids.

Compressible fluid flow simulations needed for aerodynamic applications can
be modeled with different degree of sophistication. The simplest model is the
full potential equation which assumes inviscid, irrotational and isentropic flows.
This equation is a single second-order nonlinear differential equation that is
inexpensive with respect to the execution time and the memory requirement.
Validity of the full potential equation is, however, restricted. The isentropic
assumption of the potential flow model leads to inaccurate physics for transonic
flows with strong shocks. The next level of approximation is the Euler equations
which describe the complete behavior of inviscid compressible flows. The Euler
equations are a coupled system of five nonlinear differential equations of first
order. Note that this set of equations involves five field variables. Finally, the
Navier-Stokes equations include the viscous effects needed for accurate model-
ing of the boundary layer. However, these equations are not only more time
consuming to solve but also require an associated mesh that is stretched and
very fine in viscous regions. Nevertheless, for complex flows with separation of
the boundary layer, the Navier-Stokes equations are mandatory to provide an
accurate simulation. Furthermore, for high Reynolds number flows, turbulence
appears and needs to be modeled.

When considering transonic flows over a wing, three regions can be iden-
tified: the boundary layer, the region around the shock, and the farfield. A
multi–model formulation can be used to combine the strength of each model
described above. Indeed, a multi-model formulation will take advantage of the
quick computational time associated with solving the full potential equation
while capturing all the important features of the flow such as boundary lay-
ers and shocks using the Navier-Stokes equations and/or the Euler equations,
respectively. Furthermore, we can benefit from the extensive experience of nu-
merical methods and software developed over the years to solve these equations
separately.

Numerical techniques for the solution of the full potential equation and the
Euler/Navier-Stokes equations were developed respectively in the 1970s and in
the 1980s [2, 10, 13, 15, 18]. Indeed, compressible flow around entire aircrafts
have been simulated. For example, the full potential equation has been solved
for a 747-200 transport configuration with wing, body, struts, and nacelles [23].
For the Euler model, calculations over a complete aircraft have been performed
as early as in 1986 [15]. On the other hand, accurate viscous simulations at
high Reynolds number over such complex geometries require enormous compu-
tational resources. Approximate solutions, i.e., with less than adequate number
of mesh points, have been performed. A Navier-Stokes prediction for the F–18
wing and fuselage is presented in [6]. A discussion of the drastic difference in
computational cost related to the choice of models can be found in [14].
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However only recently have there been interests to couple these solvers to
reduce the computational cost, to reduce the memory requirement and to im-
prove the accuracy of the solution. Certainly, boundary layer coupling or thin
layer Navier-Stokes coupling have been widely used but such approaches do not
quite include all the physics we intend to incorporate [22]. For some mathemati-
cal description of coupling heterogeneous models for compressible flows we refer
the readers to [19]. For three dimensional flows, it is shown in [1, 20] that the
computation cost can be reduced by a factor of two for a Navier-Stokes/full po-
tential coupling. Their formulation is based on a structured grid discretization
where the full potential equation is solved using a finite difference method and
the Navier-Stokes equations are solved either with a finite difference or a finite
volume discretization. The saving is justified by the fact that two third to one
half of the cells are outside the Navier-Stokes region. In general, the cost of the
full potential solver can be considered negligible compared to the Navier-Stokes
solver. Note that each region is solved alternatively, similar to a subdomain
iterative method.

Our formulation differs from [1, 20] by providing a general finite volume
approach and therefore ensure that the mass will also remain conserved at the
discrete level. This approach also has the advantage of being readily extended to
a coupled implicit scheme. While in [1, 20] each region is solved separately, we
are expecting to improve convergence by solving the coupled system simultane-
ously. In addition, an unstructured discretization of the computational domain
provides more flexibility to mesh complex geometry and for adaptive control
of the numerical error. Lastly, a parallel version is implemented to obtain the
reasonable execution time.

In this paper we address the initial step of this research. We first investigate
the coupling between the full potential equation and the Euler equations. In
addition to the computational savings, solving the full potential equation in
the vicinity of the stagnation point is more accurate by avoiding the numerical
entropy generated by Euler solvers at low Mach numbers. Furthermore, the full
potential solver is less sensitive to the quality of the elements. Both the Euler
and the Navier-Stokes solvers calculate convective fluxes through edges. When
the surface of the control volume is different from the perpendicular surface
of the edges, a numerical error is created. This error does not appear in the
full potential discretization because fluxes are constants in each element. As
mentioned above, a finite volume formulation is adopted to adequately interface
these different solvers. An explicit approach is first considered to validate the
spatial discretization but also as a precursor to the implicit implementation [17].

For simplicity, we address steady flows. For unsteady flows, it is required to
have the temporal derivative of the density which is difficult to include in our
explicit scheme because this derivation involves potential values of the neigh-
boring control volumes. However, in an implicit solver such discretization can
be easily included. As already mentioned, to obtain the most accurate flow sim-
ulation, the full Navier-Stokes equations need to be included in our multi-model
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formulation.
A more urgent objective, however, is to address some algorithmic exten-

sions. First, we intend to develop an implicit scheme which is essential for large
scale simulations [17]. The convergence rates reported with implicit schemes are
much faster, in particular when using methods such as the overlapping Schwarz
preconditioned GMRES methods [3]. In our formulation, the Jacobian matrix
used in the implicit approach will include the spatial discretization of two or
more equations. It is expected that such system is not positive definite and thus
it is not clear how it can be solved efficiently or which preconditioner should
perform well. Second, we plan to develop a procedure to automatically posi-
tion the interface between the different computational domains based on the
existing field variables (i.e., dynamic zonal configuration). Third, we need to
consider load balancing for parallel computations, in particular when dynamic
zonal configuration procedures will be used. Recall that different partial differ-
ential equations are solved in different regions but each equation does not require
the same number of operations. One palliative is to decompose each region into
subregions equal to the number of processors. By using such an approach, we
can allocated one subregion of each type to each processor. Finally, we expect
that the outcome of this research will lead to a dramatic reduction in compu-
tational time and memory resources to allow faster simulation of compressible
flows including turbulent viscous effect, in particular for external aerodynamics
applications.

In this paper we focus on the description of the two-model formulation.
Section 2 describes the explicit full potential solver and the Euler solver with
more emphasis on the full potential solver. In Section 3, we briefly introduce
the coupled solver and compare two types of interface conditions with overlap
and without overlap. To demonstrate the feasibility of our approach we solve a
transonic flow over a NACA0012 airfoil at zero angle of attack which is analyzed
in Section 4. We conclude with remarks and extensions in Section 4.

2 Simulation of compressible flows

Our interest lies in the numerical simulation of three dimensional compress-
ible invisid flows. We assume that there is no external force or heat transfer.
As described above, these flows can be modeled with the Euler equations or
with the full potential equation for the particular case when the irrotational
and isentropic flows assumption is satisfied. For simplicity of presentation, all
the descriptions given in the paper are based on the first order finite volume
discretization, and the extension to the 2nd order discretization is easy. All
the numerical results presented in Section 4 are for, however, the 2nd order
discretization.
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2.1 The governing equations

Let Ω ⊂ �3 be the computational flow domain and Γ its boundary. The con-
servative form of the Euler equations is given by

∂U

∂t
+ ∇ · F (U) = 0. (1)

Here U contains the conservative variables, i.e., U = (ρ, ρu, ρv, ρw, ρE)T . The
explicit definitions of F () can be found on page 87 of [11]. When the flow
is irrotational, there exists a potential variable Φ satisfying the full potential
equation

∂ρ(Φ)
∂t

+ ∇ · G(Φ) = 0, (2)

where G(Φ) = ρ∇Φ and
∇Φ = (u, v, w)T . (3)

In the rest of the paper, we shall refer to U as the Euler variable, which is a
vector, and Φ as the full potential variable, which is a scalar.

By appealing to the isentropic flow assumption we can write the density ρ
as a nonlinear function of the potential, such as

ρ(Φ) = ρ∞

(
1 +

γ − 1
2

M2
∞

(
1 − ||∇Φ||22

q2
∞

))1/(γ−1)

. (4)

There are two types of boundaries that bound the computational domain
for external flows past bodies or obstacles: the farfield boundary and the solid
wall boundary. On the solid wall boundary, Γw, the normal velocity, vn, is
zero, since no mass crosses the boundary. On the farfield, Γ∞, we impose an
uniform free-stream state defined by the following parameters: the density, ρ∞,
the velocity vector, v∞, the pressure, p∞, and the Mach number M∞. These
conditions are given by

vn = 0, on Γw (5)

and

ρ∞ = 1, v∞ =

⎛
⎝ cos(α) × cos(θ)

sin(θ)
sin(α) × cos(θ)

⎞
⎠ , p∞ =

1
γM2

∞
on Γ∞, (6)

where α and θ are the angles of the flow direction (the angle of attack and the
yaw angle, respectively).

2.2 The Euler solver

To solve the Euler equations, we take advantage of an existing code based on
an unstructured finite volume discretization of the convective fluxes [7, 8]. The
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computational flow domain is divided into tetrahedrons to provide maximum
flexibility for tessellating complex geometries. Euler variables are located at the
vertices of the elements. This code uses a second order flux discretization based
on the MUSCL (Monotonic Upwind Scheme for Conservative Laws) scheme [16].
A classical forward Euler method for time integration with a local time step size
is chosen. Recall that we are only interested in solving the steady state and a
simple time integration scheme offers more flexibility to be coupled with the full
potential solver. The local time step size ∆tnτc

i
is defined for each control volume

τc
i (with characteristic size ‖hc

i‖) by

∆tnτc
i

= ‖hc
i‖

CFL
Cn

τc
i

+ ‖Un
τc

i
‖2

, (7)

where CFL is a preselected positive number, Cn
τc

i
is the sound speed and Un

τc
i

is
the velocity vector at the nth time step.

The spatial discretization of the boundary condition, (5)-(6), is obtained
using a non-reflecting version of the flux–splitting scheme [7].

2.3 The full potential solver

A new finite volume full potential solver is developed to adequately interface
with the existing Euler solver. Therefore, the same control volume is used and
only the flux calculations are different. We describe now the spatial discretiza-
tion of the mass flux required in this scheme.

2.3.1 The spatial discretization

The integral form of the full potential equation for the discrete volume τc
i is

simply ∫
τc

i

∇ · G(Φ)dA = 0. (8)

Note that the sum of all τc
i covers the whole domain Ω, i.e., Ω̄ =

⋃
τ̄c
i . By

analogy to the discretization of the Euler equations, the discretization here
is accomplished by dividing the domain into tetrahedron elements, τh

i,j . The
potential variable is stored at the vertices. This choice is illustrated in Fig. 1 for
two space dimensions. By using this discretization, the space of the potential
solution is taken to be piecewise linear continuous functions in each element
determined from the vertices values, Φi.

For the control volume τc
i associated with the dual mesh, we can write the

discrete form of (8) as
∫

τc
i

∇(ρ∇Φ)dA =
∫

∂τc
i

ρ∇Φ · n dS =
∑
τh

i,j

ρi,j(∇Φ)i,j · Sc
i,j , (9)
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Figure 1: Two space dimensions representation of the control volume.

where τh
i,j is the “triangulation” associated with the control volume τc

i and
Sc

i,j =
∫

∂τc
i
∩τh

ij
n dA. Here n is the unit outward normal vector of the surface

∂τc
i ∩ τh

ij . Note that ρi,j , the discrete density, is a function of (∇Φ)i,j which is
a constant for each element τh

i,j .

2.3.2 An explicit approach

To solve (8) we add a time dependent term which vanishes at steady state.
Hence, we rewrite (8) as

d

dt

∫
τc

i

ΦdA +
∫

τc
i

∇ · G(Φ)dA = 0. (10)

The resulting semi-discrete form of (10) is

‖τc
i ‖

dΦi

dt
+ Gi(Φ) = 0, (11)

where Gi is the discretized mass flux associated with τc
i as in (9).

The system of ODE’s associated with all control volumes is integrated in
“time” using the forward Euler discretization. For a control volume τc

i , the
equation is

Φn+1
i − Φn

i

∆tnτc
i

= − 1
‖τc

i ‖
Gi(Φn). (12)

The time step size ∆tnτc
i

is determined in the following way,

∆tnτc
i

= min
τh

i,j

(
C‖hc

j‖2
)
, (13)
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where ‖hc
j‖ is the characteristic length of element τh

i,j and C is a global con-
stant. Because of the nonlinearity of this equation, it is difficult to determine
C analytically. However, based on our numerical experiments, C equal to 0.4 is
a good approximation.

2.3.3 The density upwinding scheme

For transonic flows, upwinding is required; therefore, the density is modified
to add artificial compressibility. The upwinding is introduced prior to the flux
calculation after which the same subsonic procedure is used. For simplicity, we
describe our upwinding method for two space dimensions. Following [12, 23],
we write

ρ̃ = ρ − µv · ∇−ρ, (14)

where v is the normalized element velocity and ∇−ρ is an upwind difference.
In two space dimensions there are two cases to consider. Either the mass flux
enter on one side (Fig. 2 a) or the mass flux enter through two sides (Fig. 2 b).
It follows that the density for each case becomes

ρ̃j = ρj + µv · nk(ρj − ρk) (15)
ρ̃j = ρj + µv · nk(ρj − ρk) + µv · nl(ρj − ρl). (16)

The switching function, µ, is defined for each element as

µ = νo max{0, 1− M2
c /M2}, (17)

where M is the element Mach number, Mc is a pre-selected cutoff Mach number
chosen to introduce dissipation in the transonic regime. The parameter νo is
used to increase the amount of dissipation in the supersonic elements. These
parameters Mc and νo are selected by hand; Mc is just smaller than 1 and
νo is usually set between 1 and 3. Additional viscosity is added by taking the
switching function in each element to be the maximum value of all its immediate
neighbors. We refer the readers to [4, 9] for more details.

2.3.4 The boundary conditions

The full potential spatial discretization of the boundary condition is now de-
scribed. On solid boundaries, Γw, we apply the surface flow tangency condition.
We write,

ρ
∂Φ
∂n

= 0, (18)

for solid wall at rest. In our control volume approach, this boundary condition
is identical to no flux across the solid boundary. It is, therefore, straightforward
to implement; we just sum the flux across the boundary of the control volume
which are in the interior of the computational domain.
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Figure 2: Upwind configurations.

For the farfield boundary, Γ∞, we normalize the farfield flow speed, q∞, to
equal unity and we define the farfield potential as

Φ∞ =
∫

Ω

q∞dx, (19)

where x is the direction of the farfield flow. To enforce this Dirichlet boundary
condition we impose the value of Φ∞ in the control volumes which lie on the
farfield boundary. It is also possible to replace the above condition with a more
transparent condition such as imposing a mass flux associated with the free
stream state. This condition is implemented on parts of Γ∞ adjacent to the
Euler domain. We recognize that these boundary conditions are simplistic and
we recommend a boundary condition based on Riemann invariants [21] or on
linearized Euler equations [5]. Furthermore, a farfield correction is required for
lifting wings.

3 The coupled solver

The spatial computational domain, Ω, is split into two subdomains, ΩE and
ΩΦ, wherein the Euler equations and the full potential equation are solved
respectively. We denote by ΓI the interface between ΩE and ΩΦ.
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The formulation presented herein for the full potential is similar to the un-
steady Euler formulation for finite volume. In fact, we can define W as the
simulation variable, which represents either U or Φ. A general formulation can
thus be constructed. In the future version of our software implementation, W
will be a pointer and its true value and size are determined while the flow is
being calculated. We assume that W is the solution of the equation

∂W

∂t
+ ∇ · P (W ) = 0, (20)

where the flux function P is called the model function that equals to either F
or G. The decision to choose a specific model will be made for each subdo-
main. However, the main part of this coupled solver is the treatment of the
conservation law at the interface boundary.

3.1 The interface boundary conditions

There are several issues related to the interface boundary such as location, for-
mulation and discretization. In this paper we mainly describe the discretization.
We report on two different domain partitioning approaches: the overlapping and
non-overlapping partitioning.

3.1.1 An overlapping partition

Consider the interface between the full potential domain and the Euler domain
presented in Fig. 3. This interface is located between tetrahedra. Therefore the
control volume associated with the nodes on this interface are shared between
both the full potential domain and the Euler domain. These control volumes are
considered as the overlapping region. Conservation laws for the Euler equations
as well as the conservation laws for the full potential equation are forced on
this control volume. First, we describe discretization of the conservation laws
associated with the Euler equations, i.e., the conservation of mass, momentum
and energy. The fluxes across the surface of the control volume that lies in the
Euler domain (ΩE) can be readily calculated. However, we require to convert
the full potential variable to the Euler variable to calculate the fluxes across
the surface that lies in the potential domain (ΩΦ). To this end we use the po-
tential to Euler variable transfer function (Appendix A) to calculate, at vertex,
k and l for example, the momentum and the energy. These vertex values are
obtained by the volume weighted averaging of the density and the velocity in
the elements surrounding this vertex. Note that, the density and the velocity,
∇Φ, are constant in the elements laying in the full potential domain. Therefore,
these Euler fluxes calculations depend on the Euler variable on one side and on
the potential converted to mass, momentum and energy on the other side. We
introduce an operator Q related to the transfer of the potential variable to the
Euler variable defined as

U = Q(Φ). (21)
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Uj , Φj

Ui,Φi

Figure 3: Overlapping interface of the Euler and full potential domains.

The interface condition for the Euler solver becomes∫
ΓE

F (U) · nEdS +
∫

ΓΦ

F (Q(Φ)) · nΦdS = 0, (22)

where the subscript E and Φ refer to the Euler and the potential segments of
the control volume, respectively.

Second, we present the conservation of mass for the same control volume
required for the full potential solver. To be more precise the conservation of
mass is written as ∫

ΓE

ρV · nEdS +
∫

ΓΦ

ρ∇Φ · nΦdS = 0, (23)

where ρV is the first component of the Euler flux vector. These two integrals
can be discretized into sums over the edges of the control volume, such as,

∑
τh

i,j

ρV · SE
i,j +

∑
τh

i,j

ρi,j(∇Φ)i,j · SΦ
i,j = 0, (24)
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interface ΓI

full potential
domain ΩΦ

Euler domain ΩE

Figure 4: Non–overlapping interface of the Euler and full potential domains.

where Si,j is the surface intergal of the outward normal vector along the j
surface of the control volume τc

j associated with each element τh
i,j . Note that

in this approach we have over-determined the conservations laws. Indeed, the
same control volume will satisfy the conservation of mass for both the Euler
equations and for the full potential equation.

3.1.2 A non-overlapping partition

The non-overlapping domain permits a proper discretization of the equations
without over-determining the conservation laws. In this approach, control vol-
umes are flagged either for solving the full potential equation or for solving the
Euler equations. The location of the interface, therefore, lies between the control
volumes as in the two dimensional illustration in Fig. 4. The interface condition
for the Euler solver is given by (22) where ΓΦ is the portion of the control vol-
ume that lies on the interface ΓI . The Euler fluxes through this control surface
are calculated using the same procedure as in the interior of the Euler domain
which is based on solving a Riemann problem defined on an edge using the two
end–point nodal values. Because this edge crosses the interface, it contains the
potential variable at one end and the Euler variable at the other. To use the
same procedure, we convert the potential variable to the Euler variable. To
convert Φ to U at one vertex, we use ∇Φ in the tetrahedra surrounding that
vertex. When the tetrahedron intersects the interface then an approximation of
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the velocity is used instead of ∇Φ.
The mass flux balance for the full potential control volume that lies on the

interface is given by (23) where ΓE is now the portion of the control volume that
lies on the interface. The term ρV is the type first term in the Euler flux vector
which is related to the conservation of mass. Clearly, this approach guarantees
that the mass fluxes at the interface are conserved.

4 Computational results

4.1 Transonic flow passing a NACA0012 airfoil

In this section we present heterogeneous full potential and Euler solutions in
three space dimensions. We test our scheme for a two dimensional flow over a
NACA0012 airfoil at M∞ = 0.8 in a three dimensional computational domain.
However, only half of the geometry is required for this symmetric flow. The
computational domain is such that Ω is a rectangle domain where an upper
surface of a NACA0012 is located on the bottom face as presented in Fig. 5.
The boundary conditions of this problem are as follows: on Γ1, Γ2, and Γ3 we
impose farfield conditions; on Γ4, Γ6, Γ7, and Γ8 we impose the non-penetration
condition for symmetry and on Γ5 we impose the solid wall condition. Note
that, a non-penetration condition or a solid condition are identical. For the
farfield boundary Γ1, Γ2, and Γ3, the discretization of this condition differs for
the full potential solver between Γ2 where we impose Φ∞ as a Dirichlet condition
and Γ1 and Γ3 where we only specify a flux at the boundary. Concerning the
switching function µ, the cutoff Mach number is set to M2

∞ = 0.95 and the
viscous parameter is set to νo = 1.5.

We present in Fig. 6 the mesh associated with the computational domain
and the domain partitioning of this mesh into the Euler domain (bottom) and
the full potential domain (top). The gap between the domains is artificially
added for visual purpose. In our current implementation, the interface is hand-
picked, and with such a partition the shock is contained completely in the Euler
domain. Note that this mesh is also partitioned into eight subdomains for
parallel processing. Each of the subdomains have more or less the same number
of mesh points even thought ultimately the node distribution per processor
should take into account the type of solver used. We show the Mach number
contours for the overlapping and the non-overlapping partitions in Fig. 7 and
Fig. 8, respectively. Note the smooth transition of the iso–contours between
the Euler and full potential domains. The interface of the Euler and the full
potential domains lies at the intersection of different processors. This interface
is presented in Fig. 6. The flow domain is discretized into 16,200 control volumes
and the solution was obtained after 80,000 explicit iterations.

We also report on the pressure coefficient distribution over the airfoil, Fig. 9.
The solid line represents the Euler solution, the dash lines represent the full po-
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Figure 5: Computational domain for the NACA0012 geometry.

tential solution and the stars represent the coupled solution. Based on our
numerical experience, we report that the full potential solution is very sensitive
to the farfield boundary location. Clearly, the farfield boundary in our compu-
tational domain is still very close to the airfoil. On the other hand, the Euler
solution is far less sensitive to the farfield boundary location. This hidden cost
of the full potential should be accounted for when evaluating the cost reduc-
tion. The shock location in the full potential solution is therefore sensitive to
the boundary location. However, in all the runs we have performed, we note
that the coupled solution obtains a shock which is located upwind of the po-
tential shock. The shock location also depends on the location of the interface
between the two domains. In this case, we report that the shock in the coupled
solution is at the same location as the Euler shock on the surface of the airfoil
but differs slightly in the interior.

4.2 Remarks

Before concluding, we want to report on our numerical experience of the full
potential and the Euler models coupling.

First, we observe that solutions are similar for the overlapping or the non-
overlapping partitioning. The solution is smooth across the interface and the
convergence rate is not significantly affected by the choice of overlapping or
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Figure 6: Computational mesh and domain decomposition for the NACA0012
airfoil.
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Figure 7: Mach number contours for the NACA0012 airfoil at M∞ = 0.8 for
overlapping domains.
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Figure 8: Mach number contours for the NACA0012 airfoil at M∞ = 0.8 for
non-overlapping domains.
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Figure 9: Pressure coefficient distribution on a NACA0012 airfoil at M∞ = 0.8.
— Euler solution; −− full potential solution; ∗ mixed solution.
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non-overlapping approaches. The main difference is the added computational
cost of calculating the Euler fluxes for the overlapping control volume and the
storage associated with the existence of the overlapping control volume which
has both the Euler variable and the potential variable. On the other hand the
overlapping partitioning is required in implicit solutions using an overlapping
Schwarz algorithm.

Second, for simplicity of presentation, the discretization presented herein has
focused on the first order scheme for the Euler equations and for the interface
discretization. For higher order schemes, we convert from potential to the Euler
variable not only the vertex values of the control volume located on the interface
but also the vertices of the neighbors such that the evaluation of the gradient
of the solution at each vertex can be calculated. Indeed, the results presented
in Section 4 are obtained using a second order scheme. A similar approach will
be required when attempting the coupling with the Navier-Stokes equations.

Lastly, physical solutions for the full potential flow over a wing are obtained
by imposing the Kutta condition; that the flow leaves the trailing edge smoothly.
For a full potential solver such a condition is enforced by adding a jump in
the potential equal to the circulation. Note that for non-lifting airfoils, as in
our model problem, we do not need to enforce the Kutta condition. However,
it is fortunate that the Euler solution of such flows intrinsically respects this
condition. For future considerations such as lifting wings we will define the Euler
domain to cover the wing and the wake region. With this partition we avoid any
special treatment in the full potential domain because the full potential region
does not cross the trailing edge vortex sheet.

5 Conclusions

In this paper we have showed the feasibility of coupling the Euler equations and
the full potential equation in the simulations of three dimensional steady com-
pressible flows. An explicit formulation was presented based on a forward Euler
time integration scheme and a fully unstructured finite volume scheme for the
spatial variables. Numerical results obtained on a distributed memory paral-
lel computer were reported for a transonic flow passing a NACA0012 wing. We
have also laid down the background to fully extend this formulation for multiple
flow models and for different numerical approaches. We have not investigated
the reduction in computation time because the fastest solvers are based on im-
plicit approaches. The next step is to expand this formulation to the implicit
approach and address the evaluation of computation time reduction as well as
other parallel implementation issues.
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A Transfer operators

To carry out our multi–model formulation, we do not require the transfer opera-
tor from Euler to potential R : U −→ Φ. Only the mass flux, given by G(R(U)),
is required to update the potential in each control volume. We define the full
potential to Euler transfer operator as

Q : Φ −→ U. (25)

Recall that U has five components. To obtain its first component, we appeal to

ρ(Φ) = ρ∞

(
1 +

γ − 1
2

M2
∞

(
1 − ||∇Φ||22

q2
∞

))1/(γ−1)

. (26)

The next three components can be computed with relation (3). The last com-
ponent ρE

ρE = ρ

(
e +

u2 + v2 + w2

2

)
=

p

γ − 1
+ ρ

u2 + v2 + w2

2
,

where the pressure

p = p∞

(
ρ

ρ∞

)γ

.
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