
RASHO: A Restricted Additive Schwarz

Preconditioner with Harmonic Overlap

Xiao-Chuan Cai∗ Maksymilian Dryja† Marcus Sarkis‡

1 Introduction

A restricted additive Schwarz (RAS) preconditioning technique was introduced
recently for solving general nonsymmetric sparse linear systems [1, 3, 4, 7, 8, 9,
11]. The RAS preconditioner improves the classical additive Schwarz precon-
ditioner (AS), [10], in the sense that it reduces the number of iterations of the
iterative method, such as GMRES, and also reduces the communication cost
per iteration when implemented on distributed memory computers. However,
RAS in its original form is a nonsymmetric preconditioner and therefore the
cannot be used with the Conjugate Gradient method (CG). In this paper, we
provide an extension of RAS for symmetric positive definite problems using the
so-called harmonic overlaps (RASHO). Both RAS and RASHO outperform their
counterparts of the classical additive Schwarz variants. Roughly speaking, the
design of RASHO is based on a much deeper understanding of the behavior of
Schwarz type methods in the overlapping regions, and in the construction of the
overlap. Under RASHO, the overlap is obtained by extending the nonoverlap-
ping subdomains only in the directions that do not cut the boundaries of other
subdomains, and all functions are made harmonic in the overlapping regions.
As a result, the subdomain problems in RASHO are smaller than those of AS,
and the communication cost is also smaller when implemented on distributed
memory computers, since the right-hand sides of discrete harmonic systems are
always zero that do not need to be communicated. We will show numerically
that RASHO preconditioned CG takes less number of iterations than the corre-
sponding AS preconditioned CG. An almost optimal convergence theory will be
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presented for the RASHO for elliptic problems discretized with finite element
methods.

Recall that the basic building blocks of classical Schwarz type algorithms
are the operations of the form (Rδ

i )
T (Aδ

i )
−1Rδ

i , where Aδ
i is the subdomain

matrix and Rδ
i is the restriction operator for the extended subdomain (formal

definitions will be given later in the paper). The multiplication of the such an
operator with a vector, v, is realized by solving the linear system

Aδ
i w = Rδ

i v (1)

on each extended subdomain. The key idea of RAS is that equation (1) is
replaced by

Aδ
i w =

{
v inside the un-extended subdomain
0 in the overlapping part of the subdomain. (2)

Note that the solution of (2) is discrete harmonic in the overlapping part of the
subdomain, and therefore carries minimum energy in some sense. In this paper,
we further explore the idea of “harmonic overlap” and at the same time keep
the symmetry of the preconditioner.

The algorithm to be discussed below is applicable for symmetric positive
definite problems. In order to provide a complete mathematical analysis, we re-
strict ourselves to the Poisson problem discretized with a finite element method.
We consider a simple variational problem: Find u ∈ H1

0 (Ω), such that

a(u, v) = f(v), ∀ v ∈ H1
0 (Ω), (3)

where

a(u, v) =
∫

Ω

∇u · ∇v dx and f(v) =
∫

Ω

fv dx for f ∈ L2(Ω).

For simplicity, let Ω be a bounded polygonal region in �2 with a diameter of size
O(1). The extension of the algorithm and results to �3 can be carried out easily.
Let T h(Ω) be a shape regular, quasi-uniform triangulation, of size O(h), of Ω
and V(Ω) ⊂ H1

0 (Ω) the finite element space consisting of continuous piecewise
linear functions associated with the triangulation. We are interested in solving
the following discrete problem associated with (3): Find u∗ ∈ V such that

a(u∗, v) = f(v), ∀ v ∈ V . (4)

Using the standard basis functions, (4) can be rewritten as a linear system of
equations

Au∗ = f. (5)

For simplicity, we understand u∗ and f both as functions and vectors depending
on the situation.
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2 Notations

Let n be the total number of interior nodes of T h(Ω) and W the set of the nodes.
We assume that a node-based partitioning has been applied and resulted in N
nonoverlapping subsets W 0

i , i = 1, . . . , N , whose union is W . For each W 0
i , we

define a region ΩR
i as the union of all the elements of T h(Ω) that have all three

vertices on W 0
i ∪ ∂Ω. We denote H as the representative size of the subregion

ΩR
i . We define the overlapping partition of W as follows. Let {W 1

i } be the
one-overlap partition of W , where W 1

i ⊃ W 0
i is obtained by including all the

immediate neighboring vertices of the vertices in W 0
i . Using the idea recursively,

we can define a δ-overlap partition W =
⋃N

i=1 W δ
i . δh is approximately the

extend of the extension.
We next define a subregion of Ω induced by a set of nodes of T h(Ω) as

follows. Let Z be a subset of W . The induced subregion, denoted as Ω(Z), is
defined as the union of: (1) the set Z itself; (2) the union all the open elements
(triangles) of T h(Ω) that have at least one vertex in Z; and (3) the union of the
open edges of these triangles that have at least one endpoint as a vertex of Z.
Note that Ω(Z) is always an open region. The extended region Ωδ

i is defined as
Ω(W δ

i ). We introduce the subspace

Vδ
i ≡ V ∩ H1

0 (Ωδ
i ) extended by zero to Ω\Ωδ

i .

It is easy to check that

V = Vδ
1 + Vδ

2 + · · · + Vδ
N .

This decomposition is used in defining the classical additive Schwarz algorithm
without a coarse space. Let us define P δ

i : V → Vδ
i by

a(P δ
i u, v) = a(u, v), ∀u ∈ V , ∀v ∈ Vδ

i . (6)

Then, the classical one-level additive Schwarz operator has the form

P δ = P δ
1 + · · · + P δ

N .

Let Γδ
i = ∂Ωδ

i \∂Ω; i.e., the part of the boundary of Ωδ
i that does belong to the

Dirichlet part of the boundary. We define the interface overlapping boundary
Γδ as the union of all Γδ

i ; i.e., Γδ = ∪N
i=1Γ

δ
i . We then define the following subsets

of W :

• WΓδ ≡ W ∩ Γδ (interface nodes)

• WΓδ

i ≡ WΓδ ∩ W δ
i (local interface nodes)

• WΓδ

i,in ≡ WΓδ ∩ W 0
i (local internal interface nodes)

• WΓδ

i,cut ≡ WΓδ

i \WΓδ

i,in (local cut interface nodes)

3



• W δ
i,ovl ≡ (W δ

i \WΓδ

i ) ∩ (
⋃

j �=i W δ
j ) (local overlapping nodes)

• W δ
i,non ≡ W δ

i \(WΓδ

i ∪ W δ
i,ovl) (local nonoverlapping nodes)

• W δ
i,in ≡ W δ

i,non ∪ WΓδ

i,in (internal nodes)

We note that the notions of subdomains, harmonic overlaps, the classification
of nodal points can all be defined in terms of the graph of the sparse matrix.

We frequently use functions that are discrete harmonic at certain nodes.
Let xk ∈ W be a mesh point and φxk

(x) ∈ V the finite element basis function
associated with xk; i.e., φxk

(xk) = 1, and φxk
(xj) = 0, j �= k. We say u ∈ V is

discrete harmonic at xk if a(u, φxk
) = 0. If u is discrete harmonic at a set of

nodal points Z, we say u is discrete harmonic in Ω(Z).
Our new algorithm will be built on Ṽδ

i defined as a subspace of Vδ
i . Ṽδ

i

consists of all functions that vanish on the cuting nodes WΓδ

i,cut and discrete
harmonic at the nodes W δ

i,ovl. Note that the support of the subspace Ṽδ
i is

W̃ δ
i ≡ W δ

i \WΓδ

i,cut

and, since the values at the harmonic nodes are not independent, they can not
be counted toward the degree of freedoms. The dimension of Ṽδ

i is dim(Ṽδ
i ) =

|W δ
i,in|. Let Ω̃δ

i ≡ Ω(W̃ δ
i ) be the induced domain. It is easy to see that Ω̃δ

i is
the same as Ωδ

i but with cuts. We have then Ṽδ
i = V ∩ H1

0 (Ω̃δ
i ) and discrete

harmonic on Ωδ
i,ovl ≡ Ω(W δ

i,ovl). We define Ṽδ ⊂ Vδ as

Ṽδ ≡ Ṽδ
1 + · · · + Ṽδ

N ,

which is a direct sum.

3 RAS with harmonic overlap

Let P̃ δ
i : Ṽδ → Ṽδ

i be a projection operator satisfying

a(P̃ δ
i u, v) = a(u, v), ∀u ∈ Ṽδ, ∀v ∈ Ṽδ

i . (7)

The RASHO operator can be defined as

P̃ δ = P̃ δ
1 + · · · + P̃ δ

N . (8)

Note that the solution u∗ of (5) is not, generally speaking, in the subspace
Ṽδ, therefore, the operator P̃ δ cannot be used to solve the linear system (5)
directly. We will need to modify the right-hand side of the system; see Lemma
3.1. We will also show that the elimination of the variables associated with the
overlapping nodes is not needed in order to apply P̃ δ to a vector v ∈ Ṽδ.
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We now introduce the matrix form of (8). We define the restriction operator,
or a matrix, R̃δ

i : W → W̃ δ
i as follows. Let v = (v1, . . . , vn)T be a vector

corresponding to the nodal values of a function u ∈ V ; namely for any node
xi ∈ W , vi = u(xi). For convenience, we say “v is defined on W”. Its restriction
on W̃ δ

i , R̃δ
i v, is defined as

(
R̃δ

i v
)

(xi) =

⎧⎨
⎩

vi if xi ∈ W̃ δ
i

0 otherwise.
(9)

Use this restriction operator, we define the subdomain stiffness matrix as

Ãδ
i = R̃δ

i A (R̃δ
i )

T ,

which can also be obtained by the discretization of the original problem on W̃ δ
i

with zero Dirichlet data on nodes W \ W̃ δ
i . If Ãδ

i is subspace-invertible, we have

P̃ δ
i = (R̃δ

i )
T

(
Ãδ

i

)−1

R̃δ
i A

and
P̃ δ =

(
(R̃δ

1)
T (Ãδ

1)
−1R̃δ

1 + · · · + (R̃δ
N )T (Ãδ

N )−1R̃δ
N

)
A. (10)

The next lemma shows how to modify the system (5) so that its solution
belongs to Ṽδ. A proof can be found in [2].

Lemma 3.1 Let u∗ and f be the exact solution and the right-hand side of (5),
and

w =
N∑

i=1

(R̃δ
i )

T (Ãδ
i )

−1R̃0
i f, (11)

then, we have ũ∗ = u∗ − w ∈ Ṽδ is the solution of the modified linear system of
equations

Aũ∗ = f − Aw = f̃ .

We remark that RASHO has several advantages over the classical AS. Let
us recall AS briefly. Let

(
Rδ

i v
)
(xi) =

⎧⎨
⎩

vi if xi ∈ W δ
i

0 otherwise.
(12)

Then the AS operator takes the following matrix form

P δ =
(
(Rδ

1)
T (Aδ

1)
−1Rδ

1 + · · · + (Rδ
N )T (Aδ

N )−1Rδ
N

)
A, (13)
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where Aδ
i = Rδ

i A(Rδ
i )

T . We remark that the size of the matrix Aδ
i is |W δ

i |, which
is bigger than the size of the matrix Ãδ

i , which is |W̃ δ
i |. In a distributed memory

implementation, the operation Rδ
i v involves moving data from one processor

to another, but the operation R̃δ
i v does not involve any communication. In

RASHO, if u ∈ Ṽδ, then it is easy to see that

R̃δ
i Au = R̃δ

i,inAu, (14)

where R̃δ
i,in is defined as

(
R̃δ

i,inv
)

(xi) =

⎧⎨
⎩

vi if xi ∈ W δ
i,in

0 otherwise.
(15)

Therefore, for functions in Ṽδ, we can rewrite P̃ δ, as in (10), in the following
form

P̃ δ =
(
(R̃δ

1)
T (Ãδ

1)
−1R̃δ

1,in + · · · + (R̃δ
N )T (Ãδ

N )−1R̃δ
N,in

)
A. (16)

Although the operator (16) does not look like a symmetric operator, but it is
indeed symmetric when applying to functions in the subspace Ṽδ. The form (14)
takes the advantage of the fact that the operator R̃δ

i,in is communication-free in
the sense that it needs only the residual associated with nodes in WΓδ

i,in ⊂ Ω0
i .

We note, however, that to compute the residual at nodes WΓδ

i,in some commu-
nications are required. The processor associated with subdomain Ωi needs to
obtain the local solution from the neighboring subdomains at nodes connected
to WΓδ

i,in. It is important to note that the amount of communications does not
depend on the size of the overlap since only one layer of nodes is required. This
shows that in terms of communications, the RASHO is superior to AS and RAS.

The following theorem provides an estimate of the condition number of the
RASHO operator P̃ δ in terms of the mesh sizes h and H , and the overlapping
factor δ. It is interesting to see that, for the small overlap case, our condition
number estimate is equivalent to the estimate for the AS preconditioner [5],
while for generous overlap, our estimate is equivalent to the estimate for iterative
substructuring algorithms [6].

Theorem 3.1 [2] The RASHO operator P̃ δ is symmetric in the inner product
a(·, ·), nonsingular, and bounded in the following sense

C−2
0 a(u, u) ≤ a(P̃ δu, u) ≤ C1 a(u, u) ∀u ∈ Ṽδ. (17)

Here

C2
0 = C

((
1 + log

(
H

h

))
+

1
H2

(
1 + log

(
(δ + 1)h

h

)
+

H

(2δ + 1)h

))
.

The constants C, C1 > 0 are independent of h, H, and δ.
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Table 1: RASHO and AS preconditioned CG for solving the Poisson’s equation
on a 128 × 128 mesh decomposed into 2 × 2 = 4 subdomains with overlap =
ovlp. The AS/CG results are shown in ( ). The “+1” is for the preprocessing
step needed for RASHO.

ovlp iter cond max min
0 42 (42) 129.(129.) 1.98 (1.98) 0.0154 (0.0154)
1 24+1 (28) 48.4 (86.3) 1.94 (4.00) 0.0402 (0.0464)
2 20+1 (23) 33.3 (51.8) 1.91 (4.00) 0.0574 (0.0773)
3 18+1 (20) 27.2 (37.0) 1.89 (4.00) 0.0694 (0.1081)

4 Numerical experiments

We present some numerical results for solving the Poisson’s equation on the unit
square with zero Dirichlet boundary conditions. We compare the performance of
RASHO/CG and AS/CG in terms of the number of iterations and the condition
numbers. We pay particular attention to the dependence on the number of
subdomains and the size of the overlap.

In order to use RASHO/CG, we need to modify the linear system by forcing
its modified solution to belong to Ṽδ. To do so, we use the formula (11). The
stopping condition for CG is to reduce the energy norm of the initial resid-
ual by a factor of 10−6. The exact solution of the equation is taken to be
u(x, y) = e5(x+y) sin(πx) sin(πy). All subdomain problems are solved exactly.
The iteration count (iter), the condition number (cond), the maximum (max)
and minimum (min) eigenvalues of the preconditioned matrix are summerized
in Table 1, and Table 2. It is clear that the newly introduced RASHO/CG is
always better than the classical AS/CG in terms of the iteration counts and
the condition numbers. Although we do not have any parallel results to re-
port at this point, we are confident that RASHO/CG would be even better
than AS/CG on a parallel computers with distributed memory since much less
communication is required.
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