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Summary. A parallel fully coupled one-level Newton-Krylov-Schwarz method
is investigated for solving the nonlinear system of algebraic equations arising
from the finite difference discretization of inverse elliptic problems. Both L2

and H1 least squares formulations are considered with the H1 regularization.
We show numerically that the preconditioned iterative method is optimally
scalable with respect to the problem size. The algorithm and our parallel
software perform well on machines with modest number of processors, even
when the level of noise is quite high.

1 Introduction

We consider an inverse elliptic problem [4]: Find ρ(x), such that

{

−∇ · (ρ∇u) = f, x ∈ Ω
u(x) = 0, x ∈ ∂Ω.

(1)

When the measurement of u(x) is given, denoted as z(x), the inverse problem
can be transformed into a minimization problem:

minimize J(ρ, u) =
1

2

∫

Ω

(u− z)2dx +
β

2

∫

Ω

|∇ρ|2dx, (2)

which is usually referred to as the “L2 least squares formulation”. When the
measurement of ∇u(x) is given, denoted as ∇z(x), the inverse problem can
be transformed into another minimization problem:

minimize J(q, v) =
1

2

∫

Ω

ρ |∇u−∇z|2dx +
β

2

∫

Ω

|∇ρ|2dx, (3)
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which is usually referred to as the “H1 least squares formulation”. Both mini-
mization problems (2) and (3) are subject to the constraint (1). We introduce
the Lagrangian functional

L(ρ, u, λ) =
1

2

∫

Ω

(u− z)2dx + ((∇λ, ρ∇u) − (λ, f)) +
β

2

∫

Ω

|∇ρ|2dx (4)

for the L2 case, and

L(ρ, u, λ) =
1

2

∫

Ω

ρ|∇u−∇z|2dx+((∇λ, ρ∇u)− (λ, f))+
β

2

∫

Ω

|∇ρ|2dx (5)

for the H1 case. The solution of both minimization problems can be obtained
by solving the corresponding saddle-point problem: Find (ρ, u, λ) such that

(∇ρL)p = 0, (∇uL)w = 0, and (∇λL)µ = 0 (6)

for any (p, w, µ). More explicitly, we can reduce (6) to






















−β∆ρ +∇u · ∇λ = 0

−∇ · (ρ∇λ) + (u− z) = 0

−∇ · (ρ∇u)− f = 0

(7)

in the L2 case. Similarly, in the H1 case, we have



























−β∆ρ +∇u · ∇λ +
1

2
|∇u −∇z|2 = 0

−∇ · (ρ∇λ) +∇ · (ρ∇z) + f = 0

−∇ · (ρ∇u)− f = 0.

(8)

Both systems share the same boundary conditions ∂ρ/∂n = 0, u = 0, λ = 0
on ∂Ω. The rest of the paper is devoted to a Newton-Krylov-Schwarz method
for solving the algebraic systems

F (U) = 0

arising from the finite difference discretization of (7) and (8) in a fully coupled
fashion.

2 Newton-Krylov-Schwarz method

The family of Newton-Krylov-Schwarz (NKS) methods ([1]) is a general-
purpose parallel algorithm for solving a system of nonlinear algebraic equa-
tions. NKS has three main components: an inexact Newton’s method for the
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nonlinear system; a Krylov subspace linear solver for the Jacobian systems
(restarted GMRES[5]); and a Schwarz type preconditioner [6]. We carry out
Newton iterations as following:

Uk+1 = Uk − λkJ(Uk)−1F (Uk), k = 0, 1, ... (9)

where U0 is an initial approximation to the solution and J(Uk) = F ′(Uk)
is the Jacobian at Uk, and λk is the steplength determined by a linesearch
procedure [3]. The inexactness of Newton’s method is reflected in the fact that
we do not solve the Jacobian system exactly. The accuracy of the Jacobian
solver is determined by some ηk ∈ [0, 1) and the condition

‖F (Uk) + J(Uk)sk‖ ≤ ηk‖F (Uk)‖. (10)

The vector sk is obtained by approximately solving the linear Jacobian system

J(Uk)M−1
k (Mksk) = −F (Uk),

where M−1
k is a one-level additive Schwarz right preconditioner. To formally

define M−1
k , we need to introduce a partition of Ω. We first partition the do-

main into non-overlapping substructures Ωl, l = 1, · · · , N . In order to obtain
an overlapping decomposition of the domain, we extend each subregion Ωl

to a larger region Ω′

l , i.e., Ωl ⊂ Ω′

l. Only simple box decomposition is con-
sidered in this paper – all subdomains Ωl and Ω′

l are rectangular and made
up of integral numbers of fine mesh cells. The size of Ωl is Hx ×Hy and the
size of Ω′

l is H ′

x × H ′

y, where the H ′s are chosen so that the overlap, ovlp,
is uniform in the number of fine mesh cells all around the perimeter, i.e.,
ovlp = (H ′

x − Hx)/2 = (H ′

y − Hy)/2 for interior subdomains. For boundary
subdomains, we simply cut off the part that is outside Ω.

On each extended subdomain Ω′

l , we construct a subdomain precondi-
tioner Bl, whose elements are extracted from the matrix J(Uk). Homogeneous
Dirichlet boundary conditions are used on the internal subdomain boundary
∂Ω′

l∩Ω, and the original boundary conditions are used on the physical bound-
ary, if present. The additive Schwarz preconditioner can be written as

M−1
k = I1B

−1
1 (I1)

T + · · ·+ INB−1
N (IN )T . (11)

Let n be the total number of mesh points, and n′

l the total number of mesh
points in Ω′

l , then Il is an 3n× 3n′

l extension matrix that extends each vector
defined on Ω′

l to a vector defined on the entire fine mesh by padding an
3n′

l × 3n′

l identity matrix with zero rows. The factor of 3 is included because
each mesh point has 3 unknowns.

3 Numerical experiments

We study the performance of the proposed algorithm using the following test
case with the observation function given as z(x, y) = sin(πx) sin(πy), Ω =
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(0, 1)× (0, 1), and the right-hand side f chosen so that the elliptic coefficient
to be identified is ρ = 1 + 100(xy(1 − x)(1 − y))2. To test the robustness of
the algorithms, we add some noise to the observation data as

zδ = z + δ rand(x, y) (12)

or
∇zδ = ∇z + δ (rand(x, y), rand(x, y))T , (13)

depending on if the formulation is L2 or H1. Here rand(x, y) defines a random
scalar function. δ is responsible for the magnitude of the noise. Results with
three different levels of noise (δ = 0%, 1% and 10%) will be presented. Since
u needs to satisfy the elliptic equation, we assume that u and ∇u have some
continuity and differentiability. Therefore, we smooth z in the L2 formulation
or ∇z in the H1 formulation before we start the Newton iteration. This is
necessary especially when the noise level is high. In particular, when the noise
level is 10%, we replace the value of z or ∇z by the average value around it
using the following weights

1
16

1
8

1
16

ց ↓ ւ
1
8 →

1
4 ←

1
8

ր ↑ տ
1
16

1
8

1
16

We repeat this operation 3 times in all the experiments when δ = 10%. No
smoothing is applied when δ is smaller than 10%.

To measure the accuracy of the algorithm, we assume the exact solution of
the test problem is known, and erroru and errorρ are the normalized discrete
L2 norms of the errors defined as

erroru =
√

∑

(uij − uexact
ij )2hxhy and errorρ =

√

∑

(ρij − ρexact
ij )2hxhy,

where hx and hy are mesh sizes along x and y directions, respectively.
In our experiments, we choose the stopping conditions as follows: The

relative residual is less than 10−6 or the absolute residual is less than 10−10

for the nonlinear system. The relative residual is less than 10−6 or the absolute
residual is less than 10−10 for each linear solve in the nonlinear iteration. In
Newton’s method, we use the initial guess

(ρ(0), u(0), λ(0))T = (1, z, 0)T

for the L2 formulation. For the H1 formulation, z is obtained as an integral
of ∇xz or ∇yz along the x or y direction from one of the boundary points. In
our experiments, at the mesh point (xi, yj),

z(xi, yj) = z(x0, yj) +

i
∑

l=1

(∇xz)|xl
hx



Domain Decomposition for Parameter Identification Problems 5

if we take the integral along the x direction, or a similar integral along the y
direction.

We first test three meshes 40 × 40, 80 × 80, and 160 × 160. When the
Jacobian systems are solved exactly with a Gaussian elimination, the total
number of Newton iterations ranges from 3 to 6, and the iteration numbers
are not sensitive to the level of noise, as shown in Table 1. The exact solution,
and the numerical solutions for both L2 and H1 formulations with 3 levels of
noise are shown in Fig.1.

We next look at the performance of the algorithm, in particular, we would
like to know how the convergence depends on the mesh size, the number of
subdomains, and the overlapping size. We solve the problem on a 320 × 320
mesh using different number of processors (np), and the results, in terms of
the iteration number and the total compute time, are in Table 2. The numbers
of Newton iterations do not change when we change the number of processors
or the overlapping size.

If we fix the number of subdomains, which is the same as the number of
processors, and increase the overlapping size, the number of GMRES iterations
decreases. The compute time decreases to a certain point and then begins to
increase. This suggests that an optimal overlapping size exists if the objective
is to minimize the total compute time when the number of processors is fixed.
On a fixed mesh the number of GMRES iterations increases as we use more
processors. This is expected since this is a single-level algorithm.

To check the h−scalability of the algorithm, we increase the mesh size
and the number of processors at the same ratio in order for each processor to
have the same number of mesh points. Table 3 shows the results with different
mesh sizes for np=4, 16 and 64. Both the number of Newton iterations and
the number of GMRES iterations are almost constants when the number of
processors is fixed.

4 Final remarks

We developed a fully parallel domain decomposition method for solving the
system of nonlinear equations arising from the fully coupled finite difference
discretization of some inverse elliptic problems. Traditionally this type of prob-
lems are solved by using Uzawa type of algorithms which split the system into
two or three subsystems and each subsystem is solved individually. Subitera-
tions are required between the subsystems. The subsystems are easier to solve
than the global coupled system, but the iterations between subsystems are se-
quential in nature. The focus of this paper was to investigate a fully coupled
approach without splitting the system into subsystems. Such an approach is
more parallel than the splitting method. We showed numerically that with a
powerful domain decomposition based preconditioner the convergence of the
iterative methods can be obtained even for some difficult cases when the ob-
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servation data has high level of noise. More details of the work will be included
in a forthcoming paper [2].

Table 1. Errors and the number of Newton iterations for three different meshes and
with different levels of noise.

erroru errorρ Newton

L2 formulation β = 10−6, δ = 0 0.000078 0.003163 3
40 × 40 β = 10−5, δ = 1% 0.000765 0.010723 3

β = 10−4, δ = 10% 0.008222 0.038667 3

L2 formulation β = 10−6, δ = 0 0.000073 0.003177 3
80 × 80 β = 10−5, δ = 1% 0.000532 0.010070 3

β = 10−4, δ = 10% 0.003849 0.029056 3

L2 formulation β = 10−6, δ = 0 0.000072 0.003203 3
160 × 160 β = 10−5, δ = 1% 0.000504 0.009908 3

β = 10−5, δ = 10% 0.002064 0.026190 4

H1 formulation β = 10−5, δ = 0 0.000362 0.001744 6
40 × 40 β = 10−5, δ = 1% 0.000355 0.006010 6

β = 10−4, δ = 10% 0.006980 0.022837 5

H1 formulation β = 10−5, δ = 0 0.000090 0.000406 4
80 × 80 β = 10−5, δ = 1% 0.000109 0.003842 4

β = 10−4, δ = 10% 0.001921 0.011741 4

H1 formulation β = 10−5, δ = 0 0.000023 0.000187 3
160 × 160 β = 10−5, δ = 1% 0.000030 0.002580 4

β = 10−4, δ = 10% 0.000473 0.007419 5
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Fig. 1. The top picture is the exact solution ρ. The following six pictures are the
numerical solution with δ = 0%, 1%, 10% on a 40 × 40 mesh. The left three are for
the L2 formulation and the right three are for the H1 formulation.
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Table 2. The total number of Newton and the average number of GMRES iterations
are shown below for a 320 × 320 mesh. The total compute time in seconds is in (·).

np Newton ovlp = 1 ovlp = 2 ovlp = 4 ovlp = 8 ovlp = 16

L2 formulation 1 3 1(374.33) 1(373.37) 1(375.98) 1(375.57) 1(374.62)

β = 10−6 4 3 46(108.93) 33(97.62) 18(80.87) 13(79.21) 8(80.46)
δ = 0% 16 3 66(32.43) 46(26.39) 34(23.92) 22(22.66) 14(26.75)

64 3 127(23.08) 92(19.22) 63(15.49) 42(14.83) 25(16.35)

L2 formulation 1 3 1(374.98) 1(374.23) 1(372.92) 1(372.35) 1(374.21)

β = 10−5 4 3 43(105.49) 26(86.60) 19(80.11) 14(79.02) 9(81.57)
δ = 1% 16 3 57(30.02) 45(25.89) 31(22.55) 22(23.44) 15(30.14)

64 3 134(24.71) 94(19.50) 62(15.28) 45(15.09) 25(15.79)

L2 formulation 1 5 1(623.39) 1(621.60) 1(627.58) 1(622.50) 1(629.40)

β = 10−5 4 6 61(260.45) 47(225.89) 27(182.45) 18(168.59) 12(172.45)
δ = 10% 16 6 110(97.01) 81(77.46) 59(67.06) 39(59.56) 24(70.57)

64 6 234(83.13) 162(62.44) 122(53.56) 78(45.28) 43(50.87)

H1 formulation 1 3 1(382.09) 1(381.11) 1(384.03) 1(382.27) 1(380.59)

β = 10−5 4 3 66(136.58) 41(106.42) 24(87.81) 17(84.60) 12(88.99)
δ = 0% 16 3 148(60.33) 96(43.64) 60(33.56) 37(30.11) 23(34.60)

64 3 290(47.59) 212(38.34) 121(27.61) 92(25.11) 55(27.08)

H1 formulation 1 4 1(505.06) 1(503.49) 1(501.99) 1(502.54) 1(504.08)

β = 10−5 4 4 53(158.88) 34(129.94) 20(110.25) 15(107.46) 10(111.08)
δ = 1% 16 4 110(63.29) 72(47.44) 47(38.10) 29(34.19) 20(40.42)

64 4 219(48.50) 142(35.01) 100(28.07) 58(22.82) 44(28.61)

H1 formulation 1 5 1(624.17) 1(629.97) 1(627.58) 1(629.90) 1(628.54)
β = 10−4 4 5 62(212.91) 47(178.81) 27(151.06) 18(139.06) 12(143.07)
δ = 10% 16 5 104(75.61) 82(65.45) 56(53.17) 36(47.70) 22(52.91)

64 5 221(60.96) 161(49.38) 122(41.46) 71(33.36) 52(38.88)

Table 3. Newton and GMRES iteration numbers are shown below for three different
meshes. The compute time in seconds is in (·). ovlp is 1/5 of the diameter of the
subdomain.

np Newton GMRES Newton GMRES Newton GMRES

80 × 80 mesh 160 × 160 mesh 320 × 320 mesh

L2 formulation 4 3 6(2.62) 3 6(14.72) 3 6(100.44)

β = 10−6 16 3 14(2.48) 3 14(6.33) 3 14(26.75)
δ = 0% 64 3 38(5.73) 3 40(7.28) 3 42(14.83)

L2 formulation 4 3 7(2.41) 3 7(14.22) 3 6(100.23)

β = 10−5 16 3 17(2.82) 3 16(6.60) 3 15(30.14)
δ = 1% 64 3 47(6.74) 3 45(7.68) 3 45(15.09)

L2 formulation 4 3 9(3.03) 3 8(15.79) 3 8(100.47)
β = 10−4 16 3 24(3.65) 3 23(8.02) 3 22(34.35)
δ = 10% 64 3 75(10.41) 3 72(11.47) 3 66(20.66)

H1 formulation 4 4 8(3.43) 3 8(1.54) 3 8(106.40)
β = 10−5 16 4 22(4.04) 3 24(7.47) 3 23(34.60)
δ = 0% 64 4 77(12.68) 3 81(12.14) 3 92(25.11)

H1 formulation 4 4 8(3.43) 4 8(20.69) 4 7(131.44)
β = 10−5 16 4 22(4.17) 4 19(9.25) 4 20(40.42)
δ = 1% 64 4 73(11.90) 4 75(11.89) 4 58(22.82)

H1 formulation 4 4 8(3.85) 5 8(26.33) 5 8(163.20)

β = 10−4 16 4 22(4.23) 5 21(12.14) 5 22(52.91)
δ = 10% 64 4 71(11.71) 5 69(16.88) 5 71(33.36)


