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1 Introduction

Newton-Krylov-Schwarz algorithms have been used in many areas and are
often quite scalable and robust. In this paper we explore the application of
Schwarz type domain decomposition preconditioners to some fully coupled
systems for fluid-structure interaction. In particular, we are interested in de-
veloping a scalable parallel framework for the simulation of blood flow in hu-
man arteries [11]. In [2, 3], coupled fluid-structure problems are solved in 3D
for patient-specific artery models, with emphasis on accurately representing
vessel geometry, on constitutive model for the artery walls, and other physical
concerns. In this paper we focus on a class of parallel domain decomposition
algorithms for solving the coupled systems and report on the robustness and
parallel scalability of the algorithms.

Very often in the simulation of fluid-structure interaction, fluid and struc-
ture are iteratively coupled, as in [4, 5, 7]. That is, fluid and structure sub-
problems are solved alternately (or in parallel), passing boundary conditions
between them, until the solutions are compatible at the fluid-structure inter-
face, and then the simulation proceeds to the next time step. However, this
approach often requires small timesteps, can become unstable, and can reduce
the order of accuracy of the solution [8]. In contrast, we use fully monolithic
coupling, where the fluid and the structure are solved together as one system.

2 Governing Equations

We use a linear elastic model for the structure. The primary variable in the
structure equations is the displacement vector xs. Define σs as the stress-strain
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relation or Cauchy stress tensor

σs = λs(∇ · xs)I + 2µs(∇xs +∇xT
s )

where λs and µs are the Lamé constants. The equilibrium equation for linear
elasticity is

ρs
∂2xs

∂t2
= ∇ · σs + fs. (1)

We fix the structure displacement xs = 0 on the dry, non-interaction boundary
ΓS ; the boundary conditions on the fluid-structure interaction boundary Γw

will be presented when we discuss the fluid-structure coupling.
The mesh points of our fluid domain move, and the displacements of the

mesh nodes from their original reference configuration define a separate field
that we need to represent. For the grid displacements xf , we simply use the
Laplace equation

∆xf = 0 (2)
in the interior of the domain, following [9]. In our numerical simulations this
simple relation gives a smooth grid as the boundaries of the domain move,
rarely causing problems with ill-conditioned elements. The boundary condi-
tions for this field are either fixed zero Dirichlet conditions (at the inlet and
outlet of the fluid domain) or are prescribed to follow the movement of the
structure.

We model blood as a viscous incompressible Newtonian fluid, using the
Navier-Stokes equations written in the ALE frame

∂uf

∂t

∣∣∣∣
Y

+ [(uf − ωg) · ∇]uf +
1
ρf
∇p = νf∆uf , (3)

∇ · uf = 0. (4)

Here uf is the fluid velocity vector and p is the pressure. The given data
include the fluid density ρf , and νf = µf/ρf , the kinematic viscosity. External
body forces are ignored. Also, ωg = ∂xf/∂t is the velocity of the moving mesh
in the ALE frame and the Y indicates that the time derivative is to be taken
with respect to the ALE coordinates, not the Eulerian coordinates [9].

Boundary conditions for the fluid equations consist of a no-slip condition
uf = 0 at rigid walls Γf , a Dirichlet condition where uf takes a given profile
at the inlet Γi, and a zero traction condition

σf · n = µf (∇uf · n)− pn = 0 (5)

on the outlet Γo, where σf is the Cauchy stress tensor for the fluid and n is
the unit outward normal.

At the fluid-structure interface we require that the structure velocity match
the fluid velocity uf = ∂xs/∂t and we also enforce that the moving mesh
must follow the solid movement xf = xs, so that the solid can maintain a
Lagrangian description. The coupling of traction forces at the boundary can
be written σs · n = σf · n where n is the unit normal vector at the fluid-solid
interface.
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3 Spatial Discretization

Because of space constraints, we omit the full derivation of the weak form of
the governing equations. We note two interesting points here. First, because
of our moving grid, the variational spaces in which we seek a solution to the
fluid subproblem are time-dependent. Second, the variational spaces associ-
ated with the fluid subproblem and the mesh subproblem depend implicitly
on the current solution to the structure subproblem, as this solution provides
essential boundary conditions for the fluid and mesh subproblems.

The spatial discretization is done with quadrilateral finite elements, with
a conforming discretization at the fluid-structure interface, so that no spe-
cial interpolation scheme is necessary to move information between fluid and
structure.

We write the structure displacement vector xs as xs ≈
∑

j φj(x)xj(t) and
denote the vector of coefficients xj as xs. Using this approximation, we arrive
at the semi-discrete system

Ms
∂2xs

∂t2
+ Cs

∂xs

∂t
+ Ksxs = F (6)

where Cs = αMs + βKs is an added Rayleigh damping matrix where α and
β are small parameters; typically α ≈ 0.1 and β ≈ 0.01 [6].

We use biquadratic quadrilateral finite elements in our ALE discretization
of the moving mesh. We approximate xf ≈

∑
j ξj(x)xj(t). This is a standard

finite-element discretization of the Laplace equation resulting in Kmxf = 0
with boundary conditions that depend on the structure subproblem.

The fluid is discretized with the LBB-stable Q2 − Q1 finite elements.
Using finite-dimensional approximations uf ≈ ∑

j φj(x, t)uj(t) and p ≈∑
j ψj(x, t)pj(t) we can write the semi-discrete Navier-Stokes equations in

the ALE frame as

Mf
∂u

∂t
+ B(u)u + Kfu−QT p = Mff, (7)

Qu = 0 (8)

where Mf is a mass matrix, B(u) represents the nonlinear convective operator,
Kf is the discrete Laplacian, and Q is the discrete divergence operator.

The mesh displacement continuity and velocity continuity conditions are
enforced directly at each timestep; we replace rows of the matrix corresponding
to these degrees of freedom with rows representing the equations xs = xf , and
similarly for the velocity. We also need to discretize the traction force that
the fluid exerts on the solid boundary, namely σf ·n = µf (∇uf ·n)− pn. The
result has block matrix form

σf · n =
(

Auu Auv Aup

Avu Avv Avp

) 


uf

vf

p


 = (Au Ap)

(
u
p

)
. (9)
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This will be inserted as a force in the discrete form of the structure equations
to enforce the traction matching condition at the fluid-structure interface.

4 Temporal Discretization

We use the trapezoid rule yn+1 = yn +(∆t/2)
(
fn+1 + fn

)
which is a second-

order accurate implicit scheme for all our time discretization.
For the structure time-stepping, we follow [6] in implementing the trape-

zoid rule by reducing the order of (6) from second order to first order.
Our new vector of unknowns includes both solid displacement and velocity,
y = (xs, ∂xs/∂t)T . Then

∂y

∂t
= f(y, t) =




∂xs

∂t

M−1(F (t)−Ksxs − Cs
∂xs

∂t
)


 .

The trapezoid rule for this differential algebraic equation can be written

Myn+1 = Myn +
∆t

2
[
Kyn+1 + Kyn + Fn+1 + Fn

]

where

M =
(

I
Ms

)
, K =

(
I

−Ks −Cs

)
.

The moving mesh, like the continuity equation for the fluid, is enforced
independent of time. So we simply require

Kmxn+1
f = 0

at each time step.
Rescaling pressure by the timestep ∆t, we apply a slightly modified version

of the trapezoid rule to (7) to get

Mun+1 = Mun +
1
2

[
(S + ∆tRn+1)un+1 + (S + ∆tRn)un

]

where

M =
(

Mf 0
0 0

)
, Rn =

(−B(un)−Kf 0
0 0

)
, S =

(
0 −QT

Q 0

)
.

We use the same time-stepping scheme for fluid and structure, so we can
simply put the discretized fluid and structure problems together in one system
with coupling enforced implicitly. In summary, we have

(M + W )yn+1 −Myn − ∆t

2
(Kyn+1 + Kyn)− ∆t

2
(Fn+1 + Fn) = 0 (10)
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where

yn =




un

∆tpn

xn
f

xn
s

ẋs
n




, M =




Mf

I
Ms




,

W =




Km

Au Ap




, K =




−B −Kf −(1/∆t)QT

(1/∆t)Q

I
−Ks −Cs




.

Though written in matrix form, many of the operators above are nonlinear.
In particular the B term depends on uf , and the Kf ,Mf and Q terms depend
on the moving mesh xf . This implies that we have a Jacobian of the form

J =




Jf −QT Zm

Q Zc

Km

Au Ap I −(∆t/2)I
(∆t/2)Ks Ms + (∆t/2)Cs




(11)

where Jf is the Jacobian of the nonlinear term in the momentum equation
and Zm and Zc are the nonlinear contributions of the moving mesh to the mo-
mentum and continuity equations. The form of Zm and Zc are unknown, and
our implementation of the Jacobian simply ignores them, which is a reason-
able approximation as long as the mesh movement is slow, i.e., the timestep
is sufficiently small.

5 Solving the Nonlinear System

At each timestep, we solve the nonlinear system (10) with an inexact Newton
method with line search. At each Newton step we solve a preconditioned linear
system of the form J(y)M−1(Ms) = z for the Newton correction s, where
M−1 is a one-level additive Schwarz preconditioner [10, 12, 13]. In this domain
decomposition preconditioner, the formation of subdomains does not consider
the fluid-structure boundary, so that a subdomain may contain fluid elements,
structure elements, or both. Subdomain solves are done by LU factorization
with homogeneous Dirichlet boundary conditions on the boundaries for all
solution variables, including the fluid pressure.

In practice, we order the unknowns for the Jacobian system not by field
ordering as in (11), but by element ordering. The choice of ordering can have
significant effect on the convergence properties of the solver. By this choice, the
nonzero-block structure is banded. That is, within each element the unknowns
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are ordered as in (11), but globally the matrix looks like the nine-point stencil
for a Poisson equation.

6 Numerical Results

Our solver is implemented using PETSc [1]. All computations are performed
on an IBM BlueGene/L supercomputer at the National Center for Atmo-
spheric Research with 1024 compute nodes.

We begin all our simulations with zero initial conditions for structure dis-
placement and fluid velocity, therefore compatibility between fluid and struc-
ture is easily satisfied in the initial conditions. In all the numerical results in
this paper, we use a timestep ∆t = 0.01, a Young’s modulus E = 1.0 · 105, we
stop the linear solver when the preconditioned residual has decreased by a fac-
tor of 10−4 and we stop the Newton iteration when the nonlinear residual has
decreased by a factor of 10−6. We set GMRES to restart every 40 iterations,
and have the structural damping parameters α = 0.1, β = 0.01. Simulations
begin with zero initial conditions and proceed 10 timesteps, reporting average
walltime and nonlinear iteration count per timestep, and average GMRES
iterations per Newton step.

Our fluid-structure interaction simulations can deal with large deforma-
tions of the computational grid without the quality of the mesh degrading and
without affecting convergence, and we maintain sufficient spatial resolution to
resolve vortices and other interesting flow features.

The scalability of our algorithm is presented in Table 1. Our method scales
well with respect to number of processors and scales fairly well with respect to
problem size. It is also worth noting the large grid sizes and processor counts
that we have used with success. The growth in GMRES iterations for large
processor counts suggests that the less than perfect speedup could probably
be improved by use of a multilevel preconditioner.

Our simulation is also robust with respect to physical parameters. In Table
2a, we show numerical results for various Reynolds numbers. Many blood flow
simulations, for example [2], use Reynolds numbers in the range 30–100, but
we can exceed that without much difficulty. As the Poisson ratio νs approaches
1/2 the structure becomes incompressible and the structure problem becomes
more numerically challenging; our solver is fairly robust also in this respect
(results not shown). In some FSI methods, the case where fluid and structure
densities are nearly equal is particularly difficult. Our monolithic coupling
avoids this difficulty, see Table 2b.

7 Conclusion

Accurate modeling of blood flow in compliant arteries is a computational chal-
lenge. In order to meet this challenge, we need not only to model the physics
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unknowns np GMRES Newton time

64 9.3 5.0 123.44
1.0 · 106 128 13.4 5.0 57.11

256 18.2 5.0 36.41
512 24.0 5.0 22.08

128 17.5 4.8 125.31
256 21.5 4.8 66.11

2.1 · 106 512 29.7 4.8 39.97
1024 35.9 4.8 22.90
2048 40.0 4.8 17.25

128 15.1 4.7 198.34
256 20.1 4.7 100.23

2.6 · 106 512 29.3 4.7 46.50
1024 40.0 4.7 28.11
2048 48.6 4.7 21.10

Table 1. Speedup and scalability. In this table ASM overlap δ = 2, Reynolds number
= 132.02, νs = 0.30

ρs ρf GMRES Newton

10−6 10−6 57.8 2.5
10−6 10−3 41.1 3.8
10−6 1.0 7.3 5.6
10−6 10.0 5.8 7.9

1.0 10−6 59.0 2.3
1.0 10−3 40.5 3.7
1.0 1.0 7.5 5.4
1.0 10.0 5.8 7.9

106 10−6 60.4 2.4
106 10−3 64.7 2.3
106 1.0 24.6 4.0
106 10.0 11.0 4.2

unknowns Re GMRES Newton

33.00 12.0 4.8
66.01 12.1 4.8

2.1 · 106 132.02 12.2 4.8
264.03 12.5 4.8
1056.12 12.7 10.0

33.00 12.9 4.7
66.01 13.1 4.7

2.6 · 106 132.02 13.5 4.7
264.03 13.5 4.7
1056.12 13.7 9.9

Table 2. (a) Sensitivity of algorithm to various fluid densities (ρf ) and solid densities
(ρs); these problems have 6.5 ·105 unknowns and tests are done with 128 processors.
(b) Sensitivity to Reynolds number with 256 processors. In both (a) and (b) ASM
overlap δ = 8 and νs = 0.30

accurately but also to develop scalable algorithms for parallel computing. In
this paper we develop a Newton-Krylov-Schwarz solver that scales well in
parallel and is effective for solving the implicitly coupled fluid-structure inter-
action problem. Our method is quite robust with respect to different vessel
geometries, Reynolds numbers, Poisson ratios, densities, spatial mesh sizes
and time step sizes.
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