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a b s t r a c t

In this paper we develop a parallel multilevel domain decomposition method for
large-scale source identification problems governed by elliptic equations. A popular
approach is to formulate the inverse problem as a PDE-constrained optimization prob-
lem. The minima satisfies a Karush–Kuhn–Tucker (KKT) system consisting of the state,
adjoint and source equations which is rather difficult to solve on parallel computers.
We propose and study a parallel method that decomposes the optimization problem
on the global domain into subproblems on overlapping subdomains, each subdomain
is further decomposed to form an additive Schwarz preconditioner for solving these
smaller subproblems simultaneously with a preconditioned Krylov subspace method. For
each subproblem, the overlapping part of the solution is discarded and the remaining
non-overlapping part of the solution is put together to obtain an approximated global
solution to the inverse problem. Since all the subproblems are solved independently,
the multilevel domain decomposition method has the advantage of higher degree of
parallelism. Numerical experiments show that the algorithm is accurate in terms of the
reconstruction error and has reasonably good speedup in terms of the computing time.
The efficiency and robustness of the proposed approach on a parallel computer with
more than 1, 000 processors are reported.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

We consider the source identification problem governed by elliptic equations. The problem can be described as
dentifying the source function by using some given measurements of the solution of the elliptic problem. Such problems
ppear in many scientific and engineering applications such as identifying the source of electrostatic potential [1],
he illegal wells in seawater intrusion phenomenon [2], the optical energy absorption distribution in photoacoustic
omography [3], etc. Several algorithms for source identification problems are available [4–10]. For example, in [7]
sing Green’s function, the location and intensity of the point sources are reconstructed from scattered boundary
easurements. In [9] an alternative iterative correction algorithm is introduced to compute the source in a domain with

ull or partial boundary data. Moreover, a rational approximation method in [8] and a method of gradient descent and a
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trust-region-reflective algorithm in [10] are developed to detect the location, size and shape of hidden sources within a
body using measurements on external boundaries. In [6] a reduced space approach is developed for piecewise constant
sources with different amount of observation data, where the associated Hessian problem is solved by a preconditioned
conjugate gradient algorithm. When it comes to determine a general source function, such as the harmonic source [6], or
the Gaussian source(s) [5], it usually requires measurements inside the domain and the measurement on the boundary
alone is not enough. In [11,12], an algorithmic framework for recovering a general source function is introduced in which
the inverse problem is described as a PDE-constrained optimization problem and then solved by a Tikhonov regularization
method.

Existing parallel algorithms for solving PDE-constrained optimization problems often focus on developing efficient
arallel solvers for the first-order optimality condition, namely the Karush–Kuhn–Tucker (KKT) system consisting of the
tate equation, the adjoint equation and the source equation. The coupled system of the three equations can be solved
ither in a three-step sequential iteration [4,13] or simultaneously [14–16]. For example, in [13] for the reconstruction
f the medium profile of heterogeneous semi-infinite domains, at each iteration of a conjugate gradient method the
tate, adjoint and target variables are updated sequentially. In [16] for a distributed Stokes control problem, the KKT
ystem is solved with a preconditioned all-at-once multigrid method. For both methods, the linear systems discretized
rom the KKT system are large, sparse and ill-conditioned, preconditioning techniques are necessary. In the three-step
equential approaches, three separate parallel preconditioners are applied when solving each of the three equations,
owever for the all-at-once method, a global preconditioner should be computed for the fully-coupled KKT system. The
ll-at-once method offers higher degree of parallelism, but usually costs more effort per iteration in terms of forming and
pplying the preconditioner. Parallel preconditioners include Jacobi or block Jacobi preconditioner, incomplete LU or SOR
reconditioner, and the domain decomposition ones such as the additive or multiplicative Schwarz preconditioner and so
n [17]. Among these preconditioners, the Schwarz preconditioner is quite suitable for parallel processing, and has been
idely applied in PDE-related engineering problems such as the simulation of two-phase flows in porous media [18], the

arge eddy simulation of high speed trains [19] or the neutron transport criticality calculations [20].
As we know, the scalability of any one-level domain decomposition method deteriorates with increasing number of

rocessors [21], multilevel methods are necessary when the number of processors increases [22–25]. In this paper we
ropose and study a parallel multilevel domain decomposition method to avoid solving the large KKT system and further
educe the global communication for solving the general source inverse problem. We briefly mention our motivation here.
uppose f (x), x ∈ Ω , is the source function to be determined on the domain Ω and the measurements are available at
ome points in Ω . Let us assume that Ω has two subdomains Ω1 ⊂ Ω and Ω2 ⊂ Ω , and correspondingly we have
1(x) defined on Ω1 and f2(x) defined on Ω2. In the classical approach, the inverse problem is formulated as a single
ptimization problem over Ω . As a result, f1(x) and f2(x) would be coupled in a single system. However, in our new
pproach, f1(x) and f2(x) can be recovered independently if Ω1 and Ω2 do not overlap. Based on this observation, we
ropose a domain decomposition method which divide the original optimization problem into smaller subproblems, and
he smaller KKT systems corresponding to these subproblems are solved all-at-once independently and simultaneously
n the subdomains. Then the solutions of all subdomains are appropriately glued together to form a global solution. A
imilar idea was used successfully for the denoising of images in [26]. The feasibility of the proposed approach is analyzed
ere for the continuous formulation of the source inversion problem. Numerical experiments are provided to illustrate
he efficiency of the method.

The rest of the paper is arranged as follows: Section 2 first shows the framework of the Tikhonov regularization method,
nd then the multilevel domain decomposition method is proposed; Section 3 provides some analysis of the existence and
ell-posedness of the reconstructed solution for the multilevel domain decomposition method; three numerical examples
re shown in Section 4 to test the reconstruction effect and the algorithm efficiency. Some conclusions are drawn in
ection 5.

. The multilevel domain decomposition method

We consider the general source inversion problem associated with a variable-coefficient elliptic equation defined on
n open, bounded and simply connected domain Ω ∈ R2 with Lipschitz boundary ∂Ω ,{

−∇ · (a(x)∇u(x)) = f (x), x ∈ Ω

u(x) = p(x), x ∈ ∂Ω,
(1)

here a(x) ∈ L∞(Ω) and 0 < a1 ≤ a(x) ≤ a2, f (x) denotes the source function to be recovered, and p(x) is a given
mooth function for the Dirichlet boundary condition. Many numerical methods are available for solving the forward
roblem [27–30]. The inverse source identification problem is to recover f (x) in (1) using some given measurement data
ϵ(x) of u(x) (ϵ denotes the noise level) at some locations in Ω .
2
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2.1. The Tikhonov regularization method

We briefly recall the Tikhonov regularization method which reformulates the inverse problem as an output least-square
ptimization problem with a regularization term to ensure the well-posedness of the resulting optimization problem [31].
he objective functional with Tikhonov regularization for the inverse source identification problem reads as: Find f that
inimizes

J(f ) =
1
2

∫
Ω

(u(x) − uϵ(x))2 dx + Nβ (f ), (2)

where uϵ(x) ∈ L2(Ω), Nβ (f ) is the Tikhonov regularization appropriately chosen by prior information, such as L2 or
1 regularization for continuous source functions or bounded variation regularization for discontinuous sources. For
implicity here we use the following H1 regularization:

Nβ (f ) =
β

2

∫
Ω

|∇f |2dx, (3)

with β being the regularization parameter. The admissible function space for the unknown source function f on Ω is
defined as MΩ :

f ∈ MΩ = {f |f ∈ H−1(Ω) and |f |1,Ω < ∞}. (4)

Now the inverse source identification problem is equivalent to solving the following optimization problem P with a PDE
constraint (1):

P : Min
f

J(f ),

subject to (u, f ) satisfying (1).
(5)

By introducing a Lagrange multiplier or an adjoint function v, we define the following Lagrange functional for (2):

J (u, f , v) = J(f ) + (v, Lu − f ), (6)

where L denotes the elliptic operator of (1), (·, ·) is the L2 inner product. The optimization problem (5) is then transformed
into solving an unconstrained optimization problem with the objective functional (6). By computing the Fréchet derivative
with respect to the three variables and integrating by parts, a minima of (6) should satisfy the following weak KKT
optimality system: ∀φ,ψ ∈ H1

0 (Ω), ω ∈ H1(Ω), finding u, f ∈ H1(Ω), v ∈ H1
0 (Ω) such that⎧⎨⎩

(a(x)∇u(x),∇φ) = (f (x), φ), x ∈ Ω

(a(x)∇v(x),∇ψ) + (u(x), ψ) = (uϵ(x), ψ), x ∈ Ω

−(v(x), ω) + β(∇f (x),∇ω) = 0, x ∈ Ω.

(7)

We remark that the computational cost of solving the fully-coupled KKT system (7) can be tremendous. To avoid solving
such a large linear system, we propose a parallel domain decomposition algorithm which divides the original optimization
problem into several smaller subproblems and then solve these subproblems in parallel.

2.2. A multilevel domain decomposition method

Firstly, we divide the domain Ω into m1 smaller non-overlapping subdomains Ω1,Ω2, . . . ,Ωm1 , see Fig. 1 for a sample
decomposition of Ω .

Using the decomposition of Ω , the objective functional of (5) can be decomposed as

J(f ) =
1
2

∫
Ω

(u(x) − uϵ(x))2 dx +
β

2

∫
Ω

|∇f |2dx

=

m1∑
i=1

{
1
2

∫
Ωi

(u(x) − uϵ(x))2 dx +
β

2

∫
Ωi

|∇f |2dx
}
.

The question is if we can decompose the optimization problem (5) into smaller problems defined on Ωi, i =

1, 2, . . . ,m1. The PDE constraint is satisfied on all subdomains, but an obvious issue is the boundary conditions of the
PDE are not always available. Note that after the partition, the boundary of each subdomain Ωi consists of two types
of boundaries: the actual boundary of Ω , denoted by ∂Ω and the artificial boundary generated by the decomposition,
denoted by Γi as shown in Fig. 1. At these artificial boundaries Γi, appropriate boundary conditions are needed. A natural
idea is to use homogeneous boundary conditions, but then we cannot obtain the global solution by combining the solution
on each Ωi. To overcome this problem, we introduce an overlapping decomposition of Ω by extending each Ωi outward
y a layer of size δ > 0, and the overlapping subdomains are denoted by Ω ′

1,Ω
′

2, . . . ,Ω
′
m1

. By choosing appropriate
overlapping size, after each subproblem is solved on Ω ′, we cut off all the parts of solution in the overlapping region
i

3
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Fig. 1. The domain decomposition of Ω .

Fig. 2. The first-level overlapping domain decomposition of Ω into Ω ′

i , i = 1, . . . ,m1 .

′

i\Ωi and glue the parts of solution on Ωi, i = 1, . . . ,m1 together to form an approximate solution of the original
roblem P . An overlapping version of the domain decomposition is shown in Fig. 2.
With the overlapping domain decomposition, we define an objective functional for each Ω ′

i

Ji(fi) =
1
2

∫
Ω ′

i

(ui(x) − uϵ(x))2 dx +
β

2

∫
Ω ′

i

|∇fi|2dx, (8)

here ui and fi satisfy the following constraint⎧⎨⎩
−∇ · (a(x)∇ui(x)) = fi(x), x ∈ Ω ′

i
ui(x) = p(x), x ∈ ∂Ω ′

i ∩ ∂Ω

ui(x) = 0, x ∈ Γ ′

i .

(9)

he subproblems P ′

i on Ω
′

i , i = 1, 2, . . . ,m1, are defined as:

P ′

i : Min
fi

Ji(fi),

subject to (ui, fi) satisfying (9).
(10)

o solve the optimization problem P ′

i , we construct and solve the following KKT system: Find ui, fi ∈ H1(Ω ′

i ), vi ∈ H1
0 (Ω

′

i )

⎧⎨⎩
(a(x)∇ui(x),∇φ) = (fi(x), φ), x ∈ Ω ′

i
(a(x)∇vi(x),∇ψ) + (ui(x), ψ) = (uϵ(x), ψ), x ∈ Ω ′

i
′

(11)

−(vi(x), ω) + β(∇fi(x),∇ω) = 0, x ∈ Ωi

4
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Fig. 3. The second-level overlapping domain decomposition inside each subdomain Ω ′

i into Ω ′

ij , i = 1, . . . ,m1 , j = 1, . . . ,m2 .

φ,ψ ∈ H1
0 (Ω

′

i ), ω ∈ H1(Ω ′

i ). The boundary conditions for the state variable (i.e. ui) are given by (9). By the arbitrariness
f ψ , the boundary condition for vi has to be:

vi(x) = 0, x ∈ ∂Ω ′

i .

imilarly using the arbitrariness of ω, we obtain the homogeneous Neumann boundary condition for fi as:

∂ fi
∂n

= 0 for x ∈ ∂Ω ′

i .

.3. A parallel domain decomposition based finite element solver

In this section we introduce a parallel domain decomposition based finite element method for solving (11). Each
ubdomain Ω ′

i , i = 1, . . . ,m1 is partitioned into quasi-uniform conforming triangular elements denoted by T h
i , with

h being the element size. On T h
i we define a piecewise linear continuous finite element space V h

i , and its subspace V̊ h
i

ith zero trace on ∂Ω ′

i . Let π
h be the finite element interpolation associated with V h

i , then (11) is transformed into the
ollowing discrete problem: Find uh

i , f
h
i ∈ V h

i , v
h
i ∈ V̊ h

i , such that uh
i = πhp(x) on ∂Ω ′

i ∩ ∂Ω , uh
i = πh0 on Γ ′

i , and⎧⎨⎩
(a(x)∇uh

i (x),∇φ
h) = (f hi (x), φ

h), x ∈ Ω ′

i
(a(x)∇vhi (x),∇ψ

h) + (uh
i (x), ψ

h) = (uϵ,h(x), ψh), x ∈ Ω ′

i
−(vhi (x), ω

h) + β(∇f hi (x),∇ω
h) = 0, x ∈ Ω ′

i ,

(12)

or all φh, ψh
∈ V̊ h

i and ωh
∈ V h

i . The discrete form of (12) is denoted as

KiUi = Bi, (13)

here Ki is the fully coupled finite element stiffness matrix, and Ui is the collections of unknowns with the three variables
n the same node arranged together as follows

Ui = (u1
i , v

1
i , f

1
i , . . . , u

j
i, v

j
i, f

j
i , . . . , u

Ni
i , v

Ni
i , f

Ni
i ),

here Ni is the number of nodes, and Bi is the corresponding right-hand side vector.
We apply a Krylov subspace method with a right Schwarz preconditioner to solve the system (13). More precisely

peaking, to find Ui, we solve

KiM−1
i U ′

i = Bi, Ui = M−1
i U ′

i .

o construct the Schwarz preconditionerM−1
i , a second level of overlapping domain decomposition inside each subdomain

′

i , i = 1, 2, . . . ,m1 is performed. See Fig. 3 for an example.
Suppose Ω ′

i is decomposed into m2 overlapping subdomains, the restricted additive Schwarz preconditioner (RAS) [32]
f Ki, denoted by M−1

i , can be constructed as follows:

M−1
i =

m2∑
(Rτij)

T K̃−1
ij R0

ij, (14)

j=1

5
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where (Rτij)
T denotes the restriction matrix fromΩ ′

i to the subdomainΩ ′

ij (τ being the overlapping size) and the transpose
of the restriction matrix without overlap (denoted by R0

ij) is used as the interpolation matrix, K̃−1
ij is the approximate

inverse of the subproblem corresponding to the subdomain Ω ′

ij.
In the parallel implementation of the algorithm, each problem associated with a Ω ′

ij, i = 1, . . . ,m1, j = 1, . . . ,m2
is allocated to a processor, the total number of processor cores that we need is np = m1m2. The advantage of the
proposed algorithm lies in two aspects. Firstly the multilevel domain decomposition method has no communication cost
between adjacent subdomains Ω ′

i and Ω ′

k (i ̸= k), parallel communication only happens inside each subdomain Ω ′

i . The
subproblems on Ω ′

i , i = 1, . . . ,m1 are independent of each other and thus can be solved in parallel. It is noted that
if the scale of the subproblem P ′

i is small enough to be computed by one processor, then the second level of domain
decomposition is not necessary. Secondly if the available number of processors np < m1m2, the proposed algorithm is
still possible to implement. We divide the np processor cores into at most m (m < m1) groups, with each group assigned
with m2 processors. Then m subproblems are treated as a batch and solved at a time until all the subproblems are solved.
The strategy enables us to flexibly handle large-scale problems.

3. Error analysis

In this section, we show the existence of a minimizer to the optimization problem (10) and the error estimate between
the solutions of (10) and the solution of the global optimization problem (5). From the standard elliptic theory we know
that there exists a unique weak solution to (1), and the solution satisfies:

Lemma 3.1. The weak solution of the elliptic equation (1) satisfies the following estimate:

∥u∥1,Ω ≤
C
a1

∥f ∥−1,Ω +

(
Ca2
a1

+ 1
)

∥p∥ 1
2 ,∂Ω

(15)

here C is a positive constant and a1 and a2 are upper and lower bounds of the diffusion coefficient a(x).

The detailed proof of this lemma is given in the appendix. Next we show the existence of a minimizer to the
optimization problem (10).

Theorem 3.2. There exists a minimizer to the optimization problem (10) on each subdomain Ω ′

i .

Proof of Theorem 3.2. Using a similar proof of Lemma 3.1 we see that the solution ui of (9) is bounded in H1(Ω ′

i ). Let fi
e the right-hand side of (9), and f ni ∈ H1(Ω ′

i ) be a sequence that converges to fi. Assuming that un
i is the corresponding

olution of (9) for each f ni , we can extract a weakly convergent sequence, still denoted by un
i , such that un

i ⇀ u∗

i as n → ∞.
elow we show u∗

i = ui. Since

(a(x)∇un
i ,∇φ) = (f ni , φ), ∀φ ∈ H1

0 (Ω
′

i )
(a(x)∇u∗

i ,∇φ) − (fi, φ) = −(a(x)∇(un
i − u∗

i ),∇φ) + (f ni − fi, φ),

y the weak convergence of un
i , the assumed convergence on f ni and the Cauchy–Schwarz inequality, the right-hand side

oes to zero as n → ∞. So we obtain the following equation,

(a(x)∇u∗

i ,∇φ) = (fi, φ), ∀φ ∈ H1
0 (Ω

′

i ),

hich implies u∗

i = ui.
In the optimization functional of (10), the first data-fitting term of Ji(fi) satisfies∫

Ω ′
i

(un
i − uϵ)2dx =

∫
Ω ′

i

(
un
i − ui + ui − uϵ

)2 dx,
=

∫
Ω ′

i

(
un
i − ui

)2 dx + 2
∫
Ω ′

i

(
un
i − ui

)
(ui − uϵ) dx

+

∫
Ω ′

i

(ui − uϵ)2 dx

≡: R1
n + R2

n + R3.

y Rellich’s theorem (cf. [33], pages 288–291) that H1(Ω ′

i ) ⋐ L2(Ω ′

i ), there exists a subsequence of un
i , still denoted by un

i ,
onverges strongly to ui in L2(Ω ′

i ), so R1
n vanishes as n → ∞. The second term R2

n goes to zero by the Cauchy–Schwarz
nequality, thus we have

lim
n→∞

∫
′

(un
i − uϵ)2dx =

∫
′

(ui − uϵ)2dx. (16)

Ωi Ωi

6
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By the boundedness of ui, the optimization functional Ji(fi) in (10) is finite over the admissible set defined on Ω ′

i by (4),
denoted by MΩ ′

i
. There exists a minimizing sequence f ni such that

lim
n→∞

Ji(f ni ) = Min
fi∈MΩ′

i

Ji(fi).

Since Nβ (f ni ) is bounded by the definition of Ji(fi), there exists a subsequence, still denoted by f ni , with f ni → f ∗

i in L2(Ω ′

i )
and f ∗

i ∈ MΩ ′
i
. Furthermore by (16) and the lower semi-continuity of the H1 norm, we obtain

Ji(f ∗

i ) ≤ lim
n→∞

1
2

∫
Ω ′

i

(un
i − uϵ)2dx +

β

2
lim
n→∞

inf
∫
Ω ′

i

|∇f ni |
2dx

≤ lim
n→∞

inf Ji(f ni ) = Min
fi∈MΩ′

i

Ji(fi),

hich implies Ji(f ∗

i ) = Min
fi∈MΩ′

i

Ji(fi) and f ∗

i is a minimizer of Ji(fi).

Now we are ready to give the main theorem that provides an error estimate of the reconstructed source function
defined in each non-overlapping subdomain Ωi, i = 1, . . . ,m1. It is easy to see that the proposed algorithm has an
rror inherited from the forward model, which is described as follows: denoting ũ and ui as the solution of (1) and (9)
espectively, we define the error function δui = ũi − ui, with ũi ≜ ũ|Ω ′

i
being ũ restricted in Ω ′

i , then δui satisfies the
ollowing equation:⎧⎨⎩

−∇ · (a∇δui) = 0, x ∈ Ω ′

i
δui(x) = 0, x ∈ ∂Ω ′

i ∩ ∂Ω

δui(x) = δpi(x), x ∈ Γ ′

i ,

(17)

here δpi denotes the difference between the boundary conditions (or more precisely the trace) of ũi and ui on the inner
oundary Γ ′

i .

heorem 3.3. The combined solutions of (10), the regularized solution of the original optimization problem (5) and the exact
ource function are denoted by f , f̃ β , and f ∗ respectively, then

∥f − f̃ β∥1,Ω ≤
C1m1

βa1
Max

1≤i≤m1
∥δpi∥0,Γ ′

i
, (18)

here C1 is a constant. Since ∥u − uϵ∥0,Ω < ϵ, if the following conditions are satisfied

Max
1≤i≤m1

∥δpi∥0,Γ ′
i

= O(ϵ), lim
ϵ→0

β = 0, lim
ϵ→0

ϵ

β
= 0,

hen

lim
ϵ→0

∥f − f ∗
∥1,Ω = 0.

Proof of Theorem 3.3. We denote the elliptic equation (9) as Lui = fi. By introducing a Lagrange multiplier vi, the
optimization functional Ji(fi) is revised as

Ji(ui, vi, fi) = Ji(fi) + ⟨vi, Lui − fi⟩

=
1
2
(ui − uϵ, ui − uϵ) +

β

2
(∇fi,∇fi) + ⟨vi, Lui − fi⟩.

(19)

ince

⟨vi, Lui − fi⟩ = (vi, Lui) − (vi, fi) = (L∗vi, ui) − (vi, fi),

aking the Fréchet derivative of (19) and integrating by parts, it is easy to see that L∗vi = −∇ · (a∇vi) = Lvi in H1
0 (Ω

′

i ),
nd we obtain the strong formulation of the KKT system of (19) as⎧⎨⎩

Lui − fi = 0
L∗vi + ui − uϵ = 0
vi + β∆fi = 0,

(20)

ith appropriate boundary conditions derived in Section 2. From the second equation of (20) we obtain

v = −(L∗)−1(u − uϵ). (21)
i i

7
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Denoting the regularized solution of the original optimization problem (5) restricted in Ω ′

i as f̃ βi and ũi, we substitute
21) into the third equation of (20), fi satisfies

− (L∗)−1(ui − uϵ) + β∆fi = 0

⇒ − (L∗)−1(ui − ũi + ũi − uϵ) + β∆(fi − f̃ βi + f̃ βi ) = 0

⇒ − (L∗)−1(ũi − uϵ) + β∆f̃ βi − (L∗)−1(ui − ũi) + β∆(fi − f̃ βi ) = 0.

From the definition of f̃ βi we have

− (L∗)−1(ũi − uϵ) + β∆f̃ βi = 0, (22)

hich implies

− (L∗)−1(ui − ũi) + β∆(fi − f̃ βi ) = 0

⇒fi − f̃ βi =
1
β
∆−1(L∗)−1(ui − ũi).

Note that ũi − ui = δui in (17), then

fi − f̃ βi = −
1
β
∆−1(L∗)−1δui. (23)

y the Poincaré’s inequality (cf. [33], page 291) and Lemma 3.1, we obtain the following estimate

∥fi − f̃ βi ∥1,Ω ′
i
=

1
β

∥∆−1(L∗)−1δui∥1,Ω ′
i
≤

1
β

∥∆−1
∥1,Ω ′

i
∥(L∗)−1δui∥1,Ω ′

i

≤
C
βa1

∥δui∥−1,Ω ′
i
,

here C is a constant. By Eq. (17) which is satisfied by δui, and the estimate for the trace operator (cf. [34] Lemma 2.4,
age 326), we have

∥fi − f̃ βi ∥1,Ω ′
i
≤

C
βa1

∥δpi∥−
1
2 ,Γ

′
i
. (24)

ince L2(Γ ′

i ) ⋐ H−
1
2 (Γ ′

i ) (cf. [35], page 98), then

∥fi − f̃ βi ∥1,Ω ′
i
≤

C
βa1

∥δpi∥0,Γ ′
i
. (25)

umming up the error in m1 non-overlapping subdomains, we obtain

∥f − f̃ β∥1,Ω ≤

m1∑
i=1

∥f − f̃ β∥1,Ωi ,

≤
Cm1

βa1
Max

1≤i≤m1
∥δpi∥0,Γ ′

i
.

Next we estimate ∥f̃ β − f ∗
∥1,Ω . We substitute ũi = L−1 f̃ βi to (22) and obtain

− (L∗)−1(L−1 f̃ βi − uϵ) + β∆f̃ βi = 0,

⇒f̃ βi = ((LL∗)−1
− β∆)−1(L∗)−1uϵ .

ince ∀φ ∈ H1
0 (Ω), ((LL∗)−1φ, φ) = (L−1φ, L−1φ) ≥ 0, by Poincaré’s inequality

(((LL∗)−1
− β∆)φ, φ) ≥ β(−∆φ, φ) ≥ Cβ∥φ∥

2
1,Ω ′

i
, (26)

by Lax–Milgram theorem (cf. [33], pages 317–319), there exists ((LL∗)−1
− β∆)−1 and

∥((LL∗)−1
− β∆)−1

∥ ≤
C
β
. (27)

f we denote the exact data without measurement noise as u0, and the regularized solution with exact data as (f̃ ∗

i )
β , then

f̃ βi − (f̃ ∗

i )
β

= ((LL∗)−1
− β∆)−1(L∗)−1(uϵ − u0)

⇒∥f̃ βi − (f̃ ∗

i )
β
∥ ≤ ∥((LL∗)−1

− β∆)−1
∥∥(L∗)−1(uϵ − u0)∥

⇒∥f̃ βi − (f̃ ∗

i )
β
∥1,Ω ′ ≤

C
∥(uϵ − u0)∥−1,Ω ′ .
i βa1 i

8



X. Deng, Z.-J. Liao and X.-C. Cai Journal of Computational and Applied Mathematics 392 (2021) 113441

C

A

t

R

4

e
o
b
c

w

Since H1(Ω ′

i ) ⋐ L2(Ω ′

i ), by Schauder’s theorem (cf. [36], Theorem 4.19, page 105) L2(Ω ′

i ) ⋐ H−1(Ω ′

i ), thus ∥(uϵ−u0)∥−1,Ω ′
i
≤

∥(uϵ − u0)∥0,Ω ′
i
< Cϵ and

∥f̃ βi − (f̃ ∗

i )
β
∥1,Ω ′

i
<

Cϵ
a1β

, (28)

s a result, by the Cauchy–Schwarz inequality,

∥f − f ∗
∥1,Ω ≤

m1∑
i=1

(
∥fi − f̃ βi ∥1,Ωi + ∥f̃ βi − (f̃ ∗

i )
β
∥1,Ωi + ∥(f̃ ∗

i )
β

− f ∗

i ∥1,Ωi

)
≤

C1m1

βa1
Max

1≤i≤m1
∥δpi∥0,Γ ′

i
+

C2m1ϵ

a1β
+

m1∑
i=1

∥(f̃ ∗

i )
β

− f ∗

i ∥1,Ωi ,

with C1 and C2 being the corresponding constants after discarding the overlapping part Ω ′

i\Ωi. By the regularization
theory [31], the last term satisfies limβ→0 ∥(f̃ ∗

i )
β

− f ∗

i ∥1,Ωi = 0 for i = 1, . . . ,m1, so if

Max
1≤i≤m1

∥δpi∥0,Γ ′
i

= O(ϵ), lim
ϵ→0

β = 0, lim
ϵ→0

ϵ

β
= 0,

hen

∥f − f ∗
∥1,Ω ≲

m1

a1

ϵ

β
→ 0 (ϵ → 0). (29)

emarks.

(1) We remark that Theorem 3.3 shows that the collection of the sub-optimization problems is well-posed and the
solutions depend continuously on the measurement data as long as the error from the inexact artificial boundary
conditions can be controlled at the same level as the level of noise. This estimate will be further illustrated by several
numerical experiments.

(2) C1 and C2 are two constants related to the overlapping size δ. Since we only keep the part of the solution in the
non-overlapping subdomain Ωi and count the corresponding error in Ωi, increasing the overlapping size implies
larger distance to the artificial boundaries Γ ′

i and less area ratio of Ωi versus Ω ′

i . Therefore both C1 and C2 would
decrease with the increase of the overlapping size.

(3) Theorem 3.3 implies that there are two ways to reduce the reconstruction error. If homogeneous boundary conditions
are applied on Γ ′

i , then the overlapping size should be relatively large. On the other hand we can impose a more
accurate boundary condition on Γ ′

i , such as using the measurement data with a small noise level, in this case the
condition Max

1≤i≤m1
∥δpi∥0,Γ ′

i
= O(ϵ) of Theorem 3.3 is satisfied, and the numerical solution can be improved. We will

test the schemes with both types of boundary conditions in our numerical experiments.

. Numerical experiments

In this section we present several numerical experiments to show the accuracy, the robustness and the parallel
fficiency of the proposed algorithm. Firstly, we focus on the error of the reconstruction with respect to different levels
f noise, the amount of measurement data, the overlapping size, and different boundary conditions on the artificial
oundaries. Secondly, we study the parallel performance with different number of subdomains m1 and m2, and we also
ompare the proposed algorithm with the classical approach without any domain decomposition, i.e. m1 = 1.
The computational domain is Ω = [−L, L] × [−H,H] with L = H = 10.0, the diffusion coefficient is a(x, y) =

3.0+
x − y
L

, and the Dirichlet boundary condition is p(x, y) = 1.0. We define the first-level overlapping size by a parameter
θ , which equals to the ratio of the actual overlap versus the subdomain width. In the numerical experiments θ = 0.5 is
used if not otherwise specified. At the second level of domain decomposition, the overlapping sizes in both the x- and
y- directions are equal to 2h, with h being the mesh size. The linear systems in (13) are solved by the restarted GMRES
method. The restart number is set to 50 and the relative tolerance is 10−6. Homogeneous boundary conditions are imposed
on Γ ′

i , i = 1, 2, . . . ,m1 if not otherwise mentioned. The average number of GMRES iterations is denoted as its, and the
average time of computation is denoted as Time (s) in seconds. To measure the error of the recovered source function,
we use the following relative error function

E =

√∑N
i=1(f (xi) − f ∗(xi))2∑N

i=1(f ∗(xi))2
,

here N is the total number of mesh points in all non-overlapping subdomains.
We test the following three examples of source functions.
9
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Table 1
The numerical results with different level of data noise ϵ.
Ex1

ϵ β its Time (s) E

1% 10−4 26 0.3830 0.0342
3% 10−4 26 0.3829 0.0806
5% 10−3 54 0.7480 0.1076
10% 10−3 54 0.7397 0.2001

Ex2

ϵ β its Time (s) E

1% 10−5 14 0.2373 0.0151
3% 10−4 27 0.3895 0.0255
5% 10−4 27 0.3828 0.0398
10% 10−3 55 0.7450 0.0772

Ex3

ϵ β its Time (s) E

1% 10−5 14 0.2423 0.0606
3% 10−5 14 0.2380 0.0771
5% 10−4 26 0.3823 0.1004
10% 10−3 55 0.7623 0.1525

Example 1. The source function is a composition of four Gaussian sources:

f (x, y) =

3∑
i=0

bie−((x−x∗i )
2
+(y−y∗i )

2)/a2i ,

with {ai} = {4, 2, 3, 4}, {bi} = {4, 3, 2, 5}, and {(x∗

i , y
∗

i )} = {(−2.2774,−3.4954), (6.1803, 6.1803), (−6.1803,−6.1803),
(−8.8444, 8.8444)}.

Example 2. A polynomial source:

f (x, y) = (x + y − 0.4L)(y − 0.4L) + (x + y + 0.4H)(x + 0.4H) + 20.

xample 3. A piecewise constant source:

f (x, y) =

⎧⎨⎩ 6.0, if (x − 0.5L)2 + (y + 0.5H)2 ≤ 0.4L
6.0, if (x + 0.5L)2 + (y − 0.5H)2 ≤ 0.4L
3.0, otherwise.

.1. Experiments with varying noise level

We partition Ω into four subdomains in a checker board fashion. The measurement data is generated by numerically
olving the forward problem on a very fine mesh 385 × 385. We then restrict the solution to a m × m coarse mesh on
ach Ω ′

i . The Gaussian noise is added to the solution at the measurement points xi as follows:

uϵ(xi) = u(xi) + ϵ σ u(xi), i = 1, . . . ,m2.

Here σ is a random function satisfying the standard Gaussian distribution and ϵ is the noise level. To discretize P ′

i , we
se a m′

×m′
= 97× 97 mesh and the measurement data ratio of m versus m′ is denoted as r . In this experiment we set

he measurement data ratio to be r =
1
4
.

Note that the mesh for the measurement data and the mesh for the inverse algorithm are not nested. We consider
everal noise levels ϵ = 1%, 3%, 5%, 10% and the regularization parameters β are chosen heuristically from six candidates
0−1, 10−2, 10−3, 10−4, 10−5, and 10−6. The results are summarized in Table 1. The reconstructed source function with

different noise levels is shown in Figs. 4–6. As expected, when the level of noise is small, the error is small. The error for
Example 2 is smaller than that for Examples 1 and 3 at all levels, thus the algorithm works better for polynomial source
function. Moreover the number of GMRES iterations and the computing time increase significantly especially for ϵ = 5%
or 10%.

4.2. Experiments with varying amount of measurement data

In this set of experiments we fix the level of noise to 1% and decrease the amount of measurement data. The mesh and

overlap are the same as in the previous experiment. The ratio of measurements is reduced to r =
1
,
1

and
1

, and the

6 8 12

10
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a

a

Fig. 4. Example 1: The comparison of reconstructed source function at the noise level ϵ = 1% (top left), 3% (top right), 5% (bottom left),
nd 10% (bottom right).

Fig. 5. Example 2: The comparison of reconstructed source function at the noise level ϵ = 1% (top left), 3% (top right), 5% (bottom left),
nd 10% (bottom right).
11
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Fig. 6. Example 3: The comparison of reconstructed source function at the noise level ϵ = 1% (top left), 3% (top right), 5% (bottom left),
nd 10% (bottom right).

Table 2
The numerical results with decreasing amount of measurement data.
Ex1

r β its Time (s) E
1
6 10−3 69 0.8994 0.0489
1
8 10−3 77 1.0037 0.0794
1
12 10−3 91 1.1653 0.2357

Ex2

r β its Time (s) E
1
6 10−4 35 0.4837 0.0307
1
8 10−3 78 1.0074 0.0677
1
12 10−3 90 1.1789 0.1822

Ex3

r β its Time (s) E
1
6 10−4 35 0.5075 0.0768
1
8 10−3 76 0.9979 0.1193
1
12 10−3 90 1.1649 0.2974

corresponding meshes for the measurement data are 16 × 16, 12 × 12 and 8 × 8 on each subdomain. The regularization

arameter is chosen heuristically. The results are shown in Table 2 and Figs. 7–9. As is shown, the solution error, the

umber of GMRES iterations and the computing time increase with decreasing amount of measurement data. Moreover

he resolution of the reconstructed source becomes worse with less measurement data, large oscillations are observed at

he internal subdomain edges for the case of r =
1

.

12

12
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Fig. 7. Example 1: The comparison of the exact source function (top left) with the reconstructed source function with the measurement data ratio

r =
1
6

(top right),
1
8

(bottom left),
1
12

(bottom right).

.3. Experiments with varying overlapping size

In this experiment we investigate how the reconstruction error changes with different overlapping sizes determined
y the ratio θ under the same settings as in Section 4.1. It is noted that although the overlapping size changes, we keep
he mesh the same as in Section 4.1. We plot the error E of the three examples with θ changing from 0.1 to 0.98 in Fig. 10.
It is observed that at the beginning the error decreases quickly with the increasing overlapping size. However when θ

reaches about
1
3
, the solution errors of the three examples decrease very slowly and stay almost still despite increasing

θ . This tells us θ ≈
1
3

is good enough to obtain a reasonable solution. Larger overlap is not necessary.

4.4. Comparison of two boundary conditions

As analyzed earlier, if we use the measurement data as the boundary condition on Γ ′

i , we expect better reconstruction
esult and require smaller overlap than that using homogeneous boundary conditions. In this test we substitute the
omogeneous conditions with noisy measurement data on every mesh point on Γ ′

i . We set the number of subdomains

1 = 16 for Examples 1–3. The length and width of each non-overlapping subdomain is
2L
4

= 5.0. The mesh used for each

subproblem is 61 × 61 and the measurement data ratio is r =
1
4
. Columns 3, 5, 7 of Table 3 show the reconstruction errors

sing homogeneous boundary conditions (denoted by E0) with increasing overlap ratio θ and noise level ϵ for Examples 1–
respectively. Moreover we list the errors of using noisy measurement data on Γ ′

i (denoted by Eϵ) in Columns 4, 6, 8
or comparison. It is observed from Table 3 that when θ < 0.3, the algorithm fails to obtain reasonable solutions with
omogeneous boundary conditions. The solutions obtained by using noisy measurement values on the artificial boundaries
re much better, even with 10% data noise and a small overlap. If we increase the overlap ratio to θ = 0.4 and θ = 0.5,
nd apply large enough overlap, the error gap between the two boundary conditions is much narrowed, and the algorithm
f using measurement data slightly outperforms that with homogeneous boundary conditions.
13
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R

Fig. 8. Example 2: The comparison of the exact source function (top left) with the reconstructed source function with the measurement data ratio

r =
1
6

(top right),
1
8

(bottom left),
1
12

(bottom right).

Table 3
The comparison with different boundary conditions on Γ ′

i .

Ex1 Ex2 Ex3

θ ϵ E0 Eϵ E0 Eϵ E0 Eϵ
0.1 1% 4.3598 0.0515 3.1285 0.0256 5.4872 0.0648

3% 4.4286 0.1168 3.1770 0.0320 5.5728 0.0913
5% 4.4985 0.1616 3.2255 0.0445 5.6586 0.1234
10% 4.6777 0.2287 3.3472 0.0832 5.8745 0.2096

0.2 1% 0.6440 0.0389 0.4561 0.0135 0.8185 0.0574
3% 0.6664 0.0799 0.4677 0.0251 0.8395 0.0830
5% 0.6944 0.1205 0.4799 0.0366 0.8621 0.1037
10% 0.7847 0.1978 0.5125 0.0744 0.9249 0.1676

0.3 1% 0.1480 0.0372 0.0998 0.0131 0.1919 0.0590
3% 0.1722 0.0727 0.1026 0.0244 0.1997 0.0819
5% 0.2101 0.1005 0.1079 0.0391 0.2133 0.1038
10% 0.3309 0.1752 0.1304 0.0694 0.2658 0.1428

0.4 1% 0.0670 0.0365 0.0404 0.0153 0.0973 0.0643
3% 0.1032 0.0748 0.0440 0.0254 0.1080 0.0825
5% 0.1493 0.1014 0.0531 0.0395 0.1269 0.1051
10% 0.2745 0.1729 0.0867 0.0698 0.1924 0.1434

0.5 1% 0.0558 0.0368 0.0353 0.0165 0.0903 0.0661
3% 0.0814 0.0731 0.0398 0.0259 0.1024 0.0826
5% 0.1141 0.1039 0.0463 0.0398 0.1140 0.1045
10% 0.2038 0.1728 0.0774 0.0732 0.1607 0.1460

4.5. Parallel performance

In this experiment we study the parallel performance of the proposed algorithm with different domain decompositions.
ecall that m and m denote the number of the subdomains at the first and the second level respectively. We consider
1 2

14
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Fig. 9. Example 3: The comparison of the exact source function (top left) with the reconstructed source function with the measurement data ratio

r =
1
6

(top right),
1
8

(bottom left),
1
12

(bottom right).

Fig. 10. The plot of reconstruction error with respect to the overlap ratio for Examples 1 (red circle), 2 (blue star) and 3 (green triangle).

eight combinations of m1 and m2 as follows: {(m1,m2)} = {(1, 1296), (4, 324), (9, 144), (16, 81), (36, 36), (144, 9),
(324, 4), (1296, 1)}. np = 1296 processors are used for the experiment since m1 × m2 = 1296. We use a larger
computational domain Ω = [−100, 100] × [−100, 100] than the previous experiments and the overlap ratio is θ = 0.5.
The measurement data is obtained by solving the problem on a 4801 × 4801 mesh. The level of noise is chosen as ϵ = 1%.
For comparison, we ensure almost the same problem size and the same mesh size to compute the inverse problem for
the eight choices of m1 and m2. The mesh for m1 = 1 is 2401 × 2401, which is the case of classical method with domain
decomposition only for the RAS preconditioner, and the meshes on the subdomains Ω ′ are 1201 × 1201, 801 × 801,
i

15
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Table 4
The parallel performance with np = 1296 and two types of boundary conditions.
Ex1 Homogeneous BC Measurement data BC

m1 m2 its Time (s) E0 S its Time (s) Eϵ S

1 1296 231 3.2949 0.0709 1 231 3.2949 0.0709 1
4 324 112 1.4660 0.0540 2.25 118 1.3304 0.0540 2.48
9 144 83 0.9224 0.0538 3.57 85 0.8346 0.0538 3.95

16 81 73 0.7676 0.0538 4.29 58 0.6400 0.0561 5.15
36 36 28 0.3010 0.0765 10.95 28 0.3041 0.0780 10.83

144 9 26 0.2513 0.0799 13.11 25 0.2464 0.0751 13.37
324 4 23 0.2016 0.0839 16.34 24 0.2057 0.0828 16.02

1296 1 21 0.1739 3.071 18.95 22 0.1775 0.0867 18.56

Ex2 Homogeneous BC Measurement data BC

m1 m2 its Time (s) E0 S its Time (s) Eϵ S

1 1296 226 2.5858 0.0095 1 226 2.5858 0.0095 1
4 324 112 1.6477 0.0156 1.57 112 1.3742 0.0123 1.88
9 144 84 0.9234 0.0155 2.80 83 0.8931 0.0143 2.90

16 81 31 0.3553 0.0165 7.28 32 0.3612 0.0174 7.16
36 36 28 0.2968 0.0174 8.71 28 0.2963 0.0162 8.73

144 9 24 0.2428 0.0137 10.65 24 0.2418 0.0183 10.69
324 4 23 0.2047 0.0824 12.63 23 0.2052 0.0211 12.60

1296 1 22 0.1668 17.916 15.50 22 0.1768 0.0357 14.63

Ex3 Homogeneous BC Measurement data BC

m1 m2 its Time (s) E0 S its Time (s) Eϵ S

1 1296 222 3.2636 0.0168 1 222 3.2636 0.0168 1
4 324 111 1.2806 0.0312 2.55 111 1.5783 0.0296 2.07
9 144 84 0.8901 0.0279 3.67 84 0.8819 0.0273 3.70

16 81 56 0.6193 0.0312 5.27 57 0.6243 0.0299 5.23
36 36 28 0.3050 0.0314 10.70 28 0.2978 0.0280 10.96

144 9 24 0.2440 0.0252 13.38 25 0.2477 0.0346 13.18
324 4 23 0.2028 0.1471 16.09 23 0.2045 0.0374 15.96

1296 1 21 0.1757 31.5620 18.57 22 0.1759 0.0607 18.55

Fig. 11. The computing time and the speedup of Examples 1–3. Left: computing time, right: speedup.

601 × 601, 401 × 401, 201 × 201, 133 × 133, and 67 × 67 respectively for m1 = 4, 9, 16, 36, 144, 324, 1296. The

measurements ratio is chosen as r =
1
4
.

The average number of GMRES iterations, the average computing time, the reconstruction error and the speedup,
denoted by S, are shown in Table 4 for both homogeneous boundary conditions (Columns 3–6) and measurement data
boundary conditions (Columns 7–10) on Γ ′

i respectively. It is noted that the speedup S is defined as the ratio of the
computing time using m1 > 1 subdomains and the computing time obtained with m1 = 1. We also plot the average
computing time (Columns 4,8) and the speedup (Columns 6,10) in Fig. 11, where the results computed with homogeneous
and measurement data boundary conditions are denoted by ‘‘Example iH ’’ and ‘‘Example iM ’’ respectively, i = 1, 2, 3.
It is observed from the speedup that the parallel performance is much improved when the partition happens at the
optimization level; i.e., m > 1, compared with the case of m = 1. For Examples 1 and 3, when m ≤ 36, with increasing
1 1 1
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number of subdomains m1 at the first level, the average number of GMRES iterations and the computing time decrease
almost linearly with m1. The reconstruction errors are quite satisfactory and increase very slowly with m1. The parallel
performance and the reconstruction error for both types of boundary conditions are similar. However when m1 > 36,
we observe a small decrease in the average number of GMRES iterations and in the computing time despite increasing
m1 for both type of boundary conditions. The reconstruction errors for homogeneous boundary conditions (Column 5)
increase faster than that for measurement data boundary conditions (Column 9), especially for m1 = 1296, which means
one processor per subproblem without the second level of domain decomposition, the reconstruction error blows up for
using homogeneous boundary conditions and stays quite reasonable for using measurement data boundary conditions.
Similar phenomena are observed for Example 2 when m1 = 16.

5. Some final remarks

We propose and test a multilevel domain decomposition method for the 2D steady source identification problem
governed by elliptic equations. The domain is decomposed firstly into several subdomains to transform the original
optimization formulation of the inverse problem into smaller independent optimization problems defined on overlapping
subdomains. Each sub-optimization problem is then converted to a KKT system of equations that is solved by a restarted
GMRES method preconditioned by a restricted additive Schwarz preconditioner. When forming the preconditioner, a
second level of domain decomposition is introduced for each first-level subdomain. We provide a theoretical analysis
to show that these sub-optimization problems are solvable, the numerical solution is well-posed and the error of the
reconstructed solution is bounded by a constant depending on the noise level, the number of subdomains and the error
from the inexact boundary conditions. Two types of conditions on the artificial boundaries are investigated and we
conclude that, the parallel performances are similar, but the solution error using measurement data is smaller compared
with using homogeneous boundary conditions when the overlap is small. Numerical experiments also show that the
accuracy of the proposed algorithm is similar with the classical approach without any decomposition at the optimization
level, and the new method offers much better parallel performance. The algorithm is not designed specifically for the
source identification problem, it should be useful for other large scale inverse parameter identification problems. Our
next work is to extend this method for the more complex three-dimensional problems.
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Appendix

We here provide a proof of Lemma 3.1.

Proof of Lemma 3.1. Let a(u, φ) = (a∇u,∇φ) =
∫
Ω
a(x)∇u ·∇φdx, (f , φ) =

∫
Ω
f φdx, clearly a(·, ·) is a symmetric bilinear

form. Since p(x) ∈ H
1
2 (∂Ω), by the trace theorem (cf. [35] Theorem 3.38, page 102), we can find a function up ∈ H1(Ω),

uch that γ up = p(x) with γ being the trace operator. Let w = u − up, then w is the solution of the following PDE:{
−∇ · (a∇w) = f + ∇ · (a∇up), x ∈ Ω

w = 0, x ∈ ∂Ω.
(A.1)

he weak formulation of (A.1) is equivalent to find w ∈ H1
0 (Ω), such that

a(w, η) = (f , η) − a(up, η), ∀η ∈ H1
0 (Ω).

y the Poincaré’s inequality,

a(w,w) = (a(x)∇w,∇w) ≥ a1

∫
Ω

|∇w|
2dx ≥ Ca1∥w∥

2
1,Ω ,

(·, ·) is coercive in H1
0 (Ω). And a(·, ·) is continuous in H1

0 (Ω) by the Cauchy–Schwarz inequality,

a(w, η) = (a(x)∇w,∇η) ≤ a2|w|1,Ω |η|1,Ω ≤ a2∥w∥1,Ω∥η∥1,Ω .

y the Lax–Milgram theorem, there exists a unique solution w, and we have the following estimates

a1∥w∥1,Ω∥η∥1,Ω ≤ Ca(w, η) = C((f , η) − a(up, η))

∥w∥1,Ω ≤
C
a1

(∥f ∥−1,Ω + a2∥up∥1,Ω ).
17
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Since w = u − up, ∥w∥1,Ω ≥ ∥u∥1,Ω − ∥up∥1,Ω , we have

∥u∥1,Ω ≤
C
a1

∥f ∥−1,Ω +

(
Ca2
a1

+ 1
)

∥up∥1,Ω

∥u∥1,Ω ≤
C
a1

∥f ∥−1,Ω +

(
Ca2
a1

+ 1
)

inf
u∈H1(Ω),γ u=p

∥u∥1,Ω

∥u∥1,Ω ≤
C
a1

∥f ∥−1,Ω +

(
Ca2
a1

+ 1
)

∥p∥ 1
2 ,∂Ω

.
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