
A SCALABLE FULLY IMPLICIT COMPRESSIBLE EULER SOLVER

FOR MESOSCALE NONHYDROSTATIC SIMULATION OF

ATMOSPHERIC FLOWS∗

CHAO YANG† AND XIAO-CHUAN CAI‡

Abstract. A fully implicit solver is developed for the mesoscale nonhydrostatic simulation of
atmospheric flows governed by the compressible Euler equations. To spatially discretize the Euler
equations on a height-based terrain-following mesh, we apply a cell-centered finite volume scheme, in
which an AUSM+-up method with a piecewise linear reconstruction is employed to achieve second-
order accuracy for the low-Mach flow. A second-order ESDIRK method with adaptive time stepping
is applied to stabilize physically insignificant fast waves and accurately integrate the Euler equations
in time. The nonlinear system arising at each time step is solved by using a Jacobian-free Newton-
Krylov-Schwarz algorithm. To accelerate the convergence and improve the robustness, we employ
a class of additive Schwarz preconditioners in which the subdomain Jacobian matrix is constructed
using a first-order spatial discretization. Several test cases are used to validate the correctness of the
scheme and examine the performance of the solver. Large-scale results on a supercomputer with up
to 18, 432 processor cores are provided to show the parallel performance of the proposed method.

Key words. fully implicit method, Newton-Krylov-Schwarz, nonhydrostatic model, compress-
ible Euler equations, parallel scalability

AMS subject classifications. 65Y05, 65M55, 65F08, 86A10, 35L65

1. Introduction. The atmosphere contains multiscale dynamics that support
a variety of wave motions. Fast waves, such as the acoustic wave and the inertial-
gravity wave, often impose restrictive time step constraints for explicit schemes. To
deal with the rapidly traveling, physically insignificant fast waves, one can either (i)
simplify the governing equations based on, e.g., a hydrostatic, an incompressible or an
anelastic assumption; or (ii) employ a more advanced time integration scheme with a
weaker stability requirement. In the first approach, the compressible Euler equations
are replaced with simplified ones that are often easier to solve in an explicit manner
because certain fast waves are filtered out. For example, when the hydrostatic primi-
tive equations are employed, the atmosphere is assumed to be in vertical balance and,
as a result, is free of the internal acoustic mode. However, the hydrostatic assumption
becomes invalid when the horizontal scale is smaller than about 10 km. Even for other
simplified equations that might be more accurate than the hydrostatic primitive equa-
tions, it is still not clear if they are valid for all scales [20, 43]. Therefore, when high
resolution is of interest as in mesoscale and cloud-resolving atmospheric simulations,
fast and efficient solution of the fully compressible Euler equations becomes desirable.

The second approach to stabilize fast waves is to make use of a more advanced
time integration scheme, which is usually based on either (i) modifying a fully explicit
scheme to increase the maximum allowable time step size; or (ii) reducing the cost of
a fully implicit scheme. In this study, we focus on the latter method and only briefly
mention some examples of the former one, such as the split-explicit method [13, 21],

∗ This work was supported in part by NSF grants DMS-0913089 and CCF-1216314. The first
author was also supported in part by NSFC grants 61170075, 91130023 and 61120106005, and by
973 Program of China 2011CB309701.

† Institute of Software, Chinese Academy of Sciences, Beijing 100190, China and State Key
Laboratory of High Performance Computing, Changsha 410073, China (yangchao@iscas.ac.cn).

‡ Department of Computer Science, University of Colorado Boulder, Boulder, CO 80309, USA
(cai@cs.colorado.edu).

1

2 CHAO YANG AND XIAO-CHUAN CAI

the fractional-step method [46], the semi-implicit method [25], the semi-implicit semi-
Lagrangian method [2, 42] and the horizontally-explicit vertically-implicit method
[36, 43]. The basic idea behind these methods is operator splitting. Although some
of them allow substantially larger time steps than a fully explicit scheme, the depen-
dency between the time step length and the horizontal mesh resolution still persists.
In addition, due to the inconsistent time integration of different terms in the gov-
erning equations, the solution obtained in an operator splitting method may violate
the nonlinear consistency which in turn leads to large splitting errors and accuracy
degradation [22, 29].

Compared to operator splitting, fully implicit methods enjoy two major advan-
tages: (i) the time step size depends only on the accuracy requirement; and (ii) the
discretized equations are nonlinearly consistent. However, at each time step, due
to the need of solving a nonlinear system, a fully implicit method might be much
more expensive than an explicit or an operator splitting method. Despite of some
successes on computing fully implicit solutions of the global shallow water equations
[10, 11, 48, 49], it is rare to see the application of fully implicit methods in non-
hydrostatic atmospheric simulations. One of the contributions is [40], in which a
discontinuous Galerkin solver for mesoscale flows using a fully implicit Rosenbrock
scheme is proposed and shown to be superior to an explicit Runge-Kutta method.
However, in their Jacobian-free Newton-Krylov framework for solving the nonlinear
system, the preconditioner, which is critical for the performance of the solver, is not
studied.

On the other hand, we have made some efforts on employing domain decom-
position based algorithms in the fully implicit solution of the global shallow water
equations [48]. The solver has been shown in several numerical experiments to be
highly scalable to tens of thousands of processors in terms of both strong and weak
scalabilities. The purpose of this study is to extend the Newton-Krylov algorithm,
especially the additive Schwarz preconditioner, for the fully implicit solution of the
compressible Euler equations. An alternative approach for preconditioning fast (or
stiff) wave problems is the physics-based preconditioner [24], which has also been
applied for low speed compressible flows [32, 34]. In a physics-based method, the
preconditioning operator has certain advantages, such as being diagonally dominant.
But a comprehensive comparison between the additive Schwarz preconditioner and
the physics-based preconditioner is beyond the scope of this study. We point out that
the basic idea of the additive Schwarz preconditioner studied in this paper is still
applicable for inverting the physics-based preconditioning operator.

The paper is organized as follows. In Section 2, the compressible Euler equations
in a nondimensionalized form are presented. We then provide in Section 3 some de-
tails of a cell-centered finite volume scheme for the spatial discretization, including
an AUSM+-up Riemann solver, a second-order piecewise linear reconstruction and
the numerical approximation of the boundary conditions. In Section 4, we present an
L-stable second-order ESDIRK method with an adaptive time step control strategy
for the temporal integration. Details of a Jacobian-free Newton-Krylov solver pre-
conditioned by an additive Schwarz method are then introduced in Section 5. We
validate the discretization scheme and study the parallel performance of the fully im-
plicit solver by presenting numerical results on several test cases in Section 6. The
paper is concluded in Section 7.

SCALABLE FULLY IMPLICIT EULER SOLVER FOR ATMOSPHERIC FLOWS 3

2. The compressible Euler equations. The compressible Euler equations for
the atmosphere in the x− z plane are written as a system of conservation laws [15]:

∂

∂t
ρ+

∂

∂x
(ρu) +

∂

∂z
(ρw) = 0,

∂

∂t
(ρu) +

∂

∂x
(ρuu+ p) +

∂

∂z
(ρuw) = 0,

∂

∂t
(ρw) +

∂

∂x
(ρuw) +

∂

∂z
(ρww + p) + ρg = 0,

∂

∂t
(ρθ) +

∂

∂x
(ρuθ) +

∂

∂z
(ρwθ) = 0,

(2.1)

where the primitive variables are the density ρ, the horizontal velocity u, the vertical
velocity w and the potential temperature θ. The gravity force is represented in the
equations as a source term ρg, where g = 9.80665m/s2 is the effective gravity constant.
The system is closed with the equation of state

p = p00

(

ρRθ

p00

)γ

,(2.2)

where p00 = 1013.25 hPa is the ground level pressure, R = 287.04 J/(kg ·K) is the gas
constant for dry air and γ = 1.4.

To reduce the roundoff error, we apply a nondimensionalization to (2.1). Given a
reference potential temperature θc, we select the reference pressure pc = 1013.25 hPa,
scale the gas constant by Rc = 287.04 J/(kg ·K) and the gravity constant by gc =
9.80665m/s2. Then the nondimensionalization can be done by introducing the refer-
ence values of the density, the velocity, the length and the time respectively as

ρc =
pc

Rcθc
, uc =

√

pc
ρc

, ℓc =
u2
c

gc
, tc =

ℓc
uc

.

It is easy to verify that after the nondimensionalization, the Euler equations (2.1)
and the equation of state (2.2) both remain the same, but the physical constants are
normalized to be

g = 1, p00 = 1, R = 1.(2.3)

The dynamics of the atmosphere, in most situations, are relatively small pertur-
bations of the hydrostatic equilibrium, which assumes the gravity is balanced by the
pressure gradient force, i.e.,

∂p

∂z
= −ρg,(2.4)

where p, ρ are usually independent of time but may depend on both x and z. There-
fore, in order to reduce the approximation error of the hydrostatic state, it is preferable
[15, 40] to introduce in the equations the following perturbed values

ρ′ = ρ− ρ, p′ = p− p, (ρθ)′ = ρθ − ρθ,

in which ρ, p, ρθ satisfy the hydrostatic condition (2.4) and the equation of state (2.2).
After splitting out the hydrostatic background state, we rewrite the Euler equations
(2.1) in a compact form:

∂Q

∂t
+

∂F

∂x
+

∂G

∂z
+ S = 0,(2.5)

4 CHAO YANG AND XIAO-CHUAN CAI

where

Q =

ρ′

ρu
ρw
(ρθ)′

, F =

ρu
ρuu+ p′

ρuw
ρuθ

, G =

ρw
ρwu

ρww + p′

ρwθ

, S =

0
0
ρ′g
0

.

When necessary, a physical dissipation term

Sν = −(0,∇ · (νρ∇u),∇ · (νρ∇w),∇ · (νρ∇θ′))T(2.6)

is added to the left-hand side of (2.5), where ν is a constant to control the viscosity.

3. Spatial discretization. We solve the Euler equations (2.5) on the physical
domain

Ω = {(x, z)T
∣

∣xmin < x < xmax, zb(x) < z < zmax},

with the bottom boundary zb(x) describing the topography of the region. The bottom
topography may have a significant impact on the dynamics of atmosphere, especially
at high resolutions. In order to accurately approximate the topography, we employ
the height-based terrain-following coordinates [14] given by

x̂ = x− xmin,

ẑ =
zmax − zmin

zmax − zb
(z − zb),

(3.1)

where (x̂, ẑ)T are the transformed coordinates and zmin = inf(zb). The coordinates
transform (3.1) maps the physical domain Ω to a regular computational domain

Ω̂ = {(x̂, ẑ)T
∣

∣0 ≤ x̂ ≤ ℓ1, 0 ≤ ẑ ≤ ℓ2},

where ℓ1 = xmax − xmin, ℓ2 = zmax − zmin. In Ω̂ we introduce a uniform mesh con-
sisting of points x̂ij = (x̂i, ẑj)

T = (iℓ1/n1, jℓ2/n2)
T , i = 0, 1, · · · , n1, j = 0, 1, · · · , n2.

Using the coordinates transform (3.1), we obtain a structured mesh on the physical
domain Ω, with mesh points xij = (xij , zij)

T given by

xij = x̂i + xmin,

zij =
zmax − zb(xij)

zmax − zmin

ẑj + zb(xij).
(3.2)

①✐❀❥

①✐✰✶❀❥

①✐✰✶❀❥✰✶

①✐❀❥✰✶

❈✐❥ ①✐❥❦

�✐❥❦

♥

✜

❫①✐❀❥ ❫①✐✰✶❀❥

❫①✐✰✶❀❥✰✶❫①✐❀❥✰✶

❫❈✐❥
❫�✐❥❦

❚
✁✶

❚

Fig. 3.1. A coordinate transform between the physical mesh and the computational mesh.

SCALABLE FULLY IMPLICIT EULER SOLVER FOR ATMOSPHERIC FLOWS 5

3.1. Cell-centered finite volume scheme. A cell-centered finite volume scheme
is applied to discretize the Euler equation (2.5). Based on (3.2), we define a nonsingu-
lar mapping T : x̂ij → xij , for i = 0, 1, · · · , n1, j = 0, 1, · · · , n2, as shown in Fig. 3.1.

Denote Cij as a mesh cell formed by mesh points xij , xi+1,j , xi+1,j+1, xi,j+1, and Ĉij
as a mesh cell formed by mesh points x̂ij , x̂i+1,j , x̂i+1,j+1, x̂i,j+1. It is easy to verify

that the mapping T is bilinear on each mesh cell Ĉij . We define the approximate
solution at time t as

Qij(t) =
1

∣

∣Cij
∣

∣

∫

Cij

Q(x, t)dx, i = 0, 1, · · · , n1 − 1, j = 0, 1, · · · , n2 − 1.(3.3)

Integrating (2.5) over Cij and applying the Gauss divergence theorem, we have

∂Qij(t)

∂t
+

1
∣

∣Cij
∣

∣

∫

∂Cij

(F (Q(x, t))nx +G(Q(x, t))nz) ds+ Sij(t) = 0,(3.4)

where (nx, nz)
T is the unit outward normal of ∂Cij .

In (3.4), the source term is approximated as

Sij(t) =
1

∣

∣Cij
∣

∣

∫

Cij

S(Q(x, t))dx ≈ S(Qij(t))(3.5)

with second-order accuracy. In order to evaluate the numerical fluxes of F and G in
(3.4), we decompose the boundary of Cij into four segments, i.e., ∂Cij = ∪4

k=1Γijk, as
shown in Fig. 3.1. On Γijk, we denote the unit outward normal as n = (nx, nz)

T and
correspondingly the unit tangent vector as τ = (−nz, nx)

T . Then n and τ form a new
Cartesian coordinates. Given a state variable Q = (ρ′, ρu, ρw, (ρθ)′)T , we introduce a
new state variable q = (ρ′, ρun, ρuτ , (ρθ)

′)T , where un, uτ are respectively the normal
and tangent components of v = (u,w)T . It is easy to see that q = TijkQ, where
Tijk = diag {1, Lijk, 1} and LT

ijk = (n, τ). By using Tijk, we have

∫

Γijk

(F (Q(x, t))nx +G(Q(x, t))nz) ds = T−1
ijk

∫

Γijk

F (TijkQ(x, t))ds

≈ T−1
ijk

∣

∣Γijk

∣

∣F (q(xijk, t)),(3.6)

which is a second-order approximation, provided that xijk is the mid-center of edge
Γijk. The numerical flux F (q(xijk, t)) is then estimated using a Riemann solver
F(q−(xijk, t), q

+(xijk, t)), based on the inward and outward reconstructed values
q−(xijk, t) and q+(xijk, t). Different choices of the Riemann solver and different ways
to perform the reconstruction lead to different spatial discretizations.

3.2. AUSM+-up method. Since the atmosphere flow is nearly incompressible,
the corresponding Mach number is usually small. Classical Riemann solvers frequently
found in aerodynamics often result in excessive numerical dissipation errors for low-
Mach flows. Therefore, we employ a modified Advection Upstream Splitting Method
(AUSM+-up) [27] which is accurate for all Mach numbers. This method has been
studied in a global shallow water model [44] and recently in a compressible Euler
model [43]. The basic idea of the AUSM+-up method is to split the numerical flux
into a convective component and a pressure component, i.e.,

FAUSM+-up(q
−, q+) = F (c)(q−, q+) + F (p)(q−, q+).(3.7)

6 CHAO YANG AND XIAO-CHUAN CAI

The convective component in (3.7) is calculated by

F (c)(q−, q+) =

{

ċ ṁ (1, u−
n , u

−
τ , θ

−)T , if ṁ > 0,

ċ ṁ (1, u+
n , u

+
τ , θ

+)T , otherwise,
(3.8)

where ċ = (
√

γp−/ρ− +
√

γp+/ρ+)/2 is the interface sound speed and ṁ is the
interface Mach number given by

ṁ = M+
4 (m

−) +M−
4 (m

+)− Kp

fa
max(1− σM̄2, 0)

(p−)′ − (p+)′

ρ̇ ċ2
.(3.9)

In (3.9), the interface density ρ̇ is obtained from ρ̇ = (ρ− + ρ+)/2, the average Mach
number ṁ satisfies ṁ2 = ((m−)2 + (m+)2)/2 where m± = u±

n /ċ, and the split Mach
numbers M±

2 , M±
4 are polynomials of degree 2:

M±
2 (m) = ±(m± 1)2/4,(3.10)

and degree 4:

M±
4 (m) =

{

(m± |m|)/2, if |m| ≥ 1,

M±
2 (m)

[

1∓ 16βM∓
2 (m)

]

, otherwise,
(3.11)

respectively.
The pressure component in (3.7) is calculated by

F (p)(q−, q+) = (0, ṗ′, 0, 0)T ,(3.12)

in which ṗ′ is the perturbation of the interface pressure given by

ṗ′ = P+
5 (m−)(p−)′ + P−

5 (m+)(p+)′

− KufaP+
5 (m−)P−

5 (m+)(ρ− + ρ+)ċ(u+
n − u−

n),(3.13)

where

P±
5 (m) =

{

(1± sign(m))/2, if |m| ≥ 1,

M±
2 (m)

[

(±2−m)∓ 16αmM∓
2 (m)

]

, otherwise,
(3.14)

As suggested in [43], the parameters used in (3.9)-(3.14) are set to be Kp = 1/4,
Ku = 3/4, fa = 1, σ = 1, α = 3/16 and β = 1/8. We remark here that because of the
shifting of the Euler equations according to the hydrostatic state, the formulation of
the AUSM+-up scheme is slightly different from its original form [27] in the way that
the pressure perturbation instead of the pressure is used in (3.9), (3.12) and (3.13).

3.3. State reconstruction. In the Riemann solver F(q−(xijk, t), q
+(xijk, t)),

the reconstructed values q±(xijk, t) are needed. In order to obtain q±(xijk, t), we

first reconstruct Q̂±(x̂ijk, t) = Q±(xijk, t) on the computational mesh (due to the

mesh uniformity) and then calculate q±(xijk, t) = TijkQ
±(xijk, t) = TijkQ̂

±(x̂ijk, t).

Without loss of generality, suppose Γ̂ijk = is the eastward edge of Ĉij , as seen in Fig.
3.1. We employ the following piecewise linear reconstruction:

Q̂−(x̂ijk, t) =
2− κ

2
Qij(t)−

1− κ

4
Qi−1,j(t) +

1 + κ

4
Qi+1,j(t),

Q̂+(x̂ijk, t) =
2− κ

2
Qi+1,j(t) +

1 + κ

4
Qij(t)−

1− κ

4
Qi+2,j(t),

(3.15)

SCALABLE FULLY IMPLICIT EULER SOLVER FOR ATMOSPHERIC FLOWS 7

where κ ∈ [0, 1). The above reconstruction results in the κ-scheme for linear problems;
in particular, κ = 0, 1/2 and 1/3 lead to the Fromm scheme [12], the QUICK scheme
[26] and the QUICKEST scheme [26]. Although several studies have been carried out
for these schemes for some linear problems, it is not clear which one is optimal for
the Euler equations. In [48], κ = 0 is used for the global shallow water equations,
while in [43], κ = 1/3 is used for the vertical discretization of the compressible Euler
equations. In our finite volume scheme, we choose κ = 1/2 because of its low numerical
dissipation as observed in our numerical experiments.

The piecewise linear reconstruction (3.15), together with the AUSM+-up Riemann
solver, leads to a formally second-order accurate scheme for the Euler equations (2.5),
provided that the solution is sufficiently smooth. Otherwise, spurious oscillations may
occur when the solution contains strong shocks or discontinuities. Slope limiters may
need to be added in (3.15) to reduce the spurious oscillations and improve the stability
of the scheme when necessary. We remark that when κ = 1/3 the local truncation
error of the reconstruction is formally third-order; but it needs to be incorporated
with a third-order numerical flux to become a third-order spatial discretization.

3.4. Boundary conditions. The bottom boundary is the only physical bound-
ary of the domain Ω. We therefore specify a no-flux (rigid wall) boundary condition
along it. In the calculation of the numerical flux (3.6), the no-flux boundary condition
requires that the normal velocity vanishes along the boundary, i.e., un = 0, which can
be easily incorporated. For the physical dissipation term (2.6), the no-flux boundary
condition requires that n · (νρ∇u) = n · (νρ∇w) = n · (νρ∇θ′) = 0, so that there is no
loss of mass on the boundary.

For problems that involve mountain waves, it is desirable that all energy transport
is properly radiated out of the top and lateral boundaries. To this end, we apply
absorbing sponge layers [8] in which a Rayleigh damping is applied to the Euler
equations (2.5) in the form of

∂Q

∂t
+ (1− ϕ)

(

∂F

∂x
+

∂G

∂z
+ S

)

+ ϕ(Q− Q̃) = 0,(3.16)

where Q̃ is a predetermined reference solution and ϕ is the damping factor. Given
a physical domain Ω, we first choose a domain of interest Ω∗ = {(x, z)

∣

∣x∗
min < x <

x∗
max, h(x) < z < z∗max} and then apply the absorbing layers in Ω\Ω∗ by setting

ϕ = 1− (1− ϕx)(1− ϕz) = ϕx + ϕz − ϕxϕz.

Here ϕx and ϕz are nonzero only in the lateral and top absorbing layers respectively,
and they are calculated in an analogous manner [15], e.g.,

ϕz =

(

z − z∗max

zmax − z∗max

)4

.

Note that in Ω∗ we set ϕ = 0 to turn off the absorbing layer.

4. Fully implicit adaptive time stepping. After spatially discretizing the
Euler equations (2.5) with the cell-centered finite volume scheme, we obtain a semi-
discrete system

∂

∂t
X(t) + L(X(t)) = 0.(4.1)

8 CHAO YANG AND XIAO-CHUAN CAI

Here we organize the solution vector in a point-block natural order

X(t) = (Q0,0(t), Q1,0(t), Q2,0(t), · · · , Q0,1(t), Q1,1(t), Q2,1(t), · · ·)T ,(4.2)

and the discrete operator L(X(t)) is organized in the same point-block order with
each component given by

Lij(t) =
1

∣

∣Cij
∣

∣

∑

∪Γijk=∂Cij

T−1
ijk

∣

∣Γijk

∣

∣F(TijkQ
−(xijk, t), TijkQ

+(xijk, t)) + S(Qij(t)).

Many temporal discretization schemes can be used to integrate the semi-discrete
system (4.1). Due to the existence of fast waves in the compressible Euler equations,
explicit methods suffer from stability restrictions on the time step size from fast waves
or stiff waves, although the advective time scale is often of interest. To quantitatively
analyze the property of different temporal discretization schemes, we define the re-
spective Courant-Friedrichs-Lewy (CFL) number for both the fast acoustic wave and
the advection as:

CFLf = ∆t/∆tf , CFLa = ∆t/∆ta,(4.3)

where ∆t is the employed time step size and

∆tf = min{∆x,∆z}/uf , ∆ta = min{∆x,∆z}/ua,(4.4)

are the respective time scales. In (4.4), uf =
√

γp/ρ is the speed of the fast acoustic
wave and ua is the maximum advection speed. For comparison purpose, we implement
an explicit second-order Strong Stability Preserving Runge-Kutta (SSP RK-2) method

X(1) = X(tm)−∆tL (X(tm)) ,

X(tm+1) =
1

2
(X(tm) +X(1))− ∆t

2
L(X(1)),

(4.5)

in which we use a fixed time step size ∆t determined from CFLf ≈ 0.5.
In order to relax the time step limit and control the time step size according

to the accuracy, we employ a family of Explicit-first-step, Single-diagonal-coefficient,
Diagonally Implicit Runge-Kutta (ESDIRK) methods:

X(0) = X(tm),

1

∆tm

(

X(p) −X(0)
)

+

p
∑

q=0

apqL(X(q)) = 0, p = 1, .., s,

X(tm+1) = X(s),

(4.6)

where s ≥ 1 is the number of implicit stages, X(tm) is the solution vector and ∆tm =
tm+1 − tm is the corresponding time step size at the mth time step. We denote an
ESDIRK method with s implicit stages as ESDIRK(s). The method has a single
diagonal coefficient because we always set app ≡ c for all p = 1, · · · , s. In particular,
for ESDIRK(1), there are two special cases, namely the backward Euler method with
a10 = 0, c = 1, and the Crank-Nicolson method with a10 = c = 1/2. The backward
Euler method is L-stable but is only first-order accurate and the Crank-Nicolson
method is second-order accurate but not L-stable. We find that neither of them is

SCALABLE FULLY IMPLICIT EULER SOLVER FOR ATMOSPHERIC FLOWS 9

efficient and accurate enough to be incorporated with an adaptive time stepping.
Therefore, we focus on an ESDIRK(2) method with coefficients

a10 = c = 1−
√
2/2, a20 = a21 =

√
2/4,

which is both L-stable and second-order accurate [45].
We adaptively control the time step size ∆tm by using a strategy that is analogous

to the switched evolution/relaxation approach [17, 30]. More specifically, we start with
a relatively small time step size ∆t0 and adjust its value according to

∆tm+1 = min

(

∆tmax,max

(

1

r
,min

(

r,

(‖L(Xm)‖2
‖L(Xm+1)‖2

)η))

∆tm

)

,(4.7)

for m = 0, 1, 2, · · ·. Here ∆tmax is the maximum allowable time step size in the
simulation, r ∈ (0,+∞) is a safeguard to avoid excessive change of the time step
size between any two immediate time steps, and η ∈ (0, 1) is used the control the
adjustment of the time step size. In practice, we set the adaptivity parameters to be
r = 1.5 and η = 0.75. We remark that because the ESDIRK(2) method is embedded,
one may also control the time step size by calculating the difference of two possible
solutions of different orders at each time step, as done in, e.g., [18]. We find that the
performance and efficiency of this embedded adaptation strategy is similar to that of
(4.7).

It is worth mentioning that, although other fully implicit schemes may have cer-
tain advantages, we choose the ESDIRK(2) method to demonstrate the efficiency of
the preconditioning techniques to be studied in this paper. The resulting nonlin-
ear/linear systems arising in different fully implicit schemes often have similar struc-
tures; for example, there is only a slight modification on the diagonal part of the
Jacobian matrix if the ESDIRK(2) method is replaced by another ESDIRK method
or a Rosenbrock method. Both ESDIRK and Rosenbrock methods, when incorpo-
rated with suitable adaptive time stepping, are widely studied in computational fluid
dynamics, especially in solving stiff problems that admit a variety of time scales; see,
e.g. [19, 28] for further references.

5. Newton-Krylov-Schwarz solver. In the ESDIRK(2) method, there are
two implicit stages that lead to two nonlinear systems at each time step. In order to
solve the nonlinear systems efficiently, we employ a Newton-Krylov-Schwarz (NKS)
algorithm described as follows.

5.1. Newton-Krylov iteration. Given a nonlinear system N(X) = 0, the
Newton’s iteration is to update the current approximate solution Xn to obtain a
new approximation Xn+1 through

Xn+1 = Xn + λnδXn, n = 0, 1, · · · .(5.1)

Here X0 is chosen as the solution at the previous time step, λn is the steplength
determined by a linesearch procedure (see, e.g., [6, Sec. 6.3]) and δXn is the Newton
correction obtained by solving the Jacoian system as discussed later. To achieve
a more uniform distribution of residual errors of all time steps [48], the stopping
condition for the Newton iteration (5.1) is adaptively determined by

‖N(Xn+1)‖2 ≤ min
{

ε̂a,max
{

ε̌a,n, εr‖N(X0)‖2
}

}

.(5.2)

10 CHAO YANG AND XIAO-CHUAN CAI

Here the relative tolerance εr and the safeguard ε̂a are both fixed for all time steps,
and the absolute tolerance ε̌a,n is chosen as ε̌a,0 ∈ [0, ε̂a) at the first time step and
then adaptively determined by

ε̌a,n = max
{

ε̌a,n−1, ‖N(Xn−1)‖2
}

.

In (5.1), the Newton correction vector δXn is calculated by approximately solving
the Jacoian system

JnδXn = −N(Xn),(5.3)

where Jn = N ′(Xn) is the Jacobian matrix. To improve the convergence of the
Jacobian solve, instead of (5.3), we solve the right-preconditioned system

JnM
−1
n (MnδXn) = −N(Xn)(5.4)

by using a Krylov subspace method such as GMRES. Here M−1
n is a preconditioner

based on the domain decomposition method. The GMRES iteration stops when the
linear residual rn = JnδXn +N(Xn) satisfies

‖rn‖2 ≤ max {ζr‖N(Xn)‖2, ζa} ,

where ζr, ζa > 0 are the relative and absolute tolerances respectively. Here ζr, also
called the nonlinear forcing term, is fixed in our study. Some more advanced tech-
niques for setting ζr, e.g., [9], may further improve the performance of the solver.

At each Newton step, when solving the Jacobian system by GMRES, the Jacobian
matrix itself is not explicitly needed; instead, only the matrix-vector multiplication
is required. Therefore we use a Jacobian-free method [23] in which the matrix-vector
multiplication of Jn and Y is approximated by

JnY ≈ N(Xn + ǫY)−N(Xn)

ǫ
,(5.5)

where ǫ > 0 is a small number calculated by using a technique suggested in [33]. We
remark here that the Jacobian matrix can also be generated analytically, or by us-
ing some other methods such as the multi-coloring finite difference method [5] or the
automatic differentiation method [16]. An advantage of generating the Jacobian ma-
trix explicitly is that the sparse matrix-vector multiplication can be carried out with
fewer floating-point operations than using (5.5). However, some extra local memory
is needed to store the matrix and the efficiency of the sparse matrix-vector multipli-
cation might be lower than that of (5.5) on modern heterogeneous supercomputers,
on which memory bandwidth is often a bottleneck. For the above reason, in this
study we choose to use the Jacobian-free method instead of generating the Jacobian
matrix explicitly. It is worth mentioning that, for the preconditioning operation, we
do need to build an approximate Jacobian matrix explicitly as discussed in the next
subsection.

5.2. Restricted additive Schwarz preconditioner. To define the precondi-
tioner M−1 in (5.4), we first decompose the computational domain Ω into np non-
overlapping subdomains Ωp (p = 1, · · · , np), such that Ω = ∪np

p=1Ωp and Ωp ∩ Ωp′ =
∅, ∀p 6= p′. Here np is the number of subdomains and also the number of processor
cores. Then within Ω each subdomain Ωp is extended by δ layers of mesh cells to

SCALABLE FULLY IMPLICIT EULER SOLVER FOR ATMOSPHERIC FLOWS 11

Ωδ
p, resulting in an overlapping decomposition Ω = ∪np

p=1Ω
δ
p. The classical additive

Schwarz (AS(δ) or simply AS, [7]) preconditioner is defined as

M−1
AS(δ) =

np
∑

p=1

(Rδ
p)

TBpR
δ
p.(5.6)

Here Bp represents a certain subdomain solver, Rδ
p and (Rδ

p)
T are the restriction and

prolongation operators respectively. Given a solution vector (4.2) defined on all mesh
cells in Ω, Rδ

p restricts the vector to a vector that is defined only on the mesh cells

within the overlapping subdomain Ωδ
p; while (Rδ

p)
T prolongates the restricted vector

back to a vector defined on all mesh cells in the whole domain Ω with zeros filled
to the components corresponding to mesh cells outside Ωδ

p. In particular when the
overlap is zero, the AS preconditioner becomes the block Jacobi preconditioner.

There are several modifications of the AS preconditioner that may have some po-
tential advantages. Among them a popular one is the left restricted additive Schwarz
(RAS(δ) or simply RAS, [3]) preconditioner that reads

M−1
RAS(δ) =

np
∑

p=1

(R0
p)

TBpR
δ
p.(5.7)

The only difference between the RAS preconditioner and the AS preconditioner is
the extension operator. Instead of (Rδ

p)
T , the RAS preconditioner uses (R0

p)
T which

puts zeros at components corresponding to mesh cells outside the non-overlapping
subdomain Ωp.

In an additive Schwarz preconditioner, it is a common practice to set the subdo-
main solver to be Bp = inv(Jn,p), which is either a direct or an approximate inverse
of the subdomain Jacobian matrix

Jn,p = Rδ
pJn(R

δ
p)

T .

However, using the above formula to calculate Bp could be expensive due to the
high bandwidth and the large number of non-zeros in the sparse matrix Jn,p. There-
fore, instead of using the original second-order spatial discretization, we generate the
subdomain Jacobian matrix associated with a first-order spatial discretization, and
calculate Bp based on it, i.e.,

Bp = inv(J1st
n,p), J1st

n,p = Rδ
pJ

1st
n (Rδ

p)
T .(5.8)

Here the first-order spatial discretization is obtained by simply replacing the piecewise
linear reconstruction (3.15) with a piecewise constant reconstruction

Q̂−(x̂ijk, t) = Qij(t), Q̂+(x̂ijk, t) = Qi+1,j(t),(5.9)

in the cell-centered finite volume scheme. By using the first-order scheme, the number
of non-zeros in the Jacobian matrix is reduced nearly by half. It has been reported
that, in addition to reducing the cost of subdomain solves, using a first-order scheme
to generate the subdomain Jacobian matrix may further improve the convergence of
the linear solver in some cases studied in [47, 48].

We remark here that neither direct nor approximate inverse of J1st
n,k is explicitly

calculated in solving subdomain problems. Instead, only the matrix-vector multi-
plications of inv(J1st

n,k) are required. Since the point-block ordering is used for both

12 CHAO YANG AND XIAO-CHUAN CAI

the unknowns and the discretized equations, each entry of the Jacobian matrix is a
4×4-block. We then use the point-block version of either the sparse LU or the sparse
incomplete LU (ILU) factorization for subdomain solves. The fill-in level ℓ for the ILU
method is adjusted to achieve good performance in terms of the total compute time.
It is also worth mentioning that since the Jacobian matrices of different Newton iter-
ations have similar structures, it helps save some compute time by performing the LU
factorization only once and reusing the factorized matrix within the same nonlinear
solve, as done in, e.g., [47].

6. Numerical tests. We carry out numerical experiments on a newly announced
supercomputer, Tianhe-2, which tops the Top-500 list as of June, 2013. The comput-
ing nodes of Tianhe-2 are interconnected via a proprietary high performance network,
with two 12-core Intel Ivy Bridge Xeon CPUs and 24GB local memory in each node.
We implement algorithms proposed in this paper on top of the Portable, Extensible
Toolkits for Scientific computations (PETSc) library [1]. In the numerical experiments
we use all 24 CPU cores in each node and assign one subdomain to each processor
core. The Xeon Phi MIC processors equipped on Tianhe-2 are not utilized in the
simulation. No physical dissipations are employed unless explicitly mentioned.

In the fully implicit solver, we set the tolerances as follows. For the Newton
iteration, a relative tolerance of εr = 10−6 is utilized, the absolute tolerance is initially
set to ε̌a,0 = 10−9 and then adaptively controlled in (5.2) with safeguard ε̂a = 10−5;
and for the GMRES iteration, the relative and absolute tolerances are respectively
ζr = 10−3 and ζa = 10−11. The restarting parameter in GMRES is set to be 30.

6.1. Validation by several test cases. In this subsection, we validate the dis-
cretization scheme and the fully implicit solver by running several previously published
test cases1.

6.1.1. Test case 1: Density current. The first test case, proposed by Straka
[41], describes the dynamics of a density current (cold air bubble), including the
shape-shearing of the bubble as it travels downwardly and the development of Kelvin-
Helmholtz instabilities after it hits the ground. The simulation is done on a rect-
angular domain (−25.6 km, 25.6 km)× (0, 6.4 km) with rigid-walls on the boundaries.
The flow is initially homogeneous in the horizontal and at the hydrostatic balance
with v = 0 and θ = 300K. A density current is introduced in Ω by perturbing the
temperature field T = p/(ρR) with

T ′ =

{

Tm cos2(πL/2), if L ≤ 1.0,

0K, otherwise,
L =

√

(x− xc)2

x2
r

+
(z − zc)2

z2r
,(6.1)

where Tm = −15K, (xc, zc) = (0 km, 3 km) and xr = 4km, zr = 2km. To obtain
mesh-converged solutions in the test, a physical dissipation with ν = 75.0m2/s is
utilized in the calculation.

Due to the symmetry of the problem, we conduct the simulation only on the
right half of the domain. We show in Figure 6.1 the computed results obtained on
a 1024 × 256 mesh by using the fully implicit ESDIRK(2) method. Starting with
∆t0 = 2.5 seconds and adjusting the time step size by (4.7), we finish the simulation
at t = 900 s after 213 time steps, leading to an average time step size ∆tavg = 4.2

1Geometric and physical parameters in this section are given without nondimensionalization
although they are nondimensionalized in the implementation of the algorithms.

SCALABLE FULLY IMPLICIT EULER SOLVER FOR ATMOSPHERIC FLOWS 13

Fig. 6.1. Test case 1: Density current. Mesh resolution: ∆x = ∆z = 50m, time step size:
∆t0 = 2.5 s, ∆tavg = 4.2 s. The four panels show contour plots of the potential temperature per-
turbation at t = 0 s, 300 s, 600 s and 900 s, respectively. The contour range is between −14.5K and
−0.5K with a contour interval of 1K.

seconds. Contour plots of the potential temperature perturbation at t = 0, 300, 600,
and 900 seconds are given in the figure. Only the portion of [0, 18 km] × [0, 5 km] is
shown in the plots. We find that the results are consistent to published solutions in,
e.g., [31, 43]. In particular, the general pattern of the three well-developed Kelvin-
Helmholtz rotors found at t = 900 s are similar to reference ones.

Denote the total discrete summation of a physical variable φ as

σ(φ) =
1

n1n2

n1−1
∑

i=0

n2−1
∑

j=0

φij ,

where n1, n2 are the numbers of mesh cells in the x and z directions respectively.
Then the numerical conservation error of the total mass at t = tm is defined as

σ(ρ(tm)− ρ(t0))

σ(ρ(t0))
.(6.2)

Due to the consistent calculation of numerical fluxes on the edges of each mass cell, the
spatial discretization is exactly conservative in terms of the total mass. To examine
the mass conservation (6.2), we run the test case again on a 1024 × 256 mesh by
using both the fully implicit ESDIRK(2) and the explicit SSP RK-2 methods. In the
fully implicit run, we use the same time step size as in the previous run; while in the
explicit run, the time step size is fixed to be ∆t = 0.03 s. Figure 6.2 shows the results
on the mass conservation (6.2). Note that although the same spatial discretization is
used in both methods, the behavior of mass conservation is different. For the explicit
method, the mass conservation is exact to the machine precision, as shown in the
left panel of the figure. However, for the fully implicit method, due to the inexact
solution of the nonlinear system at each time step, the conservation error is beyond
the machine precision, as seen in the right panel of the figure. Overall, this error is
relatively small compared to the nonlinear residual and more importantly, it does not
accumulate over time, which is essential in atmospheric modeling.

This test case is also used to examine the accuracy of the fully implicit scheme.
To exclude the influence from the error introduced by the NKS solver, we use a more
rigid stopping condition for the Newton iteration: εr = 10−8 and ε̌a,0 = ε̂a = 10−11,
although we find later that the default stopping condition is sufficiently accurate.

14 CHAO YANG AND XIAO-CHUAN CAI

✵ ✶✵✵ ✷✵✵ ✸✵✵ ✹✵✵ ✺✵✵ ✻✵✵ ✼✵✵ ✽✵✵ ✾✵✵
✲✶�✲✶✹

✲✺�✲✶✺

✵

✺�✲✶✺

✶�✲✶✹

❚✁✂✄ ☎✆✝

❈
✞
✟
✠
✡
☛☞
✌
✍✎
✞
✟
✡
☛☛
✞
☛
✞
✏
✍✞
✍✌
✑
✒
✌
✠
✠

✵ ✶✵✵ ✷✵✵ ✸✵✵ ✹✵✵ ✺✵✵ ✻✵✵ ✼✵✵ ✽✵✵ ✾✵✵
✲✷�✲✶✵

✲✶�✲✶✵

✵

✶�✲✶✵

✷�✲✶✵

❚✁✂✄ ☎✆✝

❈
✞
✟
✠
✡
☛☞
✌
✍✎
✞
✟
✡
☛☛
✞
☛
✞
✏
✍✞
✍✌
✑
✒
✌
✠
✠

Fig. 6.2. Mass conservation results for the density current problem on a 1024 × 256 mesh.
Left panel: the mass conservation error of the explicit SSP RK-2 method with ∆t = 0.03 s. Right
panel: the mass conservation error of the fully implicit ESDIRK(2) method using the adaptive time
stepping started with ∆t0 = 2.5 s.

Following Straka [41], the L2-error of θ′ at t = 900 s is defined as

L2(θ′) =

√

σ

(

[

θ′ij − (θ′)
(ref)
ij

]2
)

,(6.3)

where (θ′)
(ref)
ij is obtained from a reference solution. In order to quantify the error

of the spatial discretization and cancel out the temporal error, we fix the time step
size to ∆t = 1 s and use the solution of 6.25m resolution (corresponding to a 4096×
1024 mesh) as the reference solution. The L2-errors with respect to different mesh
resolutions are shown in the left panel of Figure 6.3, in which we also draw the
ideal second-order convergence line. It is clear to see that the spatial discretization
is second-order accurate. We then fix the mesh resolution to be 25m and use the

Fig. 6.3. Convergence analysis of the density current problem. Left panel: the L2-error of θ′

with respect to different mesh resolutions (fixed time step size ∆t = 1 s); the reference solution is
obtained with 6.25m resolution. Right panel: the L2-error of θ′ with respect to different time step
sizes (fixed mesh resolution 25m); the reference solution is obtained with ∆t = 0.1 s. In both panels,
the gray lines indicate the ideal second-order convergence.

solution of ∆t = 0.1 s as the reference solution in (6.3). The L2-errors with respect to
different time step size are provided in the right panel of Figure 6.3, where the ideal
second-order convergence line is also shown. Again, it is evident that second-order
accuracy is achieved with the ESDIRK(2) temporal integration scheme.

SCALABLE FULLY IMPLICIT EULER SOLVER FOR ATMOSPHERIC FLOWS 15

6.1.2. Test case 2: Interacting bubbles. The second test case, proposed by
Robert [35], studies the interaction of a rising warm bubble and a descending cold
bubble inside a square domain Ω = (0, 1 km)2. Analogous to the first test case, the
flow is initially at the hydrostatic rest with v = 0 and θ = 303.15K. The two bubbles
added to the domain both have a Gaussian profile:

θ′ =

{

θm, if L ≤ s,

θme−
(L−s)2

r2 , otherwise,
L =

√

(x− xc)2 + (z − zc)2,(6.4)

which describes a bubble, centered at (xc, zc), that has an amplitude of θm inside a flat
area of radius s and decays with a sharpness parameter r outside the area. In the test,
the warm bubble has an amplitude of 0.5K and is placed at (500m, 300m) with a flat
radius of 150m. The cold bubble is on top of the warm one at (560m, 640m) with an
amplitude of −0.15K but without a flat core. Both bubbles have the same sharpness
parameter of 50m. No-flux boundary conditions are applied along the boundaries.

Fig. 6.4. Test case 2: Interacting bubbles. Mesh resolution: ∆x = ∆z = 1.25m, time step
size: ∆t0 = 0.5 s, ∆tavg = 2.2 s. The four panels show contour plots of the potential temperature
perturbation at t = 0min, 4min, 7min and 10min, respectively. The contour range is between
−0.1K and 0.45K with a contour interval of 0.1375K. Dashed contour lines are used to emphasize
the −0.1K contour level.

We perform the simulation by using the fully implicit ESDIRK(2) method on
a 800 × 800 mesh. The time step size is initially set to be ∆t0 = 0.5 s and then
adaptively adjusted according to (4.7). The simulation is finished at t = 10min after
270 time steps, resulting in an average time step size ∆tavg = 2.2 s. Contour plots
of the potential temperature perturbation at t = 0, 4, 7 and 10 minutes are shown
in Figure 6.4. We find that the resemblance between the simulated results and the
published results in [31, 35] is remarkable. The fully implicit method successfully
resolves both the large and small scales introduced by the two bubbles in the test.

6.1.3. Test case 3: Inertia-gravity wave. The third test case, introduced by
Skamarock & Klemp [38], describes an inertia-gravity wave propagating in a horizon-
tally periodic channel Ω = (0, 300 km)× (0, 10 km) with rigid walls along the bottom
and top boundaries. The initial condition is set based on a constant horizontal flow
of u = 20m/s in a uniformly stratified atmosphere with a Brunt-Väisälá frequency of

N = 0.01 /s. Here the Brunt-Väisälá frequency is defined as N 2 = g d ln θ
dz

. It imme-

diately follows that θ = θ0 exp(N 2z/g), where the ground temperature is set to be
θ0 = 300K. The wave is excited by adding the following perturbation to the potential

16 CHAO YANG AND XIAO-CHUAN CAI

temperature field:

θ′ =
θm sin(πz

zm
)

1 +
(

x−xc

xr

)2 ,

where θm = 0.01K, zm = 10.0 km, xc = 100.0 km and xr = 5.0 km.

Fig. 6.5. Test case 3: Inertia-gravity wave. Mesh resolution: ∆x = ∆z = 100m, time step size:
∆t0 = 10.0 s, ∆tavg = 30.9 s. The four panels show contour plots of the potential temperature per-
turbation at t = 0 s, 1000 s, 2000 s and 3000 s, respectively. The contour range is between −0.0015K
and 0.01K with a contour interval of 0.0005K. Dashed contour lines are used to emphasize the zero
contour level.

Figure 6.5 shows the computed results obtained on a 3000 × 100 mesh by using
the fully implicit ESDIRK(2) method. The contour plots of the potential temperature
perturbation at t = 0, 1000, 2000, and 3000 seconds are provided in the figure. In the
simulation, we set the initial time step size to be ∆t0 = 10.0 s and then adaptively
vary it according to (4.7). The simulation is stopped at 3000 s after 97 time steps,
resulting in an average time step size ∆tavg = 30.9 s. We find that the computed
results are comparable to those obtained by using a fixed time step of ∆t = 5 s; but
both differ from the original reference results provided by Skamarock & Klemp in [38],
where the solutions are visually symmetric in the vertical direction. We remark that,
in contrast to [38] that uses the Boussinesq approximation, our simulations are based
on the unapproximated, fully compressible Euler equations, and are consistent with
[4, 15], where similar vertical asymmetry was observed.

6.1.4. Test case 4: Linear hydrostatic mountain. The fourth test case,
studied in [8, 39], intends to test the ability of a model to accurately capture ver-
tically propagating linear hydrostatic mountain waves. The initial condition of the
atmosphere is assumed to be a constant horizontal flow of u = 20m/s in an isothermal
state with a constant temperature of θ = 250K. It can be verified that the Brunt-
Väisälá frequency satisfies N = g/

√

cpθ due to the isothermal assumption, where
cp = Rγ/(γ − 1). The simulation is done on Ω = (0, 240 km)× (h, 30 km), where the
mountain profile h is described by a witch of Agnesi curve

h(x) =
hm

1 +
(

x−xc

xr

)2 .(6.5)

The mountain is centered at xc = 120 km with half-width xr = 10 km and height
hm = 1m. These conditions ensure that the problem is close to linear and the

SCALABLE FULLY IMPLICIT EULER SOLVER FOR ATMOSPHERIC FLOWS 17

flow is within the hydrostatic range because: (i) the meteorological Froude number
Fr = u/(Nhm), which measures the linearity, is about 1000; and (ii) the long wave
parameter µ = u/(Nxr), which controls the dispersive effects deviating from the
hydrostatic balance, is around 0.1. No-flux boundary conditions are specified along
the bottom boundary and sponge layers are utilized outside the domain of interest
Ω∗ = (80 km, 160 km)× (h, 12 km).

Fig. 6.6. Test case 4: Linear hydrostatic mountain. Mesh resolution: ∆x = 600m, ∆z =
125m, time step size: ∆t0 = 10.0 s, ∆tavg = 666.7 s. Left panel: the contour plot of the horizontal
velocity perturbation at t = 10h, where the contour range is between −0.05m/s and 0.05m/s with a
contour interval of 0.005m/s. Right panel: the contour plot of the vertical velocity perturbation at
t = 10h, where the contour range is between −0.005m/s and 0.005m/s with a contour interval of
0.0005m/s. Dashed contour lines are used to emphasize the zero contour level.

We carry out the simulation by using the fully implicit ESDIRK(2) method on
a 400 × 240 mesh. Starting with ∆t0 = 10.0 s and following the adaptation in (4.7),
the simulation is finished at t = 10 hours after 54 time steps, leading to an average
time step size ∆tavg = 666.7 s. For this test, the adaptive time stepping method is
able to adjust the time step size by over three orders of magnitude, and the simulated
results, as shown in Figure 6.6, agree well with published results in, e.g., [15].

6.1.5. Test case 5: Linear nonhydrostatic mountain. The fifth test case
differs from the fourth one by having both hydrostatic and nonhydrostatic wave com-
ponents. It is used to test the capability of a model to simulate nonhydrostatic
topographic flows that have small amplitudes. The simulation is carried out on a
domain (0, 144 km) × (h, 30 km) which is horizontally smaller than that in test case
4. Analogous to test case 4, the mountain profile h is given in (6.5) with height
hm = 1m, but with a different center position xc = 72 km and with a different half-
width xr = 1km. The initial condition of the atmosphere is taken to be a constant
horizontal flow of u = 10m/s in a uniformly stratified atmosphere with a Brunt-
Väisälá frequency of N = 0.01 /s and a ground temperature of θ0 = 280K. The
problem is also close to linear because Fr = u/(Nhm) = 1000; but is beyond the hy-
drostatic balance since µ = u/(Nxr) = 1. No-flux boundary conditions are specified
along the bottom topography and non-reflecting boundary conditions are enforced
along the lateral and top boundaries by adding sponge layers outside the domain of
interest Ω∗ = (60 km, 115 km)× (h, 12 km).

We run the test on a 800 × 200 mesh by using the fully implicit ESDIRK(2)
method. In the simulation, we again use an initially small time step size ∆t0 = 10.0 s
and adaptively change it according to (4.7). We find that the efficiency of the adaptive
time stepping method for this test case is comparable to the previous one. The
simulation ends at t = 5 hours after 33 time steps, with an average time step size

18 CHAO YANG AND XIAO-CHUAN CAI

Fig. 6.7. Test case 5: Linear nonhydrostatic mountain. Mesh resolution: ∆x = 180m, ∆z =
150m, time step size: ∆t0 = 10.0 s, ∆tavg = 545.5 s. Left panel: the contour plot of the horizontal
velocity perturbation at t = 5h, where the contour range is between −0.01m/s and 0.01m/s with
a contour interval of 0.0025m/s. Right panel: the contour plot of the vertical velocity perturbation
at t = 5h, where the contour range is between −0.01m/s and 0.01m/s with a contour interval of
0.0005m/s. Dashed contour lines are used to emphasize the zero contour level.

∆tavg = 545.5 s. We show in Figure 6.7 the contour plots of the horizontal and the
vertical velocity perturbations at t = 5hr. The adaptive control of time step size is
successful and the simulated results agree well with reference solutions in, e.g., [15].

6.1.6. Test case 6: Schär mountain. This test case was introduced by Schär
et al. in [37]. The initial state of the flow has a constant horizontal velocity u =
10m/s and is in a uniformly stratified atmosphere with a Brunt-Väisälá frequency of
N = 0.01 /s and a ground temperature of θ0 = 280K. We run the test on the domain
Ω = (−25 km, 25 km)× (h, 21 km) whose bottom boundary h is given by

h(x) = hme−(x
r
)2 cos2

(

πx

λc

)

,

where hm = 250m, r = 5km and λc = 4km. Compared to the previous two test
cases with single-peak mountains, the mountain profile in this test case contains
rapidly decaying peaks located at x = (4n) km, for n = 0, ±1, ±2, ... We spec-
ify no-flux boundary condition along the bottom boundary and apply non-reflecting
boundary conditions by adding sponge layers outside the domain of interest Ω∗ =
(−10 km, 10 km)× (h, 10 km).

Figure 6.8 shows the computed results obtained on a 500 × 200 mesh by using
the fully implicit ESDIRK(2) method. The contour plots of both horizontal and
vertical velocity perturbations at t = 10 hours are drawn. In the simulation, similar
to the previous two test cases with topography, we set the initial time step size to
be ∆t0 = 10.0 s and then adaptively control it by using (4.7). Once again, the
adaptive time stepping strategy works well in the test, with an average time step size
∆tavg = 947.4 s. In addition, the large time step size doesn’t degrade the accuracy,
the computed results agree well with published results in, e.g., [15, 43], although much
smaller time steps are used in their works.

6.1.7. Summary of CFL numbers. We summarize in Table 6.1 the respective
CFL numbers due to both the fast acoustic wave and the advection defined in (4.3)
for the six test cases. It is obvious that for different test cases, the adaptive time
stepping method works very differently. For the three test cases that involve steady-
state simulation of mountain waves, the fully implicit time step is adjusted to be

SCALABLE FULLY IMPLICIT EULER SOLVER FOR ATMOSPHERIC FLOWS 19

Fig. 6.8. Test case 6: Schär mountain. Mesh resolution: ∆x = 100m, ∆z = 105m, time
step size: ∆t0 = 10.0 s, ∆tavg = 947.4 s. Left panel: the contour plot of the horizontal velocity
perturbation at t = 10h, where the contour range is between −2m/s and 2m/s with a contour
interval of 0.2m/s. Right panel: the contour plot of the vertical velocity perturbation at t = 10h,
where the contour range is between −2m/s and 2m/s with a contour interval of 0.05m/s. Dashed
contour lines are used to emphasize the zero contour level.

Table 6.1

Summary of the acoustic and the advective CFL numbers for test case 1 to 6.

Test case 1 2 3 4 5 6
Averaged CFLf 58.3 617.2 106.6 1418.5 1220.3 3158.1
Averaged CFLa 8.5 7.4 6.3 106.7 36.4 112.0

thousands of times larger as compared to the explicit method. For the other three
test cases, the time step size is moderate, stepping over acoustic time scale by at least
50 times, while keeping within the range of one magnitude larger than the advective
time scale. We remark that by increasing the spatial resolution, the advantage of
the fully implicit method with adaptive time stepping is more evident, as seen in the
weak-scaling tests to be discussed in the next subsection.

6.2. Performance of the fully implicit algorithm. In this subsection, we
focus on the parallel performance of the proposed fully implicit solver.

6.2.1. Influence of different overlaps and subdomain solvers. There are
several performance-related parameters in the NKS algorithm. To investigate the
influence of these parameters, we first focus on the Schär mountain problem by runing
the tests with 288 processor cores. The experiments are carried out on a 3072× 1536
mesh with a fixed time step size ∆t = 10 s for the first ten time steps. We adjust
the overlap from 1 to 5 and try different subdomain solvers including the sparse LU
factorization and the sparse ILU factorization with different levels of fill-in. It is
observed that the total number of Newton iterations is insensitive to the parameters
and is always 2 for each nonlinear solve. The number of linear iterations and the
compute time, however, both vary with the parameters, as summarized in Table 6.2.
We remark that when the overlap is zero, the RAS preconditioner degenerates to the
block-Jacobi preconditioner and the convergence of the solver is quite slow. Therefore
we do not include the results of the non-overlapping preconditioner in the table.

From Table 6.2, we first note that by increasing the overlap or by increasing the

20 CHAO YANG AND XIAO-CHUAN CAI

Table 6.2

Performance of NKS when using different overlaps and subdomain solvers. Tests are done for
solving the Schär mountain problem on a 3072× 1536 mesh with 288 processor cores. The time step
size is fixed to ∆t = 10 s and the results are averaged over the first ten time steps.

GMRES/Newton Compute time (s)/Newton
δ 1 2 3 4 5 1 2 3 4 5

ILU(0) 48.1 41.7 39.8 39.6 40.0 1.69 1.47 1.47 1.48 1.49
ILU(1) 44.8 39.2 38.6 38.1 37.9 1.66 1.45 1.46 1.46 1.47
ILU(2) 44.4 38.9 38.2 37.9 36.2 1.69 1.46 1.48 1.49 1.50
ILU(3) 43.2 38.2 37.4 37.1 36.9 1.78 1.58 1.59 1.59 1.60
ILU(4) 41.9 36.9 35.9 35.5 35.3 1.87 1.65 1.66 1.66 1.68
ILU(5) 40.0 35.4 34.1 33.6 33.4 1.95 1.70 1.71 1.71 1.73
LU 25.6 22.3 21.4 19.9 20.7 2.52 2.42 2.44 2.53 2.59

fill-in level, the number of GMRES iterations becomes smaller, but the compute time
doesn’t necessarily reduce because of the increased cost of subdomain solves. In par-
ticular, when the sparse LU factorization instead of ILU is used as the subdomain
solver, GMRES converges with fewer iterations but the compute time is larger because
LU is more expensive than ILU. Overall, we find that the optimal choice in terms of
compute time is RAS(2) with ILU(1) subdomain solver. Note that the performance
is quite close for the combination of RAS(2), RAS(3) or RAS(4) with ILU(0), ILU(1),
ILU(2) or ILU(3). For comparison, we also try to replace the RAS(2) preconditioner
with the AS(2) preconditioner in the same test. And we find that both the num-
ber of GMRES iterations and the compute time increase when AS(2) is used. This
observation is in consistency with other reports [3].

6.2.2. Strong scaling results. We perform the strong scaling test using the
same test case on a fixed 6144× 3072 mesh and different number of processor cores.
The test is run with a fixed time step ∆t = 10 s to t = 100 s. In the test, we use
RAS(2) with both sparse ILU(1) and LU as the subdomain solver. We show in Table
6.3 the average numbers of Newton and GMRES iterations as well as the total compute
time. From the table we observe that, when the number of processor cores (np in the

Table 6.3

Strong scaling results for solving the Schär mountain problem on a 6144×3072 mesh to t = 100 s.
For the explicit SSP RK-2 method, the time step size is ∆t = 0.01 s; for the fully implicit method,
the time step size is ∆t = 10 s and the overlap is δ = 2.

Newton/Step GMRES/Newton Compute time (s)
np ILU(1) LU ILU(1) LU ILU(1) LU Exp.
576 2.1 2.1 69.6 34.6 222.6 299.8 748.7
1152 2.1 2.1 70.9 37.3 108.3 140.2 368.4
2304 2.1 2.1 74.5 41.9 57.9 72.3 182.1
4608 2.1 2.1 75.7 44.8 29.1 37.8 91.4
9216 2.1 2.1 82.1 52.0 16.1 20.2 46.9
18432 2.1 2.1 84.5 55.5 8.3 10.4 23.7

table) is doubled, the number of Newton iterations does not change and the number of
GMRES iterations increases mildly in the NKS solver. In terms of the total compute
time, both methods scale well with up to 18, 432 processor cores. For comparison
purpose, we also include the performance results of the explicit SSP RK-2 method,

SCALABLE FULLY IMPLICIT EULER SOLVER FOR ATMOSPHERIC FLOWS 21

Fig. 6.9. Strong scaling results for solving the Schär mountain problem as in Table 6.3. The
dashed lines with circle markers represent for the fully implicit method preconditionered by RAS(2)
with ILU(1) subdomain solver. The dot-dashed lines with triangle markers represent for the fully
implicit method preconditionered by RAS(2) with LU subdomain solver. The gray lines indicate the
results of the explicit method.

which requires a lot more time steps due to the CFL restriction. Figure 6.9 displays
the total compute time and the speedup with respect to the number of processor
cores. We observe from the figure that both the explicit and the implicit methods
have nearly linear speedup, and the implicit methods outperform the explicit method
by several times in terms of the total compute time.

6.2.3. Weak scaling results. A weak scaling test is carried out to further
examine the performance of the solver when the problem size is increased in proportion
to the number of processor cores. In this test, we are particularly interested in stopping
the calculation at a target simulation time. Table 6.4 shows the performance results in
the weak scaling test, in which both the inertial-gravity wave and the Schär mountain
problems are studied. For the inertial-gravity wave case, we start with 96 processor
cores and a 3072× 96 mesh; and for the Schär mountain, we start with 72 processor
cores and a 576× 288 mesh. The number of processor cores is increased as the mesh
is refined accordingly. We use an initial time step size of ∆t0 = 10 s in (4.7) for the
inertial-gravity wave problem and finish the simulation at t = 3000 s; while for the
Schär mountain problem, the initial time step size is ∆t0 = 10 s and the simulation
is terminated at t = 10hr. We show in the table the results obtained with the fully
implicit ESDIRK(2) method and the explicit SSP RK-2 method. The preconditioner
for the fully implicit solver is RAS(2) with LU as the subdomain solver. We comment
that ILU may take shorter computing time but LU is more stable especially when the
time step size is large.

Below we list several observations made from Table 6.4.
• For the explicit method, the total number of time steps as well as the total
compute time doubles as the mesh is refined for both test cases; this is due
to the stability restriction on the time step size.

• For the inertial-gravity wave case, both the total number of implicit time
steps and the total number of Newton iterations increase very slowly as more
processor cores are used; but the total compute time increases more rapidly
due to the increased number of GMRES iterations. Overall, the implicit
method is always a few times faster than the explicit method.

• For the Schär mountain case, the total number of implicit time steps is more
sensitive to the mesh resolution than the case of inertial-gravity wave. And

22 CHAO YANG AND XIAO-CHUAN CAI

Table 6.4

Weak scaling results of the fully implicit ESDIRK(2) method and the explicit SSP RK-2 method.
Both the inertial-gravity wave problem and the Schär mountain problem are tested.

Inertia-gravity wave Schär mountain
np 96 384 1536 72 288 1152

Mesh size (in x) 3072 6144 12288 576 1152 2304
Mesh size (in z) 96 192 384 288 576 1152

Implicit time steps 96 96 97 38 66 89
Total Newton 235 239 244 135 187 241
Total GMRES 2971 4075 5850 14035 28332 54537

Total compute time (s) 58.3 84.2 122.3 115.7 254.7 502.9
Explicit time steps 20000 40000 80000 360000 720000 1440000

Total compute time (s) 122.5 245.1 491.4 1863.7 3716.6 7456.3

as a result, the total numbers of Newton and GMRES iterations, as well as
the total compute time, increase rapidly as the mesh is refined. Although not
ideally scaling, the implicit method still outperforms the the explicit method
by over 13 times.

It is worth mentioning that for the weak scaling tests, the theoretically ideal
situation is that the total compute time remains as a constant as the number of
processor cores is increased. As shown by the experiments, neither the explicit method
nor the implicit method reaches the ideal performance. In order to improve the weak
scaling performance of the fully implicit solver, we believe coarse level corrections are
required in the additive Schwarz preconditioner and plan to look into this issue in the
future.

6.2.4. Performance on using different time steps. To analyze the behavior
of the implicit solver as the time step size is changed, we run again the Schär mountain
test on a fixed 1152 × 576 mesh using 288 processor cores. In the test, the adaptive
time stepping is turned off and different time step sizes are tried. The simulation
is stopped at t = 600 seconds. The results on the average numbers of Newton and
GMRES iterations as well as the total compute time are summarized in Table 6.5. It is

Table 6.5

Performance results on using different time step sizes. The Schär mountain problem is solved
on 1152× 576 mesh using 288 processor cores. The simulation is stopped at t = 600 seconds.

∆t 2 5 10 20 50
Implicit time steps 300 120 60 30 12

Newton/Step 4.0 4.0 4.0 4.1 4.2
GMRES/Newton 7.7 10.5 13.3 18.3 30.2

Total compute time (s) 192.7 69.6 43.8 19.6 12.8

observed from the results that, the average number of Newton iterations for each time
step is nearly independent of the time step size; but the average number of GRMRES
iterations increases as the time step size is increased. Overall, fewer time steps are
required when we use larger time steps, leading to the reduce of the total compute
time. Since increasing the time step size may cause larger discretization error, there
is a trade-off between the accuracy and the time step size, which is the reason for
using the adaptive time stepping.

SCALABLE FULLY IMPLICIT EULER SOLVER FOR ATMOSPHERIC FLOWS 23

7. Concluding remarks. In this paper, we developed a fully implicit method
for solving the compressible Euler equations in mesoscale atmospheric simulations. A
cell-centered finite volume scheme based on an AUSM+-up method and a second-order
accurate piecewise linear reconstruction is applied to spatially discretize the Euler
equations. In order to stabilize physically insignificant fast waves and accurately
integrate the Euler equations in time, we employ a second-order ESDIRK method
together with an adaptive time-stepping strategy. The nonlinear system arising at
each implicit time step is solved by using a Jacobian-free Newton-Krylov-Schwarz
algorithm. To reduce the computation and communication cost of the preconditioning
operator, the additive Schwarz preconditioner is built based on a first-order spatial
discretization. Numerical results on several test cases are provided to validate the
accuracy and examine the parallel performance of the proposed fully implicit method.

Acknowledgments. The authors would like to express their appreciations to
the anonymous reviewers for the invaluable comments that have greatly improved the
quality of the manuscript.

REFERENCES

[1] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.

Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, PETSc users manual, Tech.
Report ANL-95/11 - Revision 3.4, Argonne National Laboratory, July 2013.

[2] L. Bonaventura, A semi-implicit semi-Lagrangian scheme using the height coordinate for a
nonhydrostatic and fully elastic model of atmospheric flows, J. Comput. Phys., 158 (2000),
pp. 186–213.

[3] X.-C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse
linear systems, SIAM J. Sci. Comput., 21 (1999), pp. 792–797.

[4] X. Chen, N. Andronova, B. Van Leer, J. E. Penner, J. P. Boyd, C. Jablonowski, and

S.-J. Lin, A control-volume model of the compressible Euler equations with a vertical
Lagrangian coordinate, Mon. Wea. Rev., 141 (2013), pp. 2526–2544.

[5] T. F. Coleman and J. J. Moré, Estimation of sparse Jacobian matrices and graph coloring
problems, SIAM J. Numer. Anal., 20 (1983), pp. 187–209.

[6] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, SIAM, Philadelphia, 1996.

[7] M. Dryja and O. Widlund, Domain decomposition algorithms with small overlap,
SIAM J. Sci. Comput., 15 (1994), pp. 604–620.

[8] D. R. Durran and J. B. Klemp, A compressible model for the simulation of moist mountain
waves, Mon. Wea. Rev., 111 (1983), pp. 2341–2361.

[9] S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inexact Newton method,
SIAM J. Sci. Comput., 17 (1996), pp. 1064–8275.

[10] K. J. Evans, D. W. Rouson, A. G. Salinger, M. A. Taylor, W. Weijer, and J. B. White,

III, A scalable and adaptable solution framework within components of the community
climate system model, in Proceedings of the 9th Intl. Conf. on Computational Science
(ICCS 2009), part II, Lecture Notes in Computer Science, vol. 5545, Berlin, Heidelberg,
2009, Springer-Verlag, pp. 332–341.

[11] K. J. Evans, M. A. Taylor, and J. B. Drake, Accuracy analysis of a spectral element
atmospheric model using a fully implicit solution framework, Mon. Wea. Rev., 138 (2010),
pp. 3333–3341.

[12] J. E. Fromm, A method for reducing dispersion in convective difference schemes, J. Com-
put. Phys., 3 (1968), pp. 176–189.

[13] A. J. Gadd, A split explicit integration scheme for numerical weather prediction, Q. J. R. Me-
teorol. Soc., 104 (1978), pp. 569–582.

[14] T. Gal-Chen and R. C. J. Somerville, On the use of a coordinate transformation for the
solution of the Navier-Stokes equations, J. Comput. Phys., 17 (1975), pp. 209–228.

[15] F. X. Giraldo and M. Restelli, A study of spectral element and discontinuous Galerkin
methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric model-
ing: Equation sets and test cases, J. Comput. Phys., 227 (2008), pp. 3849–3877.

24 CHAO YANG AND XIAO-CHUAN CAI

[16] A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentia-
tion, SIAM, Philadelphia, 2000.

[17] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. Smith, Performance modeling and
tuning of an unstructured mesh CFD application, in Proceedings of the 2000 ACM/IEEE
conference on Supercomputing (SC ’00), IEEE Computer Society, 2000.

[18] K. Gustafsson and G. Söderlind, Control strategies for the iterative solution of nonlinear
equations in ODE solvers, SIAM J. Sci. Comput., 18 (1997), pp. 23–40.

[19] V. John and J. Rang, Adaptive time step control for the incompressible Navier-Stokes equa-
tions, Comput. Meth. Appl. Mech. Eng., 199 (2010), pp. 514–524.

[20] R. Klein, U. Achatz, D. Bresch, O.M. Knio, and P. Smolarkiewicz, Regime of validity of
soundproof atmospheric flow models, J. Atmos. Sci., 67 (2010), pp. 3226–3237.

[21] J. Klemp and R. B. Wilhelmson, The simulation of three dimensional convective storm
dynamics, J. Atmos. Sci., 35 (1978), pp. 1070–1096.

[22] D. A. Knoll, L. Chacón, L. G. Margolin, and V. A. Mousseau, On balanced approximations
for time integration of multiple time scale systems, J. Comput. Phys., 185 (2003), pp. 583–
611.

[23] D. A. Knoll and D. E. Keyes, Jacobian-free Newton-Krylov methods: A survey of approaches
and applications, J. Comput. Phys., 193 (2004), pp. 357–397.

[24] D. A. Knoll, V. A. Mousseau, L. Chacón, and J. Reisner, Jacobian-free Newton-Krylov
methods for the accurate time integration of stiff wave systems, 25 (2005), pp. 213–230.

[25] M. Kwizak and A. J. Robert, A semi-implicit scheme for grid point atmospheric models of
the primitive equations, Mon. Wea. Rev., 99 (1971), pp. 32–36.

[26] B. P. Leonard, A stable and accurate convective modelling procedure based on quadratic up-
stream interpolation, Comput. Meth. Appl. Mech. Eng., 19 (1979), pp. 59–98.

[27] M.-S. Liou, A sequel to AUSM, part II: AUSM+-up for all speeds, J. Comput. Phys., 214
(2006), pp. 137–170.

[28] P. Lucas, H. Bijl, and A. H. van Zuijlen, Efficient unsteady high Reynolds number flow
computations on unstructured grids, Comput. Fluids, 39 (2010), pp. 271–282.

[29] V. A. Mousseau, D. A. Knoll, and J. M. Reisner, An implicit nonlinearly consistent method
for the two-dimensional shallow-water equations with Coriolis force, Mon. Wea. Rev., 130
(2002), pp. 2611–2625.

[30] W. A. Mulder and B. Van Leer, Experiments with implicit upwind methods for the Euler
equations, J. Comput. Phys., 59 (1985), pp. 232–246.

[31] A. Müller, J. Behrens, F. X. Giraldo, and V. Wirth, Comparison between adaptive
and uniform discontinuous Galerkin simulations in dry 2D bubble experiments, J. Com-
put. Phys., 235 (2013), pp. 371–393.

[32] H. Park, R. R. Nourgaliev, R. C. Martineau, and D. A. Knoll, On physics-based precon-
ditioning of the Navier-Stokes equations, J. Comput. Phys., 228 (2009), pp. 9131–9146.

[33] M. Pernice and H. F. Walker, NITSOL: A Newton iterative solver for nonlinear systems,
SIAM J. Sci. Comput., 19 (1998), pp. 302–318.

[34] J. Reisner, A. Wyszogrodzki, V. A. Mousseau, and D. A. Knoll, An efficient physics-based
preconditioner for the fully implicit solution of small-scale thermally driven atmospheric
flows, J. Comput. Phys., 189 (2003), pp. 30–44.

[35] A. Robert, Bubble convection experiments with a semi-implicit formulation of the Euler equa-
tions, J. Atmos. Sci., 50 (1993), pp. 1865–1873.

[36] M. Satoh, Conservative scheme for the compressible nonhydrostatic models with the horizon-
tally explicit and vertically implicit time integration scheme, Mon. Wea. Rev., 130 (2002),
pp. 1227–1245.

[37] C. Schär, D. Leuenberger, O. Fuhrer, D. Lüthic, and C. Girard, A new terrain-following
vertical coordinate formulation for atmospheric prediction models, Mon. Wea. Rev., 130
(2002), pp. 2459–2480.

[38] W. C. Skamarock and J. B. Klemp, Efficiency and accuracy of the Klemp-Wilhelmson time-
splitting technique, Mon. Wea. Rev., 122 (1994), pp. 2623–2630.

[39] R. B. Smith, The influence of mountains on the atmosphere, Adv. Geophys., 21 (1979), pp. 87–
230.

[40] A. St-Cyr and D. Neckels, A fully implicit Jacobian-free high-order discontinuous Galerkin
mesoscale flow solver, in Proceedings of the 9th Intl. Conf. on Computational Science
(ICCS 2009), part II, Lecture Notes in Computer Science, vol. 5545, Berlin, Heidelberg,
2009, Springer-Verlag, pp. 243–252.

[41] J. M. Straka, R. B. Wilhelmson, L. J. Wicker, J. R. Anderson, and K. K. Droege-

meier, Numerical solutions of a non-linear density current: a benchmark solution and
comparisons, Int. J. Numer. Methods Fluids, 17 (1993), pp. 1–22.

SCALABLE FULLY IMPLICIT EULER SOLVER FOR ATMOSPHERIC FLOWS 25

[42] C. Temperton and A. Staniforth, An efficient two-time-level semi-Lagrangian semi-implicit
integration scheme, Q. J. R. Meteorol. Soc., 113 (1987), pp. 1025–1039.

[43] P. A. Ullrich and C. Jablonowski, Operator-split Runge-Kutta-Rosenbrock methods for
nonhydrostatic atmospheric models, Mon. Wea. Rev., 140 (2012), pp. 1257–1284.

[44] P. A. Ullrich, C. Jablonowski, and B. van Leer, High-order finite-volume methods for the
shallow-water equations on the sphere, J. Comput. Phys., 229 (2010), pp. 6104–6134.

[45] C. Völcker, J. B. Jørgensen, P. G. Thomsen, and E. H. Stenby, Adaptive stepsize control
in implicit Runge-Kutta methods for reservoir simulation, in Proceedings of the 9th Intl.
Symp. on Dynamics and Control of Process Systems (DYCOPS 2010), 2010, pp. 509–514.

[46] N. N. Yanenko, The Method of Fractional Steps: The Solution of Problems of Mathematical
Physics in Several Variables, Springer Verleg, 1971.

[47] C. Yang and X.-C. Cai, Newton-Krylov-Schwarz method for a spherical shallow water model,
in Proceedings of the 19th Intl. Conf. on Domain Decomposition Methods, Lecture Notes
in Computational Science and Engineering, Y. Huang, R. Kornhuber, O. Widlund, and
J. Xu, eds., vol. 78, Berlin, Heidelberg, 2011, Springer-Verlag, pp. 149–155.

[48] C. Yang and X.-C. Cai, Parallel multilevel methods for implicit solution of shallow water
equations with nonsmooth topography on the cubed-sphere, J. Comput. Phys., 230 (2011),
pp. 2523–2539.

[49] C. Yang, J. Cao, and X.-C. Cai, A fully implicit domain decomposition algorithm for shallow
water equations on the cubed-sphere, SIAM J. Sci. Comput., 32 (2010), pp. 418–438.

