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Abstract� We report our experiences on using a new variant of the Schwarz preconditioned GMRES
methods in the implicit solution of the unsteady compressible Navier�Stokes equations discretized on two�
dimensional unstructured meshes� We �rst partition the global mesh with the recursive spectral bisection
method into submeshes� and then we introduce a family of Schwarz methods� referred to as the Variable
Degree Schwarz methods �VDS� on the overlapping submeshes� In VDS� the subdomain preconditioner is
constructed by using a polynomial in two matrix variables� namely the matrix� in its un�factorized form� of
the current time step k and another matrix� in its factorized form� obtained at a previous time step j� The
degree of the matrix polynomial in each subdomain is determined automatically so that extra preconditioning
is performed only in subdomains whose associated local matrices have large condition numbers� The extra
preconditioning occurs often near the body of the airfoil� We show numerically that VDS is very e�ective�
Unlike the well�known elliptic theory� we observe that the convergence rate of VDS preconditioned GMRES
degenerates very mildly without a coarse space for reasonably large number of subdomains� We also study
the e�ects of the overlapping size� the number of subdomains and the level of inexactness of the subdomain
solvers� The other purpose of the study is to understand the robustness of the Schwarz methods with respect
to �ow parameters� such as the CFL� the free stream Mach number and the Reynolds number� Numerical
results for both subsonic and transonic problems are reported�
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�� Introduction� The system of unsteady compressible Navier�Stokes �N	�S	
 equa�
tions is a fundamental system in �uid dynamics	 To be able to solve the system quickly
and accurately in complex geometry is one of the ultimate goals of computational �uid
dynamics ���	 To achieve the goal� several important techniques have been developed in
the past few years� such as unstructured grid generations for complex geometry� stable�
conservative discretizations of the N	�S	 equations� unstructured grid partitionings� as well
as the powerful� robust implicit preconditioned iterative solvers discussed below	 Most of
the techniques are developed for steady state calculations� see e	g	� ��� �� �� and references
therein	 In this paper� we put all the techniques together and introduce a robust domain
decomposition based fast preconditioned iterative method for the time accurate solution of
unsteady problems	

We study implicit methods for solving unsteady N	�S	 equations discretized on two�
dimensional unstructured meshes with a combined �nite element��nite volume scheme for
the spatial variables and a simple backward Euler scheme for the temporal variable	 It
is well�known that the main advantage of implicit methods is that they allow the time
steps to be determined solely based on the physics of the �uid �ow� not on the stability
property of the time discretization scheme� ��� ��� ��	 However� to advance in time� a
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large� sparse� nonsymmetric linear system of equations must be constructed and solved at
each time step	 Depending of the size of the time step� and several other �ow parameters�
the conditioning of the matrix may change from well�conditioned to mildly ill�conditioned	
And due to the complexity of the �ow pattern� at a given time step� the matrix may be ill�
conditioned in certain subregions near the airfoil and relatively well�conditioned elsewhere	
Details about the local conditioning of the matrix will be discussed later	 To solve these
systems iteratively� it is necessary to have a family of preconditioners whose strength can be
adjusted locally in each subdomain according to the �ow condition	 Overlapping Schwarz
methods �OSM
 is a family of preconditioners for solving large sparse linear systems arising
from the discretization of partial di�erential equations� see e	g	 ��� �� ��� ��	 It was
originally designed for scalar linear elliptic problems	 We �nd OSM to be very attractive
for our purpose because ��
 they are more parallelizable than the popularly used global ILU
preconditioners� ��
 they are e�cient for nonsymmetric and inde�nite problems� ��
 they
have mesh independent convergence rates� at least for elliptic �nite element problems� ��

they have adjustable strength controlled by using the inexact solution techniques for solving
local problems	 We shall further explore the �exibility of OSM at the subdomain level and
introduce a new variant below	

It is well�known that when constructing a preconditioner for solving a single system of
linear equations� Au � f � all the information needed has to be from the matrix A	 How�
ever� the issue for time dependent problems is di�erent	 A sequence of inter�related systems
A�k�u � f �k� have to be solved	 If the matrix� and especially in its �often inexactly
 factor�
ized form� obtained at a previous time step can be properly used� then the preconditioner
at the current time step can be obtained cheaply	 More precisely speaking� at each time
step� we solve the global linear system by a preconditioned GMRES method ����
 and in
the preconditioning stage� following the general overlapping Schwarz framework� we solve
the local subdomain problems by another preconditioned GMRES method� with di�erent
preconditioners and stopping conditions	 In each subdomain the preconditioner is built by
using a polynomial in two matrix variables� namely the matrix� in its un�factorized form� of
the current time step k and another matrix� in its factorized form� obtained at a previous
time step j	 The degree of the matrix polynomial re�ects the conditioning of the subdomain
matrix	 Note that classical Schwarz methods correspond to the case where the degree of
the matrix polynomials always equals to one	 In our method� the degree of the polynomial
varies from subdomain to subdomain depending the �ow conditions� and therefore we refer
to the methods as variable degree Schwarz methods �VDS
	

In this paper� we also investigate the di�erence between the Schwarz family of pre�
conditioners and other methods such as the simple Jacobi iterative method and the global
ILU preconditioned iterative method	 Within the Schwarz preconditioners� we try to un�
derstand the role of the overlapping size between subdomains� the e�ect of the number of
subdomains� and the e�ect of the inexact subdomain solvers	 Since the construction of
the preconditioner is expensive� we explore the possibility of re�using the preconditioner for
several time steps	

We restrict our attention to sequential computers� and single level Schwarz algorithms	
For steady state problems� some studies can be found in ���	 For other recent development
in unsteady calculations� we refer the readers to ��� ��� ��	 The physical model we choose
to test our algorithms contains a single element NACA���� airfoil at a rather large angle of
attack with a modest Reynolds number	 Both subsonic and transonic cases are studied in
the paper	 The paper is organized as follows	 In x�� we discuss the unsteady compressible
N	�S	 equations in the conservative form� the boundary conditions and a discretization

	



scheme	 In x�� we study a preconditioned iterative method and introduce a new variant
of the overlapping Schwarz preconditioners	 Numerical experiments for both subsonic and
transonic �ows are reported in x�	 x� includes a few �nal remarks	

�� The two�dimensional unsteady N��S� equations� In this section� we describe
the two�dimensional unsteady compressible N	�S	 equations in its conservative form	 We also
discuss the spatial and temporal discretizations of the equations on unstructured meshes	
Following the notions of Farhat� Fezoui and Lanteri ���� ��� and Fezoui and Stou�et ����
for the spatial variables� we use a combined �nite element��nite volume scheme and for the
temporal variable we use a simple backward Euler method	 The scheme is of second order
in space and �rst order in time	

���� Governing equations� Let � � �� be the �ow domain and � its boundary� as
shown in Fig	 �	 The conservative form of the N	�S	 equations is given by
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Here the functions F� and F� denote the convective �uxes
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and the functions R� and R� denote the di�usive �uxes
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In the above expressions� � is the density� �U � �u� v
T is the velocity vector� E is the total
energy per unit of volume� and p is the pressure	 These variables are related by the state
equation for perfect gas
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where � denotes the ratio of speci�c heats �� � ���� for air
	 The speci�c internal energy �

is related to the temperature via
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In the di�usive �uxes� �xx� �xy� and �yy are the components of the two�dimensional Cauchy
stress tensor� k is the normalized thermal conductivity� Pr � ��cp	k� is the Prandtl number
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�Pr � ����� for air
� and Re � ���U�L�	�� is the Reynolds number� where ��� �U�� L�� and
�� denote the characteristic density� velocity� length� and di�usivity� respectively	 The
components of Cauchy stress tensor are related to the velocity via
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where � denotes the normalized viscosity	

���� Boundary conditions� We are interested in unsteady� external �ows around an
airfoil as pictured in Fig	�	 The domain boundary is � � �w ��� and the far �eld velocity
is �U�	 On the wall boundary �w� a no�slip condition on �U and a Dirichlet condition on the
temperature T are imposed� i	e	�

�U � ��� and T � Tw���


No boundary condition is speci�ed for the density	 In the far �eld� the viscous e�ect is
assumed to be negligible� therefore a uniform free�stream velocity �U� is imposed on ��
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where 
 is the angle of attack� and M� is the free�stream Mach number	

���� Discretization� Let the temporal variable t be discretized as tk � tk�� � �tk�
where �tk is the discrete time increment and t� � �	 We consider the increment �W k �
W k �W k��� where W k is an approximation of W ��� tk
 	 Note that when an algorithm is
written in the �delta� form ��� ��� the increment �W k is the unknown variable rather than
W k 	 Here� we use a �rst�order �nite di�erence approximation for the temporal variable�
namely� the backward Euler scheme given as
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where Fk�� and Rk�� are approximations of F�W ��� tk��

 and R�W ��� tk��

� respectively	
We determine the time step size in the following way	 Let CFL be a pre�selected positive
number	 For each element� with size hi� of the �nite element mesh� we de�ne an element
time step size by

�tki � hi
CFL

�Ci � kUik�
 � �	�RePr hi


and then the global time step is de�ned by

�tk � min
i
f�tki g���


Here Ci is the element sound speed� and Ui is the element velocity vector	
The computational domain is discretized by a triangular grid as pictured in Fig	�	 We

use unstructured grids since they provide �exibility for tessellating about complex geome�
tries and for adapting to �ow features� such as shocks and boundary layers	 We locate the





Fig� �� The computational domain � and its wall and far �eld boundarys

�

�w

��

�U� 


variables at the vertices of the grid� which gives rise to a cell�vertex scheme	 The space of
solutions is taken to be the space of piecewise linear continuous functions	 The discrete sys�
tem is obtained via a mixed Galerkin �nite element��nite volume formulation� see Farhat
et al	 ���� ��� and Fezoui and Stou�et ��� for details	 In short� the discretized system for
��
 is obtained as follows�

� For the time derivative of ��
 we use a �mass�lumping� technique� in which we
replace the mass matrix by some diagonal matrix	

� For the convective terms of the left�hand side of ��
� we use a �rst�order scheme
that is an extension of Van Leer�s MUSCL ��� scheme to the case of unstructured
grids �see Fezoui and Stou�et ���
 with a Roe approximate Riemann solver ���	

� For the di�usive terms of the left�hand side of ��
� we use a Galerkin �nite element
��rst�order quadrature integration
	

� For the convective terms of the right�hand side of ��
� we use a second�order scheme
that is again an extension of Van Leer�s MUSCL scheme to the case of unstructured
grids �see Fezoui and Stou�et ���
 with a Roe approximate Riemann solver ���	
We also use Van Albada�s limiting procedure to reduce numerical oscillations of the
solutions	

� For the di�usive terms of the right�hand side of ��
� we use a regular Galerkin �nite
element method �second�order quadrature integration
	

Although both approximations we use for the left�hand side of ��
 are spatially �rst�
order� they operate on the increment �W k and as a consequence the resulting scheme is
spatially second�order for any �xed �t	 We assume W k satis�es strongly the wall boundary
conditions on �w and the far �eld boundary conditions at in�nity	 For the initial values� W �

satis�es strongly the wall boundary conditions on �w and the far �eld boundary conditions
at ��	 For the initial values and at the interior nodes of �� W � takes the free�stream
boundary condition	

Putting pieces of the discretization together� at each time step� we obtain a large� sparse�
generally nonsymmetric linear system of equations of the form�

D�k�

�tk
� B�k�

�
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where D�k� is a diagonal� lumped mass matrix� B�k� is the sum of the convective and di�usive
terms on the left�hand side of ��
 discretized by the �nite volume and �nite element methods�
respectively� fk is the discretized right�hand side of ��
� and uk is the approximate nodal
value of �W k at the �nite element mesh points	 We solve ��
 by a preconditioned Krylov
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Fig� �� The top left �gure shows the un�decomposed nonuniform� shape regular �nite element mesh�
The top right one shows the decomposition of the mesh into non�overlapping subdomains� and the bottom
one is a blow�up of the �gure around the airfoil
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iterative method with a preconditioner M �k� to a certain linear tolerance � � i	e	������M �k�
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To simplify the discussion� we shall use A�k� � D�k�

�tk
� B�k� in the rest of the paper	 The

preconditioner M �k� will be introduced in the next section	

�� Solution methods and variable degree Schwarz preconditioners� In this
section� we �rst brie�y recall the classical additive and multiplicative Schwarz algorithms	
Then we introduce a variable degree version of Schwarz algorithms that is more suitable
for solving time dependent problems	 Unlike steady state problems� if certain information
or matrix factorization obtained at the previous time steps can be used a great deal of
calculations can be saved	

Let us review the Schwarz algorithms	 Suppose that� at time step k� we need to solve
a linear system of equations

A�k�uk � fk�

where A�k� is an explicitly constructed� nonsymmetric and sparse matrix with symmetric
non�zero pattern	 Since our main interest is on the multicomponent N	�S	 equations in two�
dimensional spaces� each element of A�k� can be considered as a small ��� matrix� and each
unknown of the vector u�k� is a  ��size� vector	 Thus� there is a bijection between unknowns
and vertices	 We denote the set of vertices �or nodes
 by N � f�� � � � � ng� where n represents
the total number of nodes �or unknowns
	 To de�ne algebraic Schwarz algorithms� see e	g	
��� we �rst partition the set N into n� nonoverlapping subsets fNig whose union is N 	 In
fact� we use the TOP�DOMDEC mesh partitioning package of Farhat et al	 ��� to obtain
sets Ni	 We use the recursive spectral bisection method ����
 with certain optimization
to obtain roughly the same number of interior and boundary nodes in each Ni� and also
to obtain good aspect ratio on the subgrids	 To generate an overlapping partitioning with
overlap ovlp� we further expand each subgrid Ni by ovlp number of neighboring nodes�
denoted as !Ni	

We denote by Li the vector space spanned by the set !Ni	 For each subspace Li� we
de�ne an orthogonal projection operator Ii as follows� Ii is a n � n block diagonal matrix
whose elements are �� � identity matrices if the corresponding nodes belong to !Ni and to
�� � zero matrices otherwise	 With this we de�ne

A
�k�
i � IiA

�k�Ii �

which is an extension to the whole subspace� of the restriction of A�k� to Li	 Note that

although A
�k�
i is not invertible in the full space� its restriction to the subspace spanned by

!Ni is nonsingular� and we de�ne its inverse by

�A
�k�
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The classical additive and multiplicative Schwarz algorithms can now be simply described
as follows� Solve the linear system

MA�k�u � Mf �k�

�



by a Krylov subspace method� where
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for the additive Schwarz algorithm� and
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for the multiplicative Schwarz algorithm	
It has been shown that the above mentioned algorithms are very successful for steady

state CFD problems� see e	g	� ��� �� and also ��	 There are three major steps in the
construction of the Schwarz preconditioners� namely �
 the construction of the matrix A�k��

�
 the construction of the matrices A
�k�
i � and �
 the incomplete factorization of the matrices

A
�k�
i 	 In fact Step �
 is not necessary since the matrices constructed in Step �
 can be used

to calculate the matrix�vector multiplications	 Since we are interested in implicit methods�
Step �
 has to be done at every time step no matter how expensive it is	 One expensive step
in the construction of the preconditions as formulated above for time dependent problems

is Step �
	 On way to avoid the frequent factorization of A
�k�
i is to simply use some old

factorized matrix A
�j�
i calculated at time step j� where j � k	 However� this method may

not be very e�ective if j and k are too far apart	 More discussions on using frozening
preconditioner can be found later in the paper	

Another problem with the Schwarz preconditioners ��
 and ��
 is that all subdomains
are treated equally in terms of the level of preconditioning in the sense that the number of

applications of �A
�k�
i 
��� or its inexact version� is the same on all subdomains� regardless of

the fact that the subdomain matrices A
�k�
i have vary di�erent condition numbers	 Physically

speaking� the behavior of the partial di�erential equations in subdomains near the body of
the airfoil� or near the shocks is very di�erent from the regions that are far from the
subdomains where the real actions take place	

Here we propose a method that places di�erent level of preconditioning in di�erent
subdomains and will also show by numerical experiments that the methods remain to be
e�ective even if j and k are far apart from each other	 The idea is simple	 We replace the
required matrix�vector multiply in ��
 or ��
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�k�
i 
��v���


by another iterative procedure with �B
�j�
i 
�� as the preconditioner	 Here B

�j�
i is an incom�

plete factorization of A
�j�
i with certain levels of �ll�ins	 More precisely speaking� to obtain

w for a given v� we run several steps of GMRES in the subspace Li to drive the residual����B�j�
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We then set w �� !w	 Here � is pre�selected small value	 Examples can be found in x� of

this paper	 In the matrix language� we replace the matrix �A
�k�
i 
�� in ���
 by a matrix

polynomial

polyi
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of a certain degree� which depends of the number of GMRES iterations needed in the
subspace Li	 To put them into a single form� the additive Schwarz preconditioner becomes
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Note that this preconditioner does not contain �A
�k�
i 
��� but it contains certain spectral

information of �A
�k�
i 
��	 This makes it very e�ective	 In fact� M is a truncated series rep�

resentation of �A
�k�
i 
�� based on a splitting of A

�k�
i into the sum of B

�j�
i and A

�k�
i � B

�j�
i 	

A discussion on a related polynomial preconditioning method can be found in ���	 We
note that in a given subdomain� the number of GMRES iterations� or the degree of the
polynomial� is determined by the conditioning of the local sti�ness matrix	 The multiplica�
tive version can be constructed in a similar way	 The extension to the local multiplicative
Schwarz method ���
 is also straightforward	

We remark that since the preconditioner changes in the GMRES loop due to the stop�
ping condition determined by �� it is generally more appropriate to use the so�called �exible
GMRES ���� which is slightly more expensive than the regular one	 We do not use the
�exible GMRES since the regular GMRES presents no problem for our test cases	 The
implementation of the methods is rather complicated because of the use of multi�layered
Krylov iterations as a global� or outer� and also local solvers	 Thanks to PETSc which
makes our numerical tests possible	 More details regarding to the implementation will be
discussed in the next section	

�� Numerical results� The goal of this section is to demonstrate the usefulness of the
family of VDS preconditioners in the implicit solution of compressible �ow problems� and to
compare the e�ectiveness of the methods with various other methods� such as the pointwise
Jacobi iterative method and the global ILU��
 preconditioned GMRES method� for both
subsonic and transonic �ows	 The experiments were performed on a DEC Alpha workstation
����MHz� ���MB memory
� and the software was written by using the newly developed
package PETSc ��� of the Argonne National Laboratory	 All arithmetic operations are in
double precision	 The system BLAS library �dxml ���
 was used	 Only sequential results
are reported here	 A parallel version of the code is being developed� and the results will be
reported in the future	 Here we apply our computational algorithms to the simulation of
two�dimensional low Reynolds number chaotic �ows past a NACA���� airfoil at high angle
of attack and two di�erent Mach numbers	 It was shown in Pulliam ��� that such �ows
can be resolved with a reasonable number of grid points	 The accuracy of the computed
solutions are substantiated by successive mesh re�nements and comparisons with the results
were reported in ���	 No steady state solutions exists for both test cases described below	

Test �� The subsonic case with free stream Mach number M� � ��� and Re � �����	
We use a pre�generated shape regular triangular mesh with ����� nodes� see Fig	� for
example	 The Mach surfaces of the computed solution at various time steps are given in
Fig	�	

Test �� The transonic case with free stream Mach number M� � ���� and Re � ������	
We use a mesh with ����� nodes obtained by uniformly re�ning the mesh used in Test �	
The Mach surfaces of the computed solution at various time steps are given in Fig	�	

In the following discussions� we shall refer to these two meshes as �Mesh��k� and
�Mesh��k�� respectively	 In the implementation of Schwarz preconditioners� we partition
the mesh by using the TOP�DOMDEC package ���� which implements the recursive spec�
tral bisection method	 We require that all subdomains have more or less the same number
of mesh points	 E�ort is made to reduce the number of mesh points along the interfaces of
subdomains� which may be needed later in our parallel code to reduce the communication
cost	 The mesh generation and partitioning are considered as pre�processing steps� and
therefore not counted toward the CPU time reported in Table �	 The sparse matrix de�ned
by ��
 is constructed at every time step� and stored in the Compressed Sparse Row format	

�



The subdomain matrices are obtained by taking elements� according to a pre�selected index
set� from the global matrix	 A symbolic ILU��
 factorization of the subdomain matrix is
performed at the very �rst time step� and re�used at all the later time steps	 This is possible
due to the fact that the matrices� constructed at every time step� share the same non�zero
pattern	 We also tested the ILU�k
 �k  �
 preconditioners� which are not competitive with
ILU��
 in terms of the CPU time in our implementation for both test cases	 We remark that
if ILU with drop tolerance is used then the non�zero pattern of the matrices may change
and therefore the symbolic factorization may not be very useful	

We note that at the beginning of the �ow movement� i	e	� when the non�dimensionalized
time t � ���� the �ow changes so drastically that the use of any �tn that makes the cor�
responding CFL number larger than ��� would result in the loss of time accuracy for the
entire calculation	 This implies that small �tn have to be used when t � ���� and therefore�
implicit method has to be abandoned for this initial period of time	 In our experiments� the
implicit solver is turned on at t � ���	 The solution for the period � � t � ��� is obtained
with the explicit method with CFL��	�	

���� The e	ect of using large CFL numbers� One of the biggest advantages of
implicit methods is that large time steps� or large CFL numbers� can be used	 We �rst
exam this claim by comparing the time accuracy of two solutions obtained by using the
implicit methods with CFL���� �� and ���� respectively� and the solution obtained by an
explicit method	 From Fig	�� one can easily see that no two di�erent CFL numbers can give
identical solutions	 However� the important thing for engineering purposes is to capture
correctly the �phase� and �amplitude� of the lifts	 Small errors in amplitude and phases
are usually admissible	 This can often substantially shorten the turnaround times in the
initial aerodynamic design and analysis	

For the implicit methods� we use the multiplicative VDS preconditioned GMRES method
as the global linear solver	 The subdomain preconditioners are re�computed at every � time
steps	 In the Schwarz methods� we use � subdomains� and ovlp � �	 Each subdomain prob�
lem is solved by an ILU��
 preconditioned GMRES method with the stopping tolerance set
to � � ����	 The stopping tolerance for the global linear system solver is � � ����	 We
also test several cases with smaller � � such as ���� and ����	 The resulting lift curves are
not distinguishable from the ones shown in Fig	�	

In Table �� we report the total number of time steps and CPU time in hours spent on
the entire computation� not including the mesh generation and partitioning	 We observe
from our experiments that even with a CFL number� ���� not much time accuracy is lost
for a certain period of time� see Fig	�	 However� if the time accuracy is required for a longer
period of time� we do recommend a smaller CFL number	

���� The Schwarz parameters� The number of subdomains and the size of overlap
are two important parameters for Schwarz methods	 We here test the additive and mul�
tiplicative VDS methods for both test cases	 In stead of running the entire calculation as
we did in the previous section� we run the tests for only ��� time steps starting at t � ���	
In terms of the non�dimensional time� this means time intervals ��� ����
 for Test � and
��� ����
 for Test �	

In the rest of the paper� we shall use MaxIt to denote the maximum number of global
GMRES iterations and TotalIt the total number of global GMRES iterations within this
��� linear system solves	 To measure the approximate cost of the methods without includ�
ing any machine dependent factors� we use EMatVec to denote the equivalent number
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Fig� �� Lift curves obtained by explicit and implicit methods� The left �gure shows the subsonic cases
with M� � ��
� Re � ����� and the number of mesh points is 
		��� The right �gure is for the transonic
cases with M� � ���� Re � 
����� and the number of mesh points is ���	�

of matrix�vector multiplications� which includes the actual sti�ness matrix�vector multipli�
cations and the preconditioning�matrix�vector multiplications	 Since di�erent subdomains
may need di�erent number of matrix�vector multiplications� we take the average over all
subdomains and convert it into a multiply of the equivalent global matrix�vector multipli�
cations	 Suppose that !n is the size of the global matrix	 Note that !n is � times the number
of mesh points	 Then� one global matrix�vector multiplication requires roughly ��!n �ops	
Our primary iterative solver GMRES has a complexity of I�I � �
!n� I��cost of a precon�
ditioned matrix�vector multiplication
	 Here I is the number of iterations	 For example�
the pure GMRES cost� without counting the cost of the matrix�vector multiplications� for
� iterations is about ��!n� which is a little less than the cost of doing � global sti�ness
matrix�vector multiplication	

Let us �rst discuss the dependence of the convergence rate on the number of subdo�
mains	 We use � di�erent decompositions of �� with both Mesh��k and Mesh��k	 The
number of subdomains goes from � to ���	 We run both Test � and �� with ovlp equals to
one �ne mesh cell	 In Table �� we present the maximum number of global GMRES iterations
within one hundred time steps and its corresponding EMatVec	 If multiplicative VDS is
used even without the special subdomain coloring or ordering� MaxIt is independent of the
number subdomains� for reasonably large number of subdomains� such as ���	 An interest�
ing case is shown on the top left portion of Table �� which indicates that if additive VDS is
used for the subsonic problem� the number of maximum iterations does grow� though not
very fast� as the number of subdomains becomes large	 In this case� we believe that a coarse
space may be useful to reduce the dependence on the number of subdomains	 However� we
have not implemented the coarse grid solver yet	 For transonic problems� our tests show
that the use of a coarse level grid is not necessary with both additive and multiplicative
VDS preconditioners	

Whether overlap is useful or not is a rather subtle issue	 It depends on the global linear
stopping parameter � de�ned in ��
 and the local linear stopping parameter � de�ned in
���
	 In Table �� we report the case for � � ���� and varying � 	 According to the results in
Table � and a large number of other tests we did �not being reported here
� large overlaps
can reduce the number of iterations and CPU time only if the stopping parameter � is small	
In our situation when � � ����� we �nd � � ���� o�ers the best CUP results� and therefore
we do not need large overlaps	 In the rest of the tests� we shall use this set of � and �� with







Fig� �� The left �gure shows the partitioning of Mesh��k into � subdomains and the right ones shows
that for Mesh��k
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We next exam the VDS methods	 We focus on the case with � subdomains� and use
GMRES�ILU��
 as the local subdomain solvers	 The partitionings used for Mesh��k and
Mesh��k are di�erent	 The subdomains are numbered as in Fig	�	 The results obtained for
one hundreds time steps starting at t � ��� are summerized in Table �	 We also run the
test for t equals to other values and the results are more or less the same	 We use the same
local stopping condition� namely � � ���� for all subdomains and for both subsonic and
transonic problems	 It turns out the required degrees of local preconditioning polynomials
are quite di�erent	 For the subsonic case� subdomains �� and �
 need more iterations
�� and � respectively
 than other subdomains	 The left picture of Fig	� shows that these
two subdomains cover the top portion of the airfoil	 Only two iterations are needed for
subdomains that are far away from the airfoil� such as ��� �� and ��	 The number of
iterations re�ects the conditioning of the subdomain matrix	 For the transonic case� all
subdomains need more either one or two iterations	

For both test problems� Table � and Table � show that both the number of global
iterations and the number of local iterations are surprisingly small� which indicate that the
linear system of equations ��
 is in fact not too ill�conditioned	 We believe that this is due
to the use of relatively small time steps ��
	

���� A comparison with the pointwise Jacobi iterative method� For compari�
son purpose� we solve both test problems by using the simplest iterative method� namely the
pointwise Jacobi method� which is often referred to as the Jacobi preconditioned Richard�
son�s method	 Jacobi method has a few very attractive features� such as easy to parallelize	
Note that for multicomponent test problems� a point corresponds to a �� � matrix	 When
using the Jacobi method� a dense �� � matrix needs to be inverted at every mesh point	 In
our experiments� at each time step before solving the linear system� we compute the inverse
of these � � � matrices explicitly and save them for the Jacobian iterations	 The same as


	



before� we run the tests for one hundred time steps and record the maximum number of
iterations as well as the total number of iterations� see Table �	 We observe that� in terms of
iteration numbers for solving linear systems� the transonic problem is easier to handle than
the subsonic problem� which is more of an elliptic system	 Comparing the TotalIt� which
equals to the total number of EMatVec� in Table �� and the total EMatVec numbers in Table
�� we found that Jacobi is considerably more expensive than the Schwarz preconditioned
GMRES methods	 We believe that the required number of iterations would grow much
faster if �ner meshes are used than that of the Schwarz preconditioned GMRES methods	

���� A comparison with a global ILU�
� preconditioned GMRES method� In
Table �� we show the maximum and total number of iterations when using the global ILU��

preconditioned GMRES method for both test cases	 In terms of the number of EMatVec�
the method outperforms� by a factor of �" to ��"�Comparing Table � and the bottom part
of Table �
� the multiplicative VDS preconditioned GMRES methods we discussed in the
paper	 Unfortunately� its parallelization on distributed memory computers is not very easy	

���� The e	ect of frozening preconditioner� Finally� we examined the e�ect of
using the same preconditioner� or part of the preconditioner� for several time steps without
doing the factorization at every time step	 In Table �� we summerize the results for using
di�erent numbers of frozening steps� namely Froz � �� �� ���	 There is a range of optimal Froz
one can choose from� similar numbers of EMatVec were obtained in our implementation for
Froz ranging from � to ��	 For the subsonic case� we can go a bit further� e	g	� take Froz �
���	

�� Conclusions� We proposed and tested a family of variable degree Schwarz�VDS

preconditioned GMRES methods for solving linear systems that arise from the discretization
of unsteady� compressible N	�S equations on �D unstructured meshes for both subsonic
and transonic �ows past a single element NACA���� airfoil	 We found that with implicit
methods� larger time steps can be used and the overall simulation time can be reduced
signi�cantly comparing with the explicit method	

In VDS� the level of preconditioning in each subdomain varies according to the local �ow
condition� therefore extra preconditioning is performed only when and where it is needed	
For subsonic problems� we found that the conditioning of the subdomain matrices changes
quite a bit from one �ow region to another� and extra local preconditioning in subdomains
in which the �ow changes drastically can signi�cantly reduce the total number of global
linear iterations	 This is somewhat less obvious for transonic �ow� which needs a nearly
uniformly small global and local number of iterations	

When using VDS� the best results are obtained with small overlap	 For the multiplica�
tive version� the convergence rate depends very mildly on the number of subdomains �up
to ��� subdomains has been tested
� and for the additive version� a slight dependence is
observed for the subsonic test problem and therefore a coarse space might be useful	 We
also compared our methods with the simple point�means ��� block for our multicomponent
problems
 Jacobi iterative method and the global ILU��
 preconditioned GMRES method	
We found that Jacobi is signi�cantly slower than the proposed methods� especially for the
subsonic case� and if sequential computers are the primary computing platform� then the
global ILU��
 preconditioned GMRES is a winner over all methods we have tested	

All of our tests were done on a sequential computer	 Considerable e�ort is needed in
order to obtain a well�balanced parallel implementation	 We remark that our mesh parti�
tioning is obtained without the knowledge of the �ow condition and our experiences show


�



that a solution dependent mesh partitioning would o�er a more computationally balanced
decomposition of the problems	
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Table �

Total CPU hours and time steps spent for calculating the lift curves using explicit and implicit methods
with di
erent CFL numbers� The total non�dimensionalized time interval is �� ��� for the M� � ��
 case
and �� �� for the M� � ��� case�

Expl	 Impl	 Impl	 Impl	
CFL��	� CFL��� CFL��� CFL����

M� � ��� CPU�hours
 ��	�� ��	�� ��	�� �	��
Mesh��k Time steps ������ ���� ���� ����

M� � ���� CPU�hours
 ��	�� ��	�� �	�� �	��
Mesh��k Time steps ����� ���� ��� ���

Table �

Each test is for � time steps and at each time step the initial preconditioned residual is reduced by a
factor of � � 
��� by using GMRES�VDS with ovlp � 
� We use GMRES�ILU�� as inexact local solvers
to reduce the local preconditioned residual by a factor of � � 
���� Here CFL���

ASM Test � Test �

# subdomains MaxIt TotalIt EMatVec MaxIt TotalIt EMatVec

� � ��� ���� � ��� ����

�� � ��� ���� � ��� ����

�� � ��� ���� � ��� ����

�� �� ��� ���� � ��� ����

��� �� ��� ���� � ��� ����

MSM Test � Test �

� � ��� ���� � ��� ���

�� � ��� ���� � ��� ���

�� � ��� ���� � ��� ���

�� � ��� ���� � ��� ����

��� � ��� ���� � ��� ����

Table �

GMRES iteration numbers to reduce the preconditioned residual of Test � to � � 
��� using GM�
RES��additive VDS� with � subdomains� We use GMRES�ILU�� as inexact local solver with di
erent local
stopping criteria� Here CFL���

ovlp � � ovlp � � ovlp � � ovlp � �

� iteration �� �� �� ��

� � ���e�� �� �� �� ��

� � ���e�� �� �� �� ��

� � ���e�� �� �� �� ��

� � ���e�� �� �� �� ��

exact �� �� �� �
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Table �

The maximum �MaxIt� and total �TotalIt� local GMRES�ILU�� iteration numbers� The global solver
is GMRES��multiplicative VDS�� The parameters are � � 
���� � � 
���� ovlp � � and the local solvers
are ILU���� Here CFL���

�� �� �� �� �� �� �	 �


Test �� MaxIt � � � � � � � �

TotalIt ��� ��� ��� ��� ��� ��� ��� ���

Test �� MaxIt � � � � � � � �

TotalIt ��� ��� ��� ��� ��� ��� ��� ���

Table �

The number of equivalent EMatVec operations needed for � time steps starting at t � 
��� � � 
����
� � 
���� CFL���

�� � Jacobi Global ILU��


Test �� MaxIt �� ��

EMatVec ���� ����

Test �� MaxIt �� �

EMatVec ���� ���

Table �

The number of EMatVec operations needed for � time steps starting at t � 
��� In GM�
RES��multiplicative VDS�� � � 
���� � � 
���� CFL��� number of subdomains is � and ovlp � ��
For the Froz�� case� the numbers are taken for � time steps divided by ��

Froz� � � �� �� ��� ���

Test �� EMatVec ���� ���� ���� ���� ���� ����

TotalIt ��� ��� ��� ��� ��� ���

Test �� EMatVec ��� ��� ��� ��� ��� ����

TotalIt ��� ��� ��� ��� ��� ���
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