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A B S T R A C T   

Automated segmentation of three-dimensional medical images is of great importance for the detection and 
quantification of certain diseases such as stenosis in the coronary arteries. Many 2D and 3D deep learning 
models, especially deep convolutional neural networks (CNNs), have achieved state-of-the-art segmentation 
performance on 3D medical images. Yet, there is a trade-off between the field of view and the utilization of inter- 
slice information when using pure 2D or 3D CNNs for 3D segmentation, which compromises the segmentation 
accuracy. In this paper, we propose a two-stage strategy that retains the advantages of both 2D and 3D CNNs and 
apply the method for the segmentation of the human aorta and coronary arteries, with stenosis, from computed 
tomography (CT) images. In the first stage, a 2D CNN, which can extract large-field-of-view information, is used 
to segment the aorta and coronary arteries simultaneously in a slice-by-slice fashion. Then, in the second stage, a 
3D CNN is applied to extract the inter-slice information to refine the segmentation of the coronary arteries in 
certain subregions not resolved well in the first stage. We show that the 3D network of the second stage can 
improve the continuity between slices and reduce the missed detection rate of the 2D CNN. Compared with 
directly using a 3D CNN, the two-stage approach can alleviate the class imbalance problem caused by the large 
non-coronary artery (aorta and background) and the small coronary artery and reduce the training time because 
the vast majority of negative voxels are excluded in the first stage. To validate the efficacy of our method, 
extensive experiments are carried out to compare with other approaches based on pure 2D or 3D CNNs and those 
based on hybrid 2D-3D CNNs.   

1. Introduction 

Coronary artery disease (CAD) is the most common type of heart 
disease and it is one of the leading causes of death worldwide [1]. CAD 
induces plaque build-up in the coronary arteries, which may cause 
luminal narrowing, also known as stenosis, and can often be life- 
threatening when total occlusions of the artery occur. CT coronary 
angiography is the primary imaging modality for diagnosing CAD due to 
its superior image resolution [2]. To facilitate the diagnosis, accurate 
segmentation of the aorta and coronary arteries is a critical step for 
interpreting CT images for the purpose of stenosis detection and quan
tification, such as stenosis grading via the fractional flow reserve (FFR) 
[3]. Due to the large number of pixels in CT images, the process of 
manual or semi-automatic segmentation is time consuming and tedious, 
with bias being introduced by clinical experts. Therefore, it is highly 

desirable to develop an automated and robust system that can efficiently 
extract the aorta and the coronary artery lumen from the CT images. 
However, automated segmentation is a challenging task due to the 
inherent image noise, similar objects in the background, the complicated 
anatomical system involving the aorta (the largest artery in the human 
body) and the much smaller coronary arteries, and the large inter- 
subject variations. Various conventional image segmentation algo
rithms have been proposed previously to achieve 3D blood vessel seg
mentation, such as region-based methods [4], edge-based methods [5], 
tracking-based methods [6], learning-based methods [7], and so on. In 
the previous few years, medical image segmentation based on deep 
learning techniques has received vast attention [8]. 

Deep learning algorithms have rapidly become a methodology of 
choice for analyzing medical images, such as image registration [9], 
image segmentation [10,11], image retrieval [12,13], and so on. Among 
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these, medical image segmentation based on deep learning techniques, 
in particular convolutional neural networks (CNNs), has greatly 
improved segmentation accuracy for 3D medical images. 

1.1. CNNs for medical image segmentation 

Generally speaking, a CNN for semantic segmentation consists of a 
downsampling path and an upsampling path, which can take an input of 
arbitrary size and produce a correspondingly sized output to classify 
each pixel with efficient inference and learning. The 2D UNet [10] is one 
of the most well-known CNN architectures for medical image segmen
tation, and it combines high-resolution features from the downsampling 
path and contextual features from the upsampling path with the so- 
called skip connections. Other 2D CNNs (e.g., [14,15,16]) have also 
been successfully applied to 3D medical images. Many 3D extensions of 
the UNet architecture have been introduced; for example, [17] proposed 
the VNet, which performs 3D segmentation using 3D convolutions with 
an objective function based on the dice coefficient. There are other 3D 
CNNs that have demonstrated compelling performance for 3D segmen
tation; for example, Kamnitsas et al. [18] built a 3D CNN with a multi- 
stream architecture (called DeepMedic) to capture multi-scale features, 
and VoxResNet [11] takes advantage of residual learning and integrates 
multi-modality and multi-level contextual information. 

1.2. Trade-off between the field of view and the utilization of inter-slice 
information 

Although many 2D and 3D CNNs have greatly improved segmenta
tion accuracy, there is a trade-off between the field of view and the 
utilization of inter-slice information when using 2D or 3D CNNs for 3D 
segmentation [19]. On the one hand, a 2D CNN offers a much larger field 
of view but is not able to explore the inter-slice connection. On the other 
hand, a 3D CNN attempts to fully utilize the 3D image information but 
always has a limited field of view due to the significant memory and 
computational requirements. Particularly, for the task of the aorta and 
coronary artery segmentation, a limited field of view increases the dif
ficulty in distinguishing the aorta (or coronary arteries) from other tis
sues and organs with similar characteristics to those of the aorta (or 
coronary arteries). In addition, for coronary arteries, a lack of inter-slice 
information often leads to some level of discontinuity and a high missed 
detection rate, especially for the luminal narrowing of CAD patients for 
whom an accurate segmentation is critically important. 

1.3. Methods to circumvent the trade-off 

There are several methods proposed to circumvent this trade-off by 

carefully designing the network architecture. For example, [20] pro
posed a multi-view scheme that utilizes a separate CNN for each 
orthogonal 2D plane, followed by an adaptive fusion strategy to fuse 
these three segmentation results. However, this multi-view scheme uses 
only a small fraction of the 3D image information. [21] extended the 2D 
UNet to a 2D-3D UNet by retaining the large field of view but reducing 
the number of feature maps due to memory constraints. However, 
reducing feature maps may compromise segmentation accuracy since 
recent evidence [22,23] reveals increasing the number of filters can 
improve the performance of networks. In [24], a CNN was designed to 
take volumetric image input as multi-channel vector images (known as a 
2.5D representation) that pass through the first 2D multichannel con
volutional layer, with the subsequent convolutional operations func
tioning exactly the same as those in 2D methods. [19] proposed an 
ensemble learning framework in which a CNN was developed to 
combine the results from the trained 2D and 3D models, in which three 
2D models, one 3D model, and one ensemble network need to be 
learned. 

1.4. CNNs for coronary artery segmentation 

Some methods based on CNNs have been developed for coronary 
artery segmentation. For example, [25] proposed a multi-task CNN with 
triplanar orthogonal input patches to perform multi-organ segmenta
tion, including the coronary arteries. [26] used two CNNs with the 
DeepMedic architecture to realize 3D coronary artery segmentation and 
aorta segmentation, and then further refined the result using the largest 
connected component method. Both [27] and [2] used the 3D UNet 
architecture, and [2] used a two-channel strategy, in which the input 
consists of two channels: one from the original CT image and the other 
from the vesselness map derived by applying vesselness filters to the 
original CT image. In [3], the spatial prior knowledge constraint was 
used together with the CNN to reduce vast majority negative voxels. In 
addition, [28] used various enhancement methods to pre-process orig
inal images and then used the 2D UNet to segment the coronary arteries 
from these enhanced images. In addition to 3D networks, there are other 
ways to extract inter-slice information, which can improve the conti
nuity between slices. [29] used the traditional level set method to refine 
and smooth the boundary of the segmentation results obtained by a 3D 
network. In [30], a paired multi-scale 3D CNN is used to obtain a larger 
receptive field and extract 3D contexture information. [31,32] used the 
tree-structural long short-term memory (LSTM) method and centerlines 
to model the underlying tree structures of coronary arteries. [33] 
formulated 2D orthogonal cross-hair filters which make use of 3D 
context information at a reduced computational burden. Besides, [34] 
proposed a semi 3D architecture that combines the 3D UNet and 2D 

Fig. 1. The general framework of the two-stage method. ⊙ and * denote the element-wise product and the convolutional operation, respectively, and f(x) equals 1 for 
x > 0 and 0 for x = 0. The 2D CNN in the first stage receives the 2D CT slice of size 512 × 512 from the whole volume, and the input of the 3D CNN in the second stage 
is the 3D patch of size 64 × 64 × 64 cropped from the candidate regions obtained in the first stage. 
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UNet through a dimension conversion layer. 
In the present paper, we propose a two-stage strategy to fuse a 2D 

network with a large field of view and a 3D network that keeps the inter- 
slice connectivity, in order to obtain accurate segmentation of the aorta 
and coronary arteries from CT images, the network is shown in Fig. 1. In 
the first stage, a single 2D UNet is used to segment the aorta and coro
nary arteries simultaneously in a slice-by-slice fashion. The network 
receives each slice of the CT image as its input and outputs the category 
(aorta, coronary arteries, or background) for each pixel. To enhance the 
multi-scale features, we use the atrous spatial pyramid pooling (ASPP) 
module [35] to concatenate feature maps generated by atrous convo
lution with different dilation rates, which helps to resolve ambiguous 
cases and results in more robust classifications. Following the idea of 
UNet++ [15], we use the nested and dense skip connections between 

the downsampling path and the upsampling path, which has been shown 
to reduce the semantic gap between feature maps and thus can more 
effectively capture the fine-grained details. In addition, to alleviate the 
highly unbalanced segmentation problem, we investigate the perfor
mances of various objective functions and then utilize a hybrid loss 
function that combines a generalized dice loss and a cross-entropy loss to 
train the 2D CNN. In the second stage, a 3D UNet with residual skip 
connections [36] is applied to further refine the segmentation of the 
coronary arteries in some candidate regions obtained in the first stage. 
The 3D CNN receives 3D patches as its input to fully explore the inter- 
slice connectivity. Only the positive voxels and the false-positive vox
els from the first stage are used to train the 3D CNN. Additionally, with 
the segmentation result of the aorta in the first stage, we can further 
refine the coronary arteries by using connected component analysis to 

Fig. 2. (Left) Illustration of the aorta and coronary arteries (https://en.wikipedia.org/wiki); (Right) Illustration of CT images of three orthogonal 2D planes and the 
corresponding aorta and coronary arteries. 

Fig. 3. The architecture of the 2D CNN used in the first stage of our method. (a) The architecture of the UNet++ASPP network. The numbers below the modules 
represent the number of feature maps at each scale. “Black” indicates the original UNet [10], “blue” shows the nested and dense skip connections in UNet++ [15], 
and “green” indicates the atrous spatial pyramid pooling (ASPP) module. Components are colored to distinguish between UNet, UNet++, and UNet++ASPP. (b) The 
architecture of the ASPP module. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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discard some spurious responses. The main ideas behind the two-stage 
strategy are as follows: 1) because of the large field of view, the 2D 
CNN can extract long-range contextual and location information, which 
can localize the aorta and coronary arteries simultaneously and exclude 
pseudo-positive voxels for the aorta and coronary arteries; 2) the 3D 
CNN can extract inter-slice information, which improves the continuity 
between slices and reduces the missed detection rate of the coronary 
arteries from the first stage; 3) in the second stage, by focusing on the 
candidate regions, it can ease the highly unbalanced segmentation 
problem and reduces the training time compared with directly using a 
3D CNN, because the vast majority of negative voxels are excluded in the 
first stage. 

The rest of the paper is organized as follows. In Section 2, the dataset 
and the detailed design of the framework are presented and discussed. 
We report the experiments and results in Section 3. Finally, conclusions 
are drawn in Section 4. 

2. 2D and 3D context information fusion by two-stage 
convolutional neural networks 

In this section, we propose a two-stage strategy to achieve accurate 
segmentation of the aorta and coronary arteries from CT images. In the 
first stage, a 2D CNN, referred to as UNet++ASPP, is proposed to extract 
large-field-of-view information to segment the aorta and coronary ar
teries simultaneously. The UNet++ASPP borrows the spirit of ASPP and 
the nested and dense skip connections of the UNet++ to fully explore 
multi-scale features for accurate segmentation of the aorta and coronary 
arteries. Additionally, to alleviate the highly unbalanced segmentation 
problem for the 2D CNN, we study some loss functions and their hybrid 
loss functions. In the second stage, a 3D UNet with residual skip con
nections, referred to as 3D ResUNet, is applied to extract inter-slice in
formation to further refine the segmentation of the coronary arteries 
obtained in the first stage. The inter-slice information is expected to 
improve the continuity between slices and reduces the missed detection 
rate of the coronary arteries from the first stage. 

2.1. Dataset 

In this paper, we aim to segment the aorta and coronary arteries from 
CT images. As shown in Fig. 2, the coronary arteries consist of the right 
coronary artery (RCA) and left coronary artery (LCA), that originate 
from the aorta just above where it exits the left ventricular chamber of 
the heart. The dataset used in this paper comes from 59 patients (i.e., 59 
sets of CT images) with CAD. Each set of images consists of 275 slices of 
2D images of size 512 × 512. The dataset is separated into a training set 
(with 34 sets), a validation set (with 5 sets), and a testing set (with 20 
sets), all of whose voxels are manually labelled by clinical experts into 
three classes: the aorta, the coronary arteries and the background. 
Another challenge is that highly unbalanced problem occurs in coronary 
artery segmentation; for example, for all 59 sets of CT images in the 
experiments of this paper, the average proportion of the coronary artery 
voxels to the whole volume is only approximately 0.816%. 

2.2. 2D convolutional networks for large-field-of-view information 
extraction 

In the first stage, we create a 2D CNN to process each slice of the 
images to extract large-field-of-view information. The network is con
structed by incorporating the atrous spatial pyramid pooling (ASPP) 
module into a modified UNet architecture, named UNet++ [15]. Such 
an approach has a built-in mechanism for multi-scale feature learning, 
and will be referred to as the UNet++ASPP network in this paper. 

The UNet model (shown in black in Fig. 3 (a), [10]) consists of a 
downsampling path and an upsampling path, in which the feature maps 
in the upsampling path concatenate with those from the downsampling 
path. As illustrated in Fig. 3, every step in the downsampling path 

consists of two 3 × 3 convolutional layers (with each consisting of a 
convolution, a batch normalization (BN), and a rectified linear unit 
(ReLU)), followed by a downsampling layer with stride 2. In the 
upsampling path, every step consists of an upsampling layer with stride 
2, a concatenation with the corresponding feature maps from the 
downsampling path, and two 3 × 3 convolutional layers. Moreover, the 
number of feature channels is doubled in the downsampling layer, and it 
is halved in the upsampling layer. The skip connections between the 
downsampling and upsampling paths enable the extraction of the pre
cise localization information and long-range context [10]. Furthermore, 
UNet++ [15], as shown in black and blue in Fig. 3 (a), re-designs the 
skip pathways in UNet by using the nested and dense skip connections. 
Instead of directly receiving the feature maps from the downsampling 
path, in UNet++, the feature maps pass through a dense convolution 
block whose number of convolutional layers depends on the pyramid 
level. These re-designed skip pathways can reduce the semantic gap 
between the feature maps of the downsampling path and those of the 
upsampling path [15]. 

Additionally, we exploit a multi-scale feature learning mechanism, i. 
e., the ASPP module [35] (as shown in Fig. 3 (b)), in the bottom layer of 
UNet++, which is called UNet++ASPP and is shown in black, blue and 
green in Fig. 3 (a). Besides, the network architecture that combines the 
UNet and the ASPP module is called the UNetASPP. ASPP is proposed to 
concatenate feature maps generated by atrous convolutions with 
different dilation rates. The output y of the atrous convolution of an 
input x with a convolutional kernel w is defined by 

y[i] =
∑

k
x[i+ r⋅k]w[k], (1)  

where r denotes the rate parameter corresponding to the stride with 
which the input signal x is sampled. Standard convolution is a special 
case corresponding to r = 1. Atrous convolution allows us to adaptively 
modify the filter’s field of view by changing the rate value so that the 
neurons in the output feature map of the ASPP module contain multiple 
receptive field sizes, which encode multi-scale information and even
tually boost the performance. Inspired by [35], in the ASPP module, four 
3 × 3 atrous convolutions with dilated rates r = 1, 6, 12, 18 and one 
global average pooling are carried out in parallel, which are then 
concatenated and passed through another 1 × 1 convolution. 

As mentioned in the introduction, the large receptive field of 2D 
CNNs can help learn long-range contextual information. Thus, we are 
interested in the receptive field of a CNN, which is defined as the size of 
the region in the input that produces the feature [37]. For simplicity, 
similar as [37], it is assumed that there is a single path from input to 
output and the input and feature maps are 1D signals. For higher- 
dimensional signals, the derivations can be applied to each dimension 
independently. Additionally, when regarding the combination of fea
tures from different scales or even the concatenations (e.g., through skip 
connections), the receptive field size refers to the largest size among all 
the paths from input to output. As in [37], rl is denoted as the receptive 
field size of the final output feature map with respect to feature map in 
the l-th layer, and the general recurrence equation can be written by 
[37]: 

rl− 1 = sl⋅rl +(kl − sl), (2)  

where kl and sl denote the kernel size and the stride of the convolutional 
kernel in the l-th layer. Then, for a CNN with L layer, the receptive field 
size of the final output feature map with respect to the input is defined as 
[37]: 

r0 =
∑L

l=1

(

(kl − 1)
∏l− 1

i=1
si

)

+ 1. (3) 

If not specified otherwise, by the receptive field size of a CNN, we 
will always mean r0, that is, the size of the region in the input that 
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produces the output features. Additionally, if the receptive field size is 
beyond the input size, the input size is regarded as the receptive field 
size. Table 1 shows the receptive field size of the 2D networks,1 which 
indicates that: 1) the nested and dense skip connections in UNet++ have 
no effect on the receptive field size compared with UNet; 2) the ASPP 
module significantly enlarges the receptive field size of the network due 
to its atrous convolutions. 

Medical image segmentation for regions that represent a very small 
fraction of the full image is always a challenge. When the segmentation 
process targets rare observations, image semantic segmentation requires 
pixel-wise labelling and small-volumed organs contribute less to the 
loss; then, a severe class unbalance occurs between candidate labels, 
thus resulting in sub-optimal performance. As stated in Section 2.1, the 
average proportion of the coronary artery voxels to the whole volume is 
only approximately 0.816%. Several loss functions have been proposed 
to alleviate the highly unbalanced segmentation problem, such as the 
generalized dice loss, the weighted cross-entropy loss, and the dice loss. 
In this paper, we investigate six loss functions for training the 2D CNN: 
the generalized dice loss (GDL) [38], the cross-entropy loss (CEL), the 
focal loss (FL) [39], and the hybrid loss functions that combine two of 
the previous three. The generalized dice loss uses the class re-balancing 
properties of the generalized dice overlap, a known metric for segmen
tation evaluation, as a loss function for the class unbalance problem. Let 
{rln} ∈ {0,1}L×N represent the ground truth over N voxels for an L-class 
problem and {pln} ∈ [0,1]L×N represent the predicted probabilistic map. 
Then, the GDL can be expressed as: 

L GDL = 1 − 2
∑L

ℓwℓ
∑N

n rlnpln + ε
∑L

ℓwℓ
∑N

n rln + pln + ε
, (4)  

where the weight of each class is inversely proportional to the squared 
volume of the label of this class, i.e., wℓ = 1/(

∑
n=1

Nrℓn)2, and ε = 10− 5 is 
used to ensure the loss function stability by avoiding the numerical issue 
of dividing by 0. Another loss function, the cross-entropy loss, is 
commonly used in the pixel-wise semantic segmentation task, which is 
defined by 

L CEL = −
1
N

∑N

n

∑L

ℓ
rlnlogpln. (5) 

The cross-entropy loss treats each voxel equally, without considering 
the class unbalance problem. As a variant of the cross-entropy loss, the 
focal loss focuses on training on a sparse set of poorly classified voxels 
and preventing the vast number of easily classified voxels from over
whelming the model during training, which can be represented as: 

L FL = −
1
N
∑N

n

∑L

ℓ
rln(1 − pln)

2logpln. (6) 

In addition, we consider the hybrid loss functions consisting of 
contributions from two of these three loss functions. Formally, the 
hybrid loss function can be expressed as: 

L = L 1 + αL 2, (7)  

where L 1, L 2 ∈ {L GDL,L CEL,L FL} and α is the trade-off between two 

losses. We discuss choice of the loss function in Section 3. 

2.3. 3D convolutional networks for inter-slice information extraction 

In the first stage of the algorithm, the region of interest of the cor
onary arteries is obtained. Then, in the second stage, as shown in Fig. 1, 
a 3D CNN is applied to further refine the segmentation of the coronary 
arteries by extracting the inter-slice information that is ignored in the 
first stage. 

By focusing on the region of interest, the number of 3D regions fed 
into the 3D CNN during both training and testing can be reduced. 
Moreover, in the training phase, only the positive voxels and the false- 
positive voxels from the first stage are used. This training strategy can 
ease the highly unbalanced segmentation problem since the vast ma
jority of negative voxels are excluded in the first stage. In the testing 
phase, only the neighbourhood of the voxels classified as coronary ar
teries in the first stage is refined by the trained 3D CNN. More formally, 
denote the region of interest of the coronary arteries obtained in the first 
stage as ΩROI, and denote the coronary artery segmentation result for the 
region ΩROI in the first stage and in the second stage as S2D and S3D, 
respectively. S2D and S3D are 3D tensors with elements equal to 0 or 1, 
where 1 denotes the coronary artery and 0 the non-coronary artery. 
Then, the segmentation refined by the 3D CNN is given by 

Srefine = S3D ⊙ f
(
S2D*Krefine

)
, (8)  

where ⊙ denotes the element-wise product and the 1-value voxels in f 
(S2D * Krefine) are called the candidate regions for the coronary arteries. 
These candidate regions are obtained by applying a binary dilation to 
the regions classified as coronary arteries in the first stage, which can be 
performed by a 3D convolutional operation. In f(S2D * Krefine), * and 
Krefine denote the convolutional operator and the kernel of the binary 
dilation operator, respectively, and f(x) equals 1 for x > 0 and 0 for x =
0. In this paper, we set Krefine as an all-ones 3D tensor of size 15 × 15 ×
15. That is, all patches of size 15 × 15 × 15 centered on the voxels 
classified as coronary arteries are regarded as the candidate regions. 

After the segmentation, we post-process the result by finding the 
largest connected component and discarding the other responses. This is 
done by first apply a binary dilation to the segmentation and then find 
the largest connected component. Note that the post-processing only 
discards some spurious responses and that the result of the dilation 
operation is not included in the segmentation result. More formally, 
with the binary segmentation result of the aorta and coronary arteries 
denoted by Saorta and Scoronary, respectively, the final segmentations of 
the aorta and coronary arteries are given by 

S̃aorta = Saorta ⊙ LCC
(
f
( (

Scoronary ∨ Saorta
)
*Kfinal

) )
,

S̃coronary = Scoronary ⊙ LCC
(
f
( (

Scoronary ∨ Saorta
)
*Kfinal

) )
⊙

(

S̃aorta

)

, (9)  

where Kfinal denotes the kernel of the binary dilation operator, f is the 

same as that in Eq. (8), S̃aorta denotes the binary negation of S̃aorta, ∨
denotes the element-wise logical OR operator, and LCC denotes the 
largest connected component operation, which outputs 1 if the voxel 
belongs to the largest connected component and 0 otherwise. In this 
paper, we set Kfinal as an all-ones 3D tensor of size 7 × 7 × 7. Note that, 
for the sizes of Krefine and Kfinal, there is a trade-off between reducing 
missed detection rate and increasing false positive samples. More spe
cifically, as the sizes of Krefine and Kfinal increases, the missed detection 
rate of the coronary arteries is reduced, while the number of false pos
itive samples increases. The sizes of Krefine and Kfinal are empirically 
chosen based on the performance of the validation data. 

For the second stage, the network is constructed using the popular 
UNet shown in Fig. 3, in which the 2D convolutions are replaced with 3D 
convolutions. Inspired by [16], two modifications are made: (1) 
replacing concatenation joining with summation joining between the 

Table 1 
The number of learnable parameters and receptive field size of different 2D 
networks.  

Network structure UNet UNet++ UNetASPP UNet++ASPP 

Number of parameters 7.85 M 9.16 M 12.31 M 13.62 M 
Receptive field size 205 × 205 205 × 205 512 × 512 512 × 512  

1 The receptive field size is computed using the software: https://github. 
com/fornaxai/receptivefield. 
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downsampling path and the upsampling path, and (2) adding a residual 
skip connection to each module. Due to the use of residual skip con
nections in the network, we call the network 3D ResUNet. Deep residual 
networks have shown compelling accuracy and nice convergence 
properties, as there are fewer layers to propagate through, which re
duces the impact of vanishing gradients. Furthermore, replacing a 
concatenation with an addition can be regarded as a residual learning 
mechanism, which directly employs residual properties. A residual unit 
can be expressed as: 

y = F (x, {Wi})+ x, (10)  

where x and y are the input and output vectors of this unit, {Wi} is a set 
of weights associated with the residual unit, and F denotes the residual 
function, i.e., a stack of three 3 × 3 × 3 convolutional layers in our 
implementation. 

3. Experiments 

3.1. Evaluation metrics 

In this paper, the evaluation metrics consist of three types of mea
sures: the dice score coefficient (DSC), the 95th-percentile of the 
Hausdorff distance (HD), and the average symmetric surface distance 
(ASSD). The DSC is a measure of the spatial overlap between the seg
mentation result S and the ground truth G, defined by 

DSC(G, S) =
2|G ∩ S|
|G| + |S|

⋅100%, (11)  

where ∣ ⋅ ∣ denotes the cardinality of a set. A larger value of DSC indicates 
a higher proximity between the ground truth and the segmentation 
result. The Hausdorff distance measures the maximal distance between 
the segmentation results and the ground truth, with a smaller value 
showing a higher segmentation accuracy. To improve the robustness of 
the conventional HD, we use the 95th percentile of the distances to 
suppress the outliers [40], which is defined as 

HD(G, S) = max{h95(G, S) , h95(S,G) }, (12)  

where h95(G,S) = 95Ks∈S
thd(s,G) is the 95th percentile of the distances 

from all s ∈ S to G. ASSD is the average of all the distances from points on 
the boundary of the segmentation result (denoted by BS) to the boundary 
of the ground truth (denoted by BG) and from BG to BS, which is defined 
by [41]: 

ASSD(BG,BS) =
1

|BG| + |BS|
×

(
∑

x∈BG

d(x,BS)+
∑

x∈BS

d(x,BG)

)

(13) 

A smaller value of ASSD(BG,BS) indicates a better segmentation 
accuracy. 

Additionally, to validate that the second stage reduces the missed 
detection rate of the coronary arteries from the first stage, we use the 
sensitivity (also known as recall) metric, which measures the proportion 

Table 2 
Comparisons of the performances of different 2D models on the testing data.  

Network structure Coronary artery Aorta 

DCS (%) HD (mm) ASSD (mm) Precision (%) DCS (%) HD (mm) ASSD (mm) Precision (%) 

UNet 81.15 ± 4.90 15.86 ± 17.25 1.47 ± 1.27 83.92 ± 6.54 96.57 ± 1.96 3.86 ± 5.75 0.57 ± 0.35 97.57 ± 1.24 
UNet++ 81.82 ± 4.65 20.98 ± 20.45 1.97 ± 2.36 83.13 ± 7.92 97.38 ± 1.40 5.75 ± 16.84 0.56 ± 0.65 97.50 ± 1.06 
UNetASPP 82.89 ± 4.24 9.57 ± 7.47 0.93 ± 0.50 82.64 ± 6.49 96.72 ± 2.37 2.01 ± 1.82 0.40 ± 0.32 98.29 ± 0.84 
UNet++ASPP 84.11 ± 4.57 7.40 ± 5.96 0.82 ± 0.55 85.55 ± 7.25 97.51 ± 0.75 2.31 ± 2.48 0.51 ± 0.39 97.54 ± 1.26 

The bold indicates the best metrics among all the four networks. 

Table 3 
Comparisons of the performances of UNet++ASPP trained with different loss functions on the testing data.  

Loss functions Coronary artery Aorta 

GDL CEL FL DCS (%) HD (mm) ASSD (mm) Precision (%) DCS (%) HD (mm) ASSD (mm) Precision (%) 

√   81.59 ± 6.04 10.57 ± 8.94 1.02 ± 0.47 85.31 ± 5.50 93.10 ± 6.00 7.00 ± 7.33 1.31 ± 1.64 95.60 ± 6.71  
√  78.22 ± 7.23 19.57 ± 23.67 2.81 ± 5.40 84.95 ± 9.40 95.06 ± 5.67 3.45 ± 3.72 0.68 ± 0.73 97.74 ± 2.46   

√ 79.68 ± 5.84 11.50 ± 9.03 1.15 ± 0.72 86.72 ± 4.57 96.00 ± 3.46 4.03 ± 6.55 0.69 ± 0.80 97.69 ± 2.53 
√ √  84.11 ± 4.57 7.40 ± 5.96 0.82 ± 0.55 85.55 ± 7.25 97.51 ± 0.75 2.31 ± 2.48 0.51 ± 0.39 97.54 ± 1.26 
√  √ 83.37 ± 4.97 12.36 ± 10.84 1.10 ± 0.85 82.13 ± 7.50 96.89 ± 2.54 3.11 ± 6.99 0.55 ± 0.87 96.55 ± 3.65  

√ √ 79.00 ± 6.88 10.64 ± 9.14 1.13 ± 0.71 85.57 ± 5.50 95.36 ± 5.75 5.91 ± 10.13 0.94 ± 1.70 95.18 ± 5.64 

The bold indicates the best metrics among all the loss functions. 

Table 4 
Comparisons of the coronary artery segmentation performances on the testing data between the first stage and the second stage of our method. UNet, UNet++, and 
UNet++ASPP are used in the first stage, respectively.   

DCS (%) HD (mm) ASSD (mm) Sensitivity (%) Specificity (%) Precision (%) 

(a) UNet 
The first stage 81.15 ± 4.90 15.86 ± 17.25 1.47 ± 1.27 79.39 ± 9.04 99.972 83.92 ± 6.54 
The second stage 85.85 ± 4.60 8.91 ± 8.96 0.91 ± 0.95 86.68 ± 7.58 99.989 85.83 ± 7.58  

(b) UNet++

The first stage 81.82 ± 4.65 20.98 ± 20.45 1.97 ± 2.36 81.64 ± 8.57 99.970 83.13 ± 7.92 
The second stage 85.52 ± 5.41 11.47 ± 14.72 1.24 ± 1.90 87.49 ± 6.61 99.972 84.84 ± 10.49  

(c) UNet++ASPP 
The first stage 84.11 ± 4.57 7.40 ± 5.96 0.82 ± 0.55 83.48 ± 7.82 99.971 85.55 ± 7.25 
The second stage 86.62 ± 3.96 5.57 ± 5.51 0.61 ± 0.43 89.52 ± 5.39 99.987 84.54 ± 7.73 

The bold indicates the best metrics among the first stage and the second stage. 
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Fig. 4. Segmentation results of different orthogonal 2D planes performed by manual annotation (the first column), the first stage of our method (the second column), 
and the second stage of our method (the third column). UNet (a), UNet++ (b), and UNet++ASPP (c) are used in the first stage, respectively. 
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Fig. 5. The comparison between the first and second stage, and the comparison of the use of different 2D networks in the first stage. From left to right are the manual 
annotation, UNet, UNet++, and UNet++ASPP, respectively. 
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of coronary arteries that are correctly identified and is defined as: 

sensitivity(G, S) =
|G ∩ S|
|G|

⋅100%, (14)  

where S and G denote the segmentation result and the ground truth, 
respectively. A larger sensitivity shows a higher recall rate or a lower 
missed detection rate. The sensitivity measure is helpful in evaluating 
the performance of the 3D network of the second stage in reducing the 
missed detection rate. Furthermore, to further verify whether our two- 
stage method does not sacrifice the accuracy of non-coronary artery 
segmentation to improve the sensitivity, we use another metric named 
specificity that measures the proportion of non-coronary artery that are 
correctly identified, which is given by: 

specificity(G, S) =

⃒
⃒
⃒G ∩ S

⃒
⃒
⃒

⃒
⃒
⃒G
⃒
⃒
⃒

⋅100%, (15)  

where S and G denote the binary negation of S and G, respectively. 
To better assess the effect of the transition between the first and 

second stage, and the impact of the different considered models in 
reducing false positive samples, we consider the precision score metric, 
which is the number of voxels correctly labelled as the positive class 
divided by the total number of voxels labelled as the positive class and is 
defined as: 

precision(G, S) =
|G ∩ S|

⃒
⃒
⃒G ∩ S

⃒
⃒
⃒+

⃒
⃒
⃒G ∩ S

⃒
⃒
⃒
⋅100%. (16)  

3.2. Implementation details 

This section provides the experimental settings. First, we introduce 
the experimental settings of the 2D CNN and the 3D CNN of the proposed 
two-stage method in Section 3.2.1. Additionally, to validate the efficacy 
of our methods in fusing 2D and 3D context information, we further 
compare our method with some methods based on pure 3D CNNs and 
other hybrid 2D-3D CNNs, of which the experimental settings are 
described in Section 3.2.2. The experiments are carried out using the 

PyTorch framework on a workstation with 2 NVIDIA Tesla V100 32G 
GPUs. In addition, all the models are trained for 30 epochs and opti
mized using the mini-batch Adam optimization algorithm [42] with β1 
= 0.9, β2 = 0.999 and an L2 penalty of 0.0001. 

3.2.1. Experimental settings of the two-stage method 

3.2.1.1. Training setting for the first stage. For the 2D CNN in the first 
stage, the CT images are fed into the network slice-by-slice. The size of 
each slice is 512 × 512. To reduce the variations in the input data, the 
intensities of each slice are normalized with zero mean and unit vari
ance, and no other image augmentation is used. For the training sam
ples, since the adjacent slices of images are similar, we adopt one slice of 
every two slices as the training samples to reduce the training time. The 
learning rate is initially set to 0.0001 and reduced by a factor of 0.2 in 
the 10th and 20th epochs. The batch size is set as 24. Additionally, the 
loss function (7) is used to train the 2D CNN, which will be further 
studied in Section 3.3.2. 

3.2.1.2. Training setting for the second stage. For the 3D CNN in the 
second stage, we also normalize the intensities of each set of data with 
zero mean and unit variance. Moreover, for the training and validation 
phase, the datasets are augmented by using several data augmentation 
techniques, including random flipping, random rotation, elastic defor
mation, random contrast, and the addition of random Gaussian or 
Poisson noise. For the training samples, we first crop sub-volume sam
ples of size 64 × 64 × 64 from the whole volume with stride 6 × 12 × 12. 
Among these 3D cubes, as stated in Section 2.3, two kinds of cubes are 
adopted as the training samples: cubes that have more than 160 voxels 
as coronary arteries in the 21 × 21 × 21 volume in the center of the cube 
(called positive samples) and cubes randomly picked with a probability 
of 20% from those cubes (excluding the positive samples) of which the 
center, of size 21 × 21 × 21, has at least one false-positive voxel from the 
first stage (called false-positive samples). The validation samples are 
obtained in a similar way but with a larger stride of 12 × 24 × 24. When 
UNet++ASPP is used in the first stage, a total of 35,323 sub-volume 
samples are extracted for training the 3D network, including 28,913 
positive samples and 6410 false-positive samples. A total of 704 sub- 

Table 5 
Comparison of the performances on the testing data between our two-stage method and other methods, including methods based on pure 2D CNNs, pure 3D CNNs, and 
hybrid 2D-3D CNNs.  

Network structure Coronary artery Aorta 

DCS (%) HD (mm) ASSD (mm) Sensitivity 
(%) 

Precision (%) DCS (%) HD (mm) ASSD (mm) 

Hybrid 2D-3D 
nets 

2D-3D UNet [21] 71.32 ±
8.55 

20.53 ±
15.39 

2.31 ± 1.54 61.99 ±
13.06 

86.36 ± 5.28 96.70 ± 2.41 5.37 ± 10.23 0.64 ± 0.72 

2D-3D ResUNet 71.78 ±
7.03 

31.86 ±
12.68 

3.07 ± 1.26 66.09 ±
12.02 

80.59 ± 6.81 95.88 ± 2.92 3.80 ± 4.85 0.57 ± 0.48 

2.5D CNN [24] 78.31 ±
7.37 

12.91 ±
11.02 

1.25 ± 0.73 72.10 ±
12.43 

87.43 ± 4.78 94.34 ± 4.45 7.96 ± 10.68 1.06 ± 0.83 

2.5D UNet++ASPP 80.78 ±
6.91 

11.32 ± 9.21 1.21 ± 0.79 77.08 ±
11.23 

85.99 ± 5.45 93.12 ± 6.90 6.04 ± 7.17 0.99 ± 1.06 

Multi-view CNN [20] 74.37 ±
6.76 

38.95 ±
25.47 

2.96 ± 1.33 67.01 ±
11.09 

85.62 ± 6.83 73.28 ±
12.91 

100.32 ±
33.74 

15.63 ± 8.36 

Multi-view 
UNet++ASPP 

81.04 ±
5.17 

32.61 ±
22.46 

2.74 ± 1.97 82.05 ± 8.01 81.31 ± 9.51 92.59 ± 1.87 130.89 ±
16.85 

38.35 ±
10.80 

3D nets 3D ResUNet 76.40 ±
8.60 

61.76 ±
13.42 

8.70 ± 5.54 88.03 ± 6.33 68.77 ±
13.74 

– – – 

VoxResNet [11] 80.68 ±
6.65 

52.59 ±
19.26 

5.44 ± 3.97 86.67 ± 6.38 76.67 ±
11.78 

– – – 

VNet [17] 59.19 ±
8.85 

73.83 ±
12.59 

17.87 ±
5.69 

85.81 ± 6.67 45.75 ±
10.19 

– – – 

2D nets UNet++ASPP 84.11 ±
4.57 

7.40 ± 5.96 0.82 ± 0.55 83.48 ± 7.82 85.55 ± 7.25 97.51 ± 0.75 2.31 ± 2.48 0.51 ± 0.39 

Our two-stage method (UNet++ASPP & 3D 
ResUNet) 

86.62 ±
3.96 

5.57 ± 5.51 0.61 ±
0.43 

89.52 ± 5.39 84.54 ± 7.73 97.54 ±
0.71 

2.01 ± 2.13 0.46 ± 0.35 

The bold indicates the best metrics among all the network structures. 
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Fig. 6. Segmentation results of our two-stage method ((a) for both the first stage and the second stage) and other methods, including pure 3D CNNs (b), and hybrid 
2D-3D CNNs (c). Blue for the aorta and red for the coronary artery. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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volume samples are extracted as the validation data. The learning rate is 
initially set to 0.0002 and reduced by a factor of 0.2 in the 15th, 20th, 
and 25th epochs. The batch size is set as 64. We use the dice loss (DL) to 
optimize the 3D CNN, which originates from the dice score coefficient 
(11) and is defined by [17]: 

L DL = L −
∑L

ℓ=1

∑N
n 2rlnpln + ε

∑N
n rln + pln + ε

, (17)  

where the notations are the same as those in Eq. (4). 

3.2.1.3. Testing setting. In the testing phase, each slice of CT image is 
first segmented by the 2D CNN in the first stage. In the second stage, 
each sub-volume of size 128 × 128 × 128 cropped from the whole 
volume with stride 64 × 96 × 96 is segmented by the 3D CNN. Then the 
probability map of the whole volume is generated by an overlap-tiling 
strategy to stitch the sub-volume results, where the overlapping proba
bilities are averaged to obtain the final probabilities. At last, the seg
mentation result of the 3D CNN in the second stage is used to refine the 
candidate regions of the coronary arteries obtained by the 2D CNN in the 
first stage according to Eqs. (8) and (9). 

3.2.2. Experimental settings of pure 3D CNNs and other hybrid 2D-3D 
CNNs for comparison 

3.2.2.1. Pure 3D CNNs. The pure 3D CNNs are used to segment only the 
coronary arteries, as the limited field of view of 3D models makes it 
difficult to distinguish the aorta and other tissues and organs of similar 
characteristics and thus results in poor segmentation. Three different 3D 
models are considered: 3D ResUNet (i.e., the model architecture used in 
the second stage of our method), VNet [17], and VoxResNet [11]. Unlike 
our two-stage strategy, in which the vast majority of negative voxels are 
excluded in the first stage, many more training samples need to be 
included to enhance the robustness of the network when using the pure 
3D CNN. For the training samples, we first crop sub-volume samples of 
size 64 × 64 × 64 from the whole volume with stride 8 × 16 × 16. Two 
kinds of samples are used to train these pure 3D CNNs, including cubes 
that have more than 160 voxels as coronary arteries and cubes randomly 

picked with a probability of 5% from the other cubes. The validation 
samples are obtained in a similar way but with a larger stride of 16 × 32 
× 32. A total of 162,276 training samples (including 127,359 cubes with 
more than 160 voxels as coronary arteries) are extracted, which is much 
more than the number of training samples in the second stage of our 
method. A total of 3303 sub-volume samples are extracted as the vali
dation data. The normalization and data augmentation used in the 
second stage of our method are also applied to the dataset for these 3D 
CNNs. The other training settings of the 3D CNNs are identical to those 
of the 3D CNN in the second stage of our method, except that the initial 
learning rate is set to 0.002 for VNet since the training progresses very 
slowly when using an initial learning rate of 0.0002. In the test phase, for 
the pure 3D CNNs, the testing settings are the same as the 3D CNN in the 
second stage. 

3.2.2.2. Hybrid 2D-3D CNNs. Three different hybrid 2D-3D CNNs are 
compared with our method:  

• 2D-3D UNet [21], which extends the 3D version of UNet by retaining 
the large field of view of the 2D case but reducing the number of 
feature maps by half due to the memory constraints.  

• 2.5D CNN [24], which takes volumetric image input as multi- 
channel vector images (known as a 2.5D representation) that pass 
through the first 2D multichannel convolutional layer. The subse
quent convolutional operations function exactly the same as those in 
the 2D methods, excluding the last layer, which outputs 3D seg
mentation results.  

• multi-view CNN [20], which uses a multi-view scheme by utilizing a 
separate 2D CNN for each orthogonal 2D plane (i.e., the axial plane, 
sagittal plane, and coronal plane), followed by an adaptive fusion 
strategy [20] to fuse these three segmentation results. 

To show that the performance gain yielded by the two-stage method 
is not simply due to the well-designed architecture of the network, we 
apply the strategies of [20,21,24] to the model architecture used in our 
method, i.e., UNet++ASPP and 3D ResUNet. More specifically, we apply 
the strategies of [20] and [24] to UNet++ASPP to obtain hybrid 2D-3D 
CNNs, which are called 2.5D UNet++ASPP and multi-view 
UNet++ASPP, respectively. In addition, the hybrid 2D-3D strategy in 
[21] is applied to 3D ResUNet to obtain a hybrid 2D-3D CNN, called 2D- 
3D ResUNet. 

These hybrid 2D-3D CNNs are used to segment the aorta and coro
nary arteries simultaneously, as in the first stage of our method. We use 
the following method to obtain training samples for these CNNs:  

• for the 2D-3D UNet (or 2D-3D ResUNet) and 2.5D CNN (or 2.5D 
UNet++ASPP), k consecutive slices of images are taken as the input 
for the network; that is, the size of the input is k × 512 × 512. To 
augment the training data, the training samples are extracted with 
overlap from the whole volumes in a random manner. More pre
cisely, in each interval of k/2 slices, we randomly select a slice as the 
starting slice to extract k consecutive slices. k is chosen from 
4,8,16,32,64 based on the performance on the validation data.  

• in the multi-view CNN (or multi-view UNet++ASPP), for each 
orthogonal 2D plane, we adopt one slice out of every two slices as the 
training samples, as in the first stage of our method. That is, the size 
of the input for the axial plane is 512 × 512, and the size of the input 
for the sagittal plane and coronal plane is 275 × 512. 

Table 6 
The number of learnable parameters and receptive field size of different net
works compared in Table 5.  

Network structure Number of 
parameters 

Receptive field size 

Hybrid 2D- 
3D nets 

2D-3D UNet [21] 6.24 M 8 × 205 × 205 
2D-3D ResUNet 8.83 M 4 × 283 × 283 
2.5D CNN [24] 3.50 M 4 × 199 × 199 
2.5D UNet++ASPP 13.62 M 4 × 512 × 512 
Multi-view CNN 
[20] 

13.30 M 95 × 95 

Multi-view 
UNet++ASPP 

40.87 M 512 × 512 (512 ×
275) 

3D nets 3D ResUNet 35.32 M 64 × 64 × 64 
VoxResNet [11] 6.91 M 64 × 64 × 64 
VNet [17] 45.60 M 64 × 64 × 64 

2D nets UNet++ASPP 13.62 M 512 × 512 
Our two-stage method (UNet++ASPP 

& 3D ResUNet) 
13.62 M (first 
stage) 

512 × 512 (first 
stage) 

35.32 M (second 
stage) 

64 × 64 × 64 
(second stage)  

Table 7 
Comparison of the deep learning methods in recent years by mean DSC.  

Method Our 
method 

Multi-task CNN 
([25], 2016) 

DeepMedic 
([26], 2017) 

3D UNet 
([27], 2018) 

Multi-scale 3D 
CNN ([30], 2018) 

Context aware 3D 
FCN ([3], 2018) 

Multi-Channel (3D 
UNet [2], 2019) 

Tree-structured 
ConvGRU ([32], 2020) 

DSC 
(%) 

86.62 ±
3.96 

60 − 70 58.12 71 − 78 86.49 ± 3.29 79.5 ± 3.6 80.60 86.83  
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The other training settings are identical to those of the 2D CNN in the 
first stage of our method, except the batch size, which is adjusted ac
cording to the memory constraints. In the test phase, for the 2D-3D UNet 
(or 2D-3D ResUNet) and 2.5D CNN (or 2.5D UNet++ASPP), each k 
consecutive slices cropped from the whole volume with the stride of k/2 
slices is segmented by the networks, and then the probabilities of the 
overlapping slices are averaged to obtain the final probabilities. 

3.3. Choosing network structures and loss functions for the first stage 

3.3.1. Network structure 
In Section 2.2, we introduced a 2D CNN as shown in Fig. 3. To 

evaluate the new network, we compare it with two network structures: 
the traditional UNet (also called “UNet”) and the UNet with nested and 
dense skip connections (called “UNet++”). All the models are trained on 
the same training dataset with identical training procedures. The per
formances measured by the three metrics on the testing dataset are 
summarized in Table 2. Table 1 shows the number of learnable param
eters, which indicates that the ASPP module produces an increase of 
about 4.5 M, and the increase yielded by the nested and dense skip 
connections in UNet++ is 1.3 M. Compared with the UNet, the UNet++

performs better on the DSC and precision but performs worse on the 
distance metrics (i.e., the HD and ASSD). Additionally, as shown in 
Table 1, the ASPP module enlarges the receptive field size of the 
network, and it also significantly improves the segmentation accuracy 
with regard to all metrics for both the UNet and UNet++. On the whole, 
the UNet++ASPP performs the best among the models. 

3.3.2. Loss function 
We validate the performance of different loss functions in training 

the 2D CNN UNet++ASPP. As stated in Section 2.2, we compare six loss 
functions, including the generalized dice loss, the cross-entropy loss, the 
focal loss, and the hybrid losses that combine of two of these three losses. 
The trade-off parameter in the hybrid losses (i.e., α in Eq. (7)) is chosen 
from the three values 0.5, 1 and 2. Based on the average DSCs of the 
aorta and coronary arteries on the validation dataset, the best parame
ters are found to be 1, 0.5 and 1 for the hybrid loss composed of GDL and 
FL, that composed of GDL and CEL, and that composed of CEL and FL, 
respectively. 

The performances of the model trained with the different loss func
tions are shown in Table 3, with the three evaluation metrics on the 
testing dataset. According to the results, we conclude that 1) among all 
the loss functions, the generalized dice loss combined with the cross- 
entropy loss has the best performance; 2) when using one simple loss, 
the generalized dice loss outperforms the other two losses for the cor
onary arteries, but performs poorly for the aorta; and 3) between the 
hybrid losses, the losses consisting of the generalized dice loss have 
better performances for the coronary arteries. In general, since the 
generalized dice loss places more weight on the class of less volume, the 
generalized dice loss offers a more robust and accurate segmentation for 
the coronary arteries but leads to worse segmentation for the aorta; 
however, combined with the cross-entropy loss, which treats all classes 
equally, this hybrid loss can boost the performance of the aorta seg
mentation without a loss in accuracy for the coronary arteries. 

Based on these observations, the hybrid loss composed of the 
generalized dice loss and the cross-entropy loss is used to train the 2D 
CNNs in the first stage and the hybrid 2D-3D CNNs. 

3.4. The efficacy of 2D and 3D context information fusion 

3.4.1. Refinement of the segmentation of the coronary arteries in the second 
stage 

As shown in Fig. 1, a 2D CNN is used to segment the aorta and cor
onary arteries simultaneously in the first stage. In the second stage, a 3D 
CNN is applied to further refine the segmentation of the coronary ar
teries in the candidate regions. We evaluate this refinement by 

comparing the segmentation performances on the testing data between 
the first and the second stages. In the first stage, we use three different 
networks: UNet, UNet++, and UNet++ASPP. In the second stage, the 
3D ResUNet is used. The comparisons between the performances of the 
first and the second stages are shown in Table 4, Figs. 4 and 5. From the 
results, we conclude that 1) for the case of UNet or UNet++ used in the 
first stage, there is a gain in the precision score obtained by the 3D 
network of the second stage; but in the case of UNet++ASPP, the pre
cision score in the second stage is reduced, which indicates that although 
the sensitivity score (also known as the recall rate) has increased, the 
number of false positive samples has also increased, 2) for all the three 
different 2D CNNs used in the first stage, the 3D network of the second 
stage can improve the segmentation of the coronary arteries for almost 
all the evaluation metrics except the precision score for the case of 
UNet++ASPP, and 3) the 3D network of the second stage can improve 
the continuity between slices, and reduce the missed detection rate of 
coronary artery segmentation results without compromising the accu
racy of the non-coronary artery segmentation (according to the sensi
tivity and specificity metrics in Table 4). 

3.4.2. Comparison with other methods 
To validate the efficacy of our two-stage method, we further compare 

our method with those based on pure 3D CNNs and those based on 
hybrid 2D-3D CNNs. As stated in Section 3.2, the 3D CNNs for com
parison include 3D ResUNet, VNet [17], and VoxResNet [11], and the 
hybrid 2D-3D CNNs include the 2D-3D UNet [21], the 2.5D CNN [24], 
and the multi-view CNN [20]. In addition, as stated in Section 3.2, to 
show that the performance gain yielded by our two-stage method is not 
simply due to the well-designed architecture of the network, we apply 
the hybrid 2D-3D strategies to the 3D ResUNet and UNet++ASPP to 
obtain hybrid 2D-3D CNNs including 2D-3D ResUNet, 2.5D 
UNet++ASPP, and multi-view UNet++ASPP. The comparison of the 
performances of these models on the testing data are shown in Table 5. 
Fig. 6 shows the comparison of the segmentation results for a single case 
between manual annotations, our method, and other methods. Besides, 
Table 6 shows the number of learnable parameters and receptive field 
size of all the networks compared in Table 5. Note that, for multi-view 
CNN and multi-view UNet++ASPP, since a separate 2D network is 
used for each orthogonal 2D plane, the number of parameters is three 
times that of one network. For the receptive field size, it is 95 × 95 for all 
the networks in the case of multi-view CNN. For the case of multi-view 
UNet++ASPP, it is 512 × 512 for the network for the axial plane, and 
512 × 275 for the sagittal plane coronal plane. For the pure 2D or 3D 
models and the hybrid 2D-3D models, we observe that: 1) The 2D 
network and the hybrid 2D-3D networks, which receive one or several 
slices of images as input, can obtain satisfactory segmentation results for 
the aorta (with the DCS of more than 90%), except the multi-view CNN 
[20], which has a limited field of view of size 95 × 95 as shown in 
Table 6. 2) The 3D networks have higher sensitivity to the coronary 
arteries than the 2D network and the hybrid 2D-3D networks but have 
higher false-positive rate (or lower precision score). Note that the trade- 
off between high sensitivity and low false-positive rate is a challenge 
that occurs in the highly unbalanced segmentation problem. 3) The 
result of multi-view UNet++ASPP is even worse than that of 
UNet++ASPP that receives the image of the axial plane as its input, 
because the poor results of UNet++ASPP that takes the images of the 
sagittal plane or the coronal plane as input affect the fusion result. 
Compared with the pure 2D or 3D models and the hybrid 2D-3D models, 
the advantages of our two-stage method are as follows: 1) for all the 
evaluation metrics and for both the aorta and the coronary arteries, our 
two-stage method outperforms all other methods; 2) compared with the 
pure 2D models, our two-stage method can improve the continuity be
tween slices and achieve a lower missed detection rate for the coronary 
arteries; and 3) compared with the pure 3D models, our two-stage 
method can reduce the training time for the 3D CNN in our second 
stage and decrease the false positive rate for the coronary arteries 
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(according to the precision score in Table 5), since the vast majority of 
negative voxels are excluded in the first stage. Additionally, from 5 and 
Fig. 6, we can see that the results of our method have high similarity 
with those of manual annotations, with the average values of the dice 
score coefficients for the aorta and coronary arteries being 97.54% and 
86.62%, respectively. However, in the results of our method, there is 
some discontinuity in the coronary artery segmentation; moreover, 
some distal coronary arteries are not detected. In addition, Table 7 
shows the comparison of the mean DSC using different deep learning 
methods in recent years, which shows that our method attains 
competitive performance with other methods. Besides, [32] attains the 
best performance among all the methods, which uses the tree-structured 
LSTM and centerlines to model the underlying tree structures of coro
nary arteries. For further improvement, we intend to utilize the cen
terlines to improve the continuity and the detection of the distal 
coronary arteries. 

3.5. Discussion 

Automated segmentation of the aorta and coronary arteries from 3D 
CT images has great significance in the diagnosis of coronary artery 
disease. In the current clinical practice, the process of manual segmen
tation is time-consuming, laborious, and error-prone. To facilitate the 
diagnosis, we present a two-stage method to circumvent the trade-off 
between the field of view and the utilization of inter-slice information 
when using 2D or 3D CNNs for 3D segmentation. The new method re
tains and combines the merits of 2D and 3D CNNs. Compared with the 
pure 2D models, the two-stage method can improve the continuity be
tween slices and achieve a lower missed detection rate for the coronary 
arteries. Compared with the pure 3D models, the two-stage method can 
reduce the training time and decrease the false positive rate for the 
coronary arteries, since the vast majority of negative voxels are excluded 
in the first stage. Extensive experiments demonstrated that our method 
is also superior to other hybrid 2D-3D methods. 

From the experimental results in Section 3.3, the well-designed 
network architecture (e.g., multi-scale mechanism, and nested and 
dense connections) and the loss function (e.g., the hybrid loss composed 
of the generalized dice loss and the cross-entropy loss) together 
contribute to the better segmentation results. Therefore, we anticipate 
that the performance of our method will be further improved with the 
more sophisticated network architecture and training strategy. For 
example, experiences show that attention mechanism and the fusion of 
multi-level contextual information would help resolve ambiguous cases 
and the large inter-subject variations, and thus results in more robust 
and accurate segmentation. Moreover, in the training of deep neural 
networks, it usually demands a large number of training samples due to 
the large number of parameters in the network. We did some compar
ative experiments with the training dataset of 44 sets (i.e., 10 sets more 
than the experiments in this paper) and found the results have some 
noticeable improvement, which indicates that the performance of our 
method can be further improved with more training data. 

Although our method achieved appealing results in most cases, there 
are still some limitations. As shown in Figs. 5 and 6, there is some 
discontinuity in the coronary artery segmentation and some distal cor
onary arteries are not detected. Moreover, since only the neighbourhood 
of the voxels classified as coronary arteries in the first stage is refined by 
the 3D CNN in the second stage, the performance of our method depends 
heavily on the results of the first stage. The blurred and noisy medical 
images as well as the large inter-subject variations lead to the low ac
curacy of the segmentation. In future work, we will investigate some 
techniques to pre-process the images to further improve the perfor
mance, such as image deblurring and image enhancement (e.g., vessel
ness filters [6,28,43]). Furthermore, the use of centerline has been 
shown to contribute to better results [27,44]. In the future, we shall 
investigate how to incorporate the information of the centerline into 
CNNs to further improve the segmentation. 

4. Conclusions 

In this paper, we present a two-stage strategy to achieve segmenta
tion of the aorta and coronary arteries from CT images, which can retain 
and combine the merits of 2D and 3D networks. In the first stage, a 2D 
CNN is used to segment the aorta and coronary arteries simultaneously 
in a slice-by-slice fashion, which can extract long-range contextual in
formation and thus obtain accurate location information. Then, in the 
second stage, a 3D CNN is applied to extract the inter-slice information 
for further refining the segmentation of the coronary arteries obtained in 
the first stage, which can improve the continuity between slices and 
improve the recall rate for the coronary arteries. Extensive experiments 
on clinical CT data show that our method can obtain appealing results 
and outperform some pure 2D or 3D methods and hybrid 2D-3D 
methods. 
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