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Summary

Newton-Krylov methods are potentially well suited for the implicit so-
lution of nonlinear problems whenever it is unreasonable to compute or
store a true Jacobian. Krylov-Schwarz iterative methods are well suited
for the parallel implicit solution of multidimensional systems of bound-
ary value problems that arise in CFD. They provide good data locality
so that even a high-latency workstation network can be employed as a
parallel machine. We call the combination of these two methods Newton-
Krylov-Schwarz and report numerical experiments on some algorithmic
and implementation aspects: the use of mixed discretization schemes in
the (implicitly defined) Jacobian and its preconditioner, the selection of
the differencing parameter in the formation of the action of the Jacobian,
the use of a coarse grid in additive Schwarz preconditioning, and work-
station network implementation. Three model problems are considered:
a convection-diffusion problem, the full potential equation, and the Euler
equations.

1. Introduction

Newton-like methods, together with fully implicit linear solvers, in principle allow
a more rapid asymptotic approach to steady states, f(u) = 0, than do time-explicit
methods or semi-implicit methods based on defect correction. Strict Newton methods
have the disadvantage of requiring solutions of linear systems of equations based on the
Jacobian, f,(u), of the true steady nonlinear residual and are often impractical in several
respects:



1. Their quadratic convergence properties are realized only asymptotically. In early
stages of the nonlinear iteration, continuation or regularization is typically re-
quired in order to prevent divergence.

2. Some popular discretizations (e.g., using limiters) of f(u) are nondifferentiable,
leaving the Jacobian undefined in a continuous sense.

3. Even if f,(u) exists, it is often inconvenient or expensive to form either analyti-
cally or numerically, and may be inconvenient to store.

4. Even if the true Jacobian is easily formed and stored, it may have a bad condition
number.

5. The most popular family of preconditioners for large sparse Jacobians on struc-
tured or unstructured two- or three-dimensional grids, incomplete factorization,
is difficult to parallelize efficiently.

In this paper we examine how points (3) through (5) may be addressed through
Newton-Krylov-Schwarz methods. Our point of view with respect to (1) is that there will
usually be an asymptotic regime in which the power of Newton’s method is desirable if
the storage overhead is not too great. To connect the opening iterations to the asymptotic
regime, polyalgorithmic linear solvers for the Newton corrections were shown to be desir-
able in, for instance, [8]. Regarding (2), we refer to [19] for recent developments. The last
three considerations are the most important with respect to parallel CFD. For a variety of
reasons, industrial CFD groups are inclining towards the distributed network computing
environment characterized by coarse to medium granularity, large memory per node, and
very high latency. The all-to-all data dependencies between the unknown fields in a fully
implicit method have led to a resurgence of interest in less rapidly convergent methods in
high-latency parallel environments. Resisting, we present related investigations that lie
along the route to parallel implicit CFD. Sections §2 and §3 briefly review Newton-Krylov
and Krylov-Schwarz domain decomposition methods, respectively. Numerical results on
three model problems, each focusing on different parts of the overall development of par-
allel Newton-Krylov-Schwarz methods, are then presented in §4 through §6. It is our
intention to bring these developments together in a Navier-Stokes code, as described in
the conclusions.

2. Newton-Krylov Methods

High-accuracy evaluation of the discrete residuals of d-dimensional flow formulations
may require a large number of arithmetic operations. (For instance, a (d+ 2)-dimensional
eigendecomposition may be required at each grid point in an Euler code.) Their Jaco-
bians, though block-sparse, have dense blocks and are usually an order of magnitude even
more complex to evaluate, whether by analytical or numerical means. Hence, matrix-free
Newton-Krylov methods, in which the action of the Jacobian is required only on a set
of given vectors, instead of all possible vectors, are natural in this context. To solve the
nonlinear system f(u) = 0, given u®, let «'*' = u! + Aéu!, for [ = 0,1,..., until the
residual is sufficiently small, where du' approximately solves the Newton correction equa-
tion J(u')éu' = —f(u'), and parameter A is selected by some line search or trust region
algorithm [6]. Krylov methods, such as the method of conjugate gradients for symmet-
ric positive definite systems or GMRES for general nonsingular systems, find the best
approximation of the solution in a relatively small-dimensional subspace that is built up



from successive powers of the Jacobian on the initial residual. The Krylov solver used
throughout this paper is GMRES [15], because of previous comparisons [10] with other
modern Krylov solvers on the same problem class that showed CPU cost differences to be
small and unsystematic when well-enough preconditioned that any of the methods were
practical.

The action of Jacobian J on an arbitrary Krylov vector w can be approximated by

1
l [
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!+ ew) = fuh)] .
Finite-differencing with e makes such matrix-free methods potentially much more suscepti-
ble to finite word-length effects than ordinary Krylov methods [13]. Steady aerodynamics
applications require the solution of linear systems that lack strong diagonal dominance,
so 1t is important to verify that properly-scaled matrix-free methods can be employed in
this context.
An approximation to the Jacobian can be used to precondition the Krylov process.
Examples are:
1. the Jacobian of a lower-order discretization,
2. the Jacobian of a related discretization that allows economical analytical evalu-
ation of elements,
3. a finite-differenced Jacobian computed with lagged values for expensive terms,
and
4. domain decomposition-parallel preconditioners composed of Jacobian blocks on
subdomains of the full problem domain.
We consider case (1) in §4, case (2) in §6, and case (4) in §5 and §6. Case (4) can be
combined with any of the split-discretization techniques (cases (1)—=(3)), in principle.
Left preconditioning of the Jacobian with an operator B! can be accommodated via

_ Ly,
B (uw ~ — [BTf((u! + ew)) = flu')]
where f(ul) = B71f(u') is stored once, and right preconditioning via

J(u) B~ w ~ % A + eB1w)) — F(u)] .
Right preconditioning is preferable when the focus is on comparing different precondi-
tioners, since the residual norm measured as a by-product in GMRES and used in the
termination test is independent of any right preconditioning. On the other hand, any left
preconditioning changes the by-product residual norm in GMRES. Left preconditioning
may be preferable when GMRES is applied in practice as the solver for an inexact Newton
method. When the preconditioning B~! is of high quality, the left-preconditioned residual
serves as an estimate of the error in the Newton update vector. This leads to a useful
termination condition when Newton step acceptance tests are based on |[dul|.



3. Krylov-Schwarz Algorithms

A variety of parallel preconditioners, whose inverse action we denote by B™!, can be
induced by decomposing the domain of the underlying PDE, finding an approximate rep-
resentation of J on each subdomain, inverting locally, and combining the results. Gener-
ically, we seek to approximate the inverse of J by a sum of local inverses:

K a f 1
B~ = jo&ilRO + 3 R;‘:J,;llﬂ’k ,  where Jy ;= {M}

7u .
k=1 du

is the Jacobian of f(u) for ¢ and j in subdomain k& (k > 0), subscript “0” corresponds to
a possible coarse grid, and where R} is a restriction operator that takes vectors spanning
the entire space into the smaller dimensional subspace in which Jj is defined. We use the
term “Krylov-Schwarz” to distinguish these methods within the general class of domain
decomposition methods. In the parallel computing literature the latter term is now used
as a synonym for “data parallelism,” whereas in the computational engineering literature
it has come to be associated with any algorithm based on traversing a “multiblock” data
structure. Meanwhile, in the applied mathematics literature, domain decomposition has
become associated with the process of identifying the subdomains in which different dom-
inant balances between terms of the governing equations hold, in the sense of asymptotic
analysis.

The simplest of the Schwarz preconditioners is block Jacobi, which can be regarded as
a zero-overlap form of additive Schwarz [7]. The convergence rate of block Jacobi can be
improved, at higher cost per iteration, with subdomain overlap and (for many problems)
by solving an additional judiciously chosen coarse grid system. It is demonstrated numer-
ically in [5] for a variety of nonselfadjoint scalar elliptic problems that additive Schwarz
with a nested coarse grid, containing one degree of freedom per subdomain, provides an
“optimal” preconditioning, in the sense that the number of iterations required to attain a
fixed reduction in residual is bounded by a constant as either the mesh spacing h or the
diameter of the subdomains H is indefinitely refined. Multiplicative Schwarz methods im-
prove on additive methods as block Gauss-Seidel improves upon block Jacobi, by roughly
a factor of two, with the same serialization penalty. In a situation in which there are
more subdomains than processors, hybrid multicolored multiplicative/additive Schwarz is
recommended for optimal convergence at a given parallel granularity [2].

Parallelism is not the sole motivation for Schwarz methods. We remark that, given
a preconditioner for the global domain, a Krylov-Schwarz method in which the same
preconditioner is applied locally on each subdomain may provide a better serial algorithm
than Krylov acceleration of the original global preconditioner. Given a problem of size
N and a preconditioner with arithmetic complexity ¢ - N¢, partition the problem into P
subproblems of size N/P. The complexity of applying the solver independently to the set
of subproblems is P-c-(N/P)®. Even in serial, P! sets of subdomain iterations iterations
can be afforded to coordinate the solutions of the subproblems per single global iteration,
while breaking even in total complexity. If o > 1, there is “headroom” for the domain-
decomposed approach, depending upon the overall spectral properties of the global and
multidomain preconditioners. There may still be parallel headroom even if @ = 1, since
the global method may involve too much communication to parallelize efficiently. In
addition, a hierarchical data structure is often natural for modeling or implementation



reasons; and memory requirements, cache thrashing, or I/O costs on large problems may
demand decomposition anyway.

4. A Convection-Diffusion Problem

The academic nonlinear convection-diffusion Dirichlet problem

from [17] is employed for tests of the Newton-Krylov method because, under the assump-
tion of backward Euler time-differencing, % ~ (vt — u™)/At, an exact semi-discrete
solution can be constructed for u"*!. Specifically, if we set u" = (22 + y? + 1) + At -
(2z(2? + y* + 1) + 2y — 4v), then u"t' = 2? + y? + 1, and Dirichlet boundary values
are set accordingly. This problem is discretized on a Courant-triangulated unit square
using a hybrid finite-volume/finite-element first-order approximation [17]. It is extended
to second-order upwinding for the convective terms using MUSCL-type approach [22].

The discretization is general enough to accommodate unstructured triangulated grids
in two-dimensions; however, for easy visualization of the effects of inconsistent discretiza-
tion of the true Jacobian and its preconditioner, four pairs of inconsistent precondi-
tioner/Jacobian discretizations were first applied to the one-dimensional constant coeffi-
cient steady submodel,

ou Pu 0
“9r " Vo2 T
with @ > 0 for a range of Peclet numbers, Pe = aAz/v. In this model, the second-

derivative term is always approximated by the standard central difference formula — 22712‘ | ~

}3—2(—%_1 +2u; —uiy1) = Du; wherever it appears in the Jacobian, and whenever the diffu-
sive terms are made a part of the preconditioner. The first-derivative term was variously
approximated by either of the second-order formulae, g—; ;R 41—h(u2’_2 —Bu;_+3ut i) =
Cuou; or g—gh R~ ;—h(ui_g — 4du;—1 + 3u;) = Cuyzppui, or by the first-order formula,
g—gi R %(_Ui—l + u;) = Cpyu;. The last of these, the only diagonally dominant for-
mula, and the formula with the most compact stencil, is used whenever a convective
term appears in the preconditioner. Of the first two, the four-point formula, with one
stencil point on the downwind side, corresponds to the second-order upwind extension of
the cell-upwind scheme developed in [22] and considered further in the two-dimensional
nonlinear convection-diffusion cases described below. The three-point formula, with all
stencil points on the upwind side is a commonly used finite-difference form, which appears
further below only for one-dimensional comparison purposes. We do not consider second-
order central discretization of the convective term in the Jacobian, as is sometimes allowed
in stationary defect correction methods, since, as was shown in [12], the preconditioned
operator has an eigenvalue that tends to zero in the limit of large Peclet number for this
choice.

Figure 1, generated with MATLAB, shows the spectra for four Jacobian/preconditioner
pairs at each of three cell Peclet numbers: 0.1, 1.0, and 10.0. All Jacobian/preconditioner
pairs considered have spectra that stay bounded away from the origin over the full range

of Peclet number from zero to infinity. However, preconditioning with the convective
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Fia. 1. Spectra, in the right-half of the complex plane, of inconsistently preconditioned convection-
diffusion operators in one-dimension, for Peclet numbers of 0.1 (‘+°), 1.0 (‘x’), and 10.0 (’). (a)
Cua + D preconditioned by Cyy + D. (b) Cua + D preconditioned by Cyy. (¢) Cya + D preconditioned
by D. (d) Cvuarp + D preconditioned by Cyq + D. Note differences in scales.

operator alone obviously fails as Pe — 0 and preconditioning with the diffusive opera-
tor alone fails as Pe — oo, in the sense that their spectra contain some elements that
become arbitrarily large in the respective limits while others are clustered near unity,
resulting in intolerably large condition numbers. In spite of the first of these unsuitable
limits, upwind Euler discretizations for the left-hand side are sometimes applied to full
Navier-Stokes residuals on the right-hand side in stationary defect correction methods.
Both of the inconsistent Jacobian/preconditioner pairs that contain first-order upwind
convection and standard diffusion together in the preconditioner lead to spectra that stay
bounded in a small region of the complex plane near unity as either Pe — 0 or Pe — oo.
In fact, in case (d), when the convective term in the Jacobian contains no nonzero co-
efficients on the downwind side, the preconditioned spectrum clusters at a single point
(2,0) in the infinite Peclet limit. (Both (a) and (d) have preconditioned spectra cluster
that at a single point (1,0) in the zero Peclet limit.) Therefore, it appears possible to
accelerate an inconsistent discretization pair and obtain good conditioning. It should be
noted that since the preconditioned operators are generally non-normal, no conclusions
should be drawn about the performance of Krylov-accelerated version of these methods
on the basis of the exact spectra alone. It has been shown [18] that, in the presence of
finite-precision arithmetic, the spectrum itself may be misleading for non-normal opera-
tors, and the pseudo-spectrum is more revealing. For present purposes, we merely show
the spectra, and rely on the actual iteration counts as evidence of successful application
of the inconsistent discretization of Fig. 1(a) in its two-dimensional, variable-coefficient
generalization.



Before presenting the results of inconsistently preconditioned convection-diffusion Ja-
cobians, we explore another axis of discretization parameter space, namely that of matrix-
free approximation of the Jacobian-vector product, as described in §2. Our aim is to val-
idate the existence of a range of the differencing parameter € in the approximation of the
Jacobian-vector product in which € is simultaneously small enough for the Jacobian-vector
product to be accurately estimated by just the first two terms of the Taylor series

flu' + ev) = f(u') + eJ(uh)v,

and large enough to avoid catastrophic cancellation for moderately ill-conditioned J.
Two techniques for choosing the scalar € were investigated:

\V Emach * (HulHQ + 1)7 and
l
¢ = S (v, v)]

[vl3

The first choice is simply the square root of the machine epsilon (or unit roundoff) multi-
plied by the norm of the current solution vector, so that the size of an assumed order-unity
norm perturbation vector is not buried by a potentially large u!. Conversely, by adding
unity to |[u]|, the perturbation vector is kept large enough for there to be significance in
the difference of the two residual vectors in the limit as ||u'|| becomes small. The second
technique takes into account the magnitude of v, the Krylov vector, as well as that of u'.
The second was considered preferable to the first. We note here that GMRES may have
an advantage over other Krylov methods in the matrix-free context in that the vectors
v that arise in GMRES have unit two-norm, but may have widely varying scale in other
Krylov methods for nonsymmetric systems. Right preconditioning spoils the perfect unit
two-norm, however, and the second technique retains an advantage in this context. For
an extended discussion of matrix-free applications of the Jacobian in the Krylov context,

see [21].

TABLE 1
Tteration counts for unpreconditioned solution via GMRES of the nonlinear convection-diffusion prob-
lem, and the discrete two-norm of the overall error between the algebraic and exact solution for the finest
grid case, without preconditioning.

At =107 At =101
Al AR | AR A
4 4 4 5 5
8 4 4 8 11
16 5 5 14 20
32 7 7 23 36
64 10 10 38 64
128 14 14 68 113
Error || 1.12(-8) 1.88(-8) | 3.20(-5) 3.55(-5)

Table 1 shows the iteration count for a 107 reduction in residual of the unprecon-
ditioned Newton correction equation, in both explicit (superscript ex) and matrix-free
(superscript m f) implementations. Two different time-step sizes are considered, with the



larger (At = 0.1) corresponding to a worse conditioned system. Deterioration of the con-
vergence of the matrix-free method without preconditioning is evident on the finer grids;
however, the error in the converged solution does not much suffer.

TABLE 2
Tteration counts for ILU(0)/GMRES preconditioned solution of the nonlinear convection-diffusion
problem, and the discrete two-norm of the overall error between the algebraic and exact solution for the
finest grid case, with inconsistent preconditioning.

At = 1072 At = 101
| (Ag)AF) ™ (AFDAE) ™ | (Ag)Ag)™ (AT (Ag) !

N DN NN DN DN
CU O O

W W W N = =

128
Error 5.42(-11) 2.03(-9) 2.96(-5) 3.35(-5)

Table 2 shows the iteration count for the same cases in the presence of inconsistent
preconditioning. For these tests, a global ILU(0) preconditioning was created from the
convection-diffusion operator with first-order upwind convection. (The diagonal domi-
nance of this system protects the ILU(0) factorization from breakdown.) The iteration
count for the matrix-free method with preconditioning still deteriorates relative to the
explicit Jacobian case. However, the explicit preconditioner is created from the explicitly
available matrix, which is second-order accurate. The absolute extent of this deteriora-
tion is only a couple of extra Jacobian-vector products. In applications, in which one is
faced with a choice between many extra stationary defect correction steps at limited CFL
versus a few more costly accelerated Newton correction steps at high CFL, the matrix-free
Newton method may prevail.

The numerical experiments in this section considered only a global preconditioner
based on approximate factorization. In the next two sections, Schwarz-like domain de-
composition preconditioners are considered, instead.

5. A Full Potential Problem
The full potential equation for the velocity potential, ®, is

V- (p(l[Ve])Ve) =0,
where the density is given in terms of the potential by
_ -1 ¢> O
P =P (1+TM00(1_E)) )

where ¢ = ||[V®|| and M, = ¢../a~. Here, a is the sound speed, ¢ the flow speed,
and oo refers to the freestream. When the flow is everywhere subsonic the full potential
formulation fits within the monotone nonlinear elliptic framework of additive Schwarz



methods [4]. For a simple non-lifting model problem of an airfoil lying along the symmetry
axis y = 0, we choose boundary conditions as follows:

e Upstream and Freestream: ® = ¢« (zero angle of attack),

e Downstream: @, = ¢..,

e Symmetry: ¢, =0,

e On the parameterized airfoil with shape y = f(x): ¢, = —¢oo f'(@).
The farfield boundary conditions lead to inaccuracies if applied too near the airfoil, but
our interest is in algebraic convergence rates.

TABLE 3
Average number of GMRES steps per Newton step for full potential Newton-Krylov-Schwarz solver
with varying coarse grid size.

Coarse Grid || 0x0 |4x5|8x9|12x13 |16 x17 | 20x 21
Analytical 177 35 28 27 24 21
Matrix-free 183 41 28 27 25 23

A uniform fine grid of mesh size h and a uniform coarse grid of mesh size H. are defined
over the entire domain. The coarse grid is not necessarily nested within the fine grid,
and its elements are not necessarily vertices of the subdomains, which have sides of size
Hj, [3]. Bilinear rectilinear elements are used for both coarse and fine grids, and bilinear
interpolation for intergrid transfers. An overlap 2k is employed on each of the subdomains,
and problems posed on the subdomains as part of the Schwarz preconditioning are solved
inexactly by ILU(0) with a drop tolerance 0.01. M., is 0.1 and the airfoil is the scaled
upper surface of a NACA0012. Nonlinear convergence is declared following a 1072 relative
reduction in the steady-state residual, which requires only three Newton steps independent
of inner linear method. Inner iteration convergence is a relative residual reduction of
107*. We restart GMRES every 20 iterations. Table 3 shows convergence performance
for a fixed-size problem of 128 x 128 uniform cells with a fixed number of subdomains in
an 8 X 8 array as the density of the unnested uniform coarse grid varies. Key observations
from this example are: (1) even a modest coarse grid makes a significant improvement in
an additive Schwarz preconditioner; (2) a law of diminishing returns sets in at roughly
one point per subdomain; and (3) matrix-free “matvecs” degrade convergence as much as
15-20% in the less well-conditioned cases.

6. An Euler Problem

Our Euler example is a two-dimensional transonic airfoil flow modeled using an
EAGLE-derivative code [14] that employs a finite volume discretization over a body-fitted
I

coordinate grid. The Fuler equations for dependent variable vector ) = [p, pu, pv, e]* are

expressed in strong conservation curvilinear coordinate form as

(1) Qr + (F) +(G), =0,

where () and the contravariant flux vectors, ' and G, are defined in terms of the Cartesian
fluxes and the Jacobian determinant of the coordinate system transformation, J = 2y, —
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C-grids of 128 x 16 or 128 x 32 cells (from [10]) around a NACA0012 airfoil at an angle of
attack of 1.25° and an M., of 0.8 are considered. To obtain a representative matrix/RHS
pair on which to test the behavior of Euler Jacobians under Krylov-Schwarz, we first ran
a demonstration case from [14] partway to convergence and linearized about the resulting
flow state.

The discrete equations take the form

1+ AT(8AT +8,BF +8:A7 +6,B8,)] AQ' = —Arf!,

where

the eigenvalues of A and B, respectively, are the components of the characteristic velocities
in the ¢ and 7 directions, ¢ is the first-order spatial difference operator, superscripts +
denote the characteristic (upwind) direction in which the differencing occurs, and the
bullets signify that each spatial differencing is carried out on the entire product to the
right, for example, & on (ATAQ"). Following the defect correction practice of [16], a flux
vector split scheme of Van Leer type is employed for the implicit operators, A and B, and
the vector of steady-state residuals, f(u), is discretized by a Roe-type flux difference split
scheme. Characteristic variable boundary conditions are employed at farfield boundaries
using an explicit, first-order accurate formulation.

TABLE 4
Tteration counts for transonic Fuler flow Jacobian with 8192 degrees of freedom discretized at local
CFL numbers of 1 and 100, for various preconditioners and decomposition into 4, 16, or 64 subdomains.

Precond. || Block Jacobi | Add. Schwarz | Mult. Schwarz
CFL No. || 1 102 1 102 1 102
1x1 1 1 1 1 1 1
2% 2 4 14 7 14 2 7
4 x4 4 18 7 17 3 8
8 x 8 5 28 10 23 3 8

For a given granularity of decomposition, curvilinear “box” decompositions are gen-
erally better than curvilinear “strip” decompositions for this problem [10]. Table 4 shows
that the zero-overlap results are only slightly less convergent than the corresponding h-
overlapped additive Schwarz results at high Courant-Friedrichs-Lewy (CFL) number, and
that h-overlapped multiplicative Schwarz is significantly better, though the latter is a less



TABLE b
Tteration counts and serial execution time for a transonic Fuler flow Jacobian with 16384 degrees of
freedom discretized at a local Courant number of 100, for Block Jacobi run in serial on a Sparcll.

Decomp. || Iterations | Serial Time
1x1 1 38.1
2x2 12 37.9
4x4 14 21.0
8 X8 22 20.3

parallel algorithm. Though we have not yet experimented with a coarse grid in the Eu-
ler context, [20] shows that even a piecewise constant coarse grid operator substantially
improves Krylov-Schwarz convergence rates in unstructured problems.

The serial benefit of the Schwarz preconditioning is illustrated in Table 5. Here, a
direct solve with a nested dissection ordering is found inferior to an additive Schwarz-
GMRES iteration with nested dissection applied to successively smaller subdomains.

The Euler code has been executed on an ethernet network of workstations using
a package of distributed sparse linear system routines developed at Argonne National
Laboratory by Gropp and Smith [11], with p4 [9] as the data exchange layer.

Table 6 shows CPU times for each of three Schwarz preconditioners with different
parallel granularity, for a fixed number of iterations on a fixed size problem. When exact
solvers are used on each subdomain, speedups on a per iteration basis are seen on up to
16 processors. This advantage may be artificial in the sense that global incomplete LU
is superior to a Schwarz method using exact subdomain solvers in serial, and ILU should
replace nested dissection as the subdomain solver. In recent experiments [1] on Jacobians
from the TRANAIR code, a threshhold drop tolerance form of ILU was employed as the
subdomain solver in a Schwarz preconditioner, and the drop tolerance was varied from
zero (exact nested dissection factorization) to a value that filtered out all but the largest
entries in the approximate factors. The optimal drop tolerance in terms of number of
operations per gridpoint varied with problem size and required converged precision, but
the optimal average number of nonzeros per row hovered around 20 to 40, which is much
sparser than a full nested dissection.

To test the nonlinear matrix-free approach in a situation with four differently scaled
components per gridpoint, we approached the steady solution via a pseudo-transient con-
tinuation with a local adaptation of CFL number. Starting from a small initial CFL

TABLE 6
FErecution time, mazimized over the processor gang, for an equal number (ten) of Block Jacobi pre-
conditioned iterations run in parallel over a network of Sparc10’s and SparcELC’s, for a transonic Fuler
flow Jacobian with 16384 degrees of freedom discretized at a local Courant number of 100.

Decomp. || Parallel Time
2x2 20.3
4x2 11.5
4 x4 8.3
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number (10), CFL may be adaptively advanced according to:

CFLI—I—I _ CFLI ||f( )||l !
L)

This was found preferable to an alternative local strategy:

i ()"
i)l

and also to higher powers of the ratio of successive norms.

CFLI" = CFL; -

Use of the baseline approximate factorization defect correction algorithm produces
the dashed curves in Fig. 2. To obtain the solid curves, the explicitly available (Van Leer)
flux vector split Jacobian (Jyy) is used to precondition the implicitly defined (Roe) flux
difference split Jacobian (Jg) at each implicit time step. In matrix terms, the corrections
u are obtained as the approximate solutions of, respectively,

Jviu=—fr and (Jyr) ' Jru = —~(Jvr)™ fp.

Unfortunately, in the retrofit of the existing code, transition to a full Newton method
(CFL number approaching infinity) is precluded by explicit boundary conditions, but
CFL number can be advanced, as shown in the figure, to O(10°) with advantage.

The Schwarzian theory relies on the dominance of the elliptic operator. However, as
in this example, multidimensional hyperbolic problems are often discretized in a defect-
correction manner, with an artificially diffusive left-hand side operator. Some of the
benefits of elliptic algorithms will be realized when these methods are accelerated with a
Krylov method.

7. Conclusions

Several aspects of Newton-Krylov-Schwarz methods that are expected to be of value in
a practical parallelized Navier-Stokes code are validated in model contexts. Simultaneous
demands for higher-order discretizations in the Jacobian proper and diagonally dominant,



easily invertible preconditioners are satisfied by mixed (inconsistent) discretizations. As
in defect correction methods, the Jacobian proper need not be computed explicitly. How-
ever, by accelerating the stationary defect correction process, arbitrarily good convergence
to the true Newton direction can be obtained, providing an asymptotic advantage. It is
shown to be possible to find a differencing parameter for the matrix-free Newton method
that is simultaneously small enough for good truncation error in approximating the action
of the Jacobian and large enough to avoid the pitfalls of double precision round-off, at
least for problems of O(10%) mesh cells in each dimension, and in the presence of sig-
nificant grid stretching. This problem is expected to grow more acute for high-aspect
ratio Navier-Stokes grids. The use of a non-nested coarse grid provides a continuously
adjustable “knob” with significant leverage in reducing the condition number of an ellip-
tically dominated problem. The coarse grid entails a high communication cost in parallel
implementations, but in additive algorithms it can be solved simultaneously with the sub-
domain fine grids operators, permitting overlap of its excess communication with useful
subdomain computation. Finally, preliminary experience with treating Unix workstations
spread throughout a building and connected only by a single ethernet is enouraging in
that even for a modest fixed-size problem, wall clock execution time per iteration improves
on up to sixteen workstations. When parallelism is exploited in its more advantageous
scaling of fixed subdomain size per processor, we expect yet more encouraging results.
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