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We propose and study a right-preconditioned inexact Newton method for the numerical solution of large
sparse nonlinear system of equations. The target applications are nonlinear problems whose derivatives
have some local discontinuities such that the traditional inexact Newton method suffers from slow or no
convergence even with globalization techniques. The proposed adaptive nonlinear elimination precondi-
tioned inexact Newton method consists of three major ingredients: a subspace correction, a global
update, and an adaptive partitioning strategy. The key idea is to remove the local high nonlinearity before
performing the global Newton update. The partition used to define the subspace nonlinear problem is
chosen adaptively based on the information derived from the intermediate Newton solution. Some
numerical experiments are presented to demonstrate the robustness and efficiency of the algorithm com-
pared to the classical inexact Newton method. Some parallel performance results obtained on a cluster of
PCs are reported.
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1. Introduction modify the variable of the nonlinear system. For example, Hwang
The class of inexact Newton method (IN) [8,15] is popular for
solving large sparse nonlinear system of equations arising from dis-
cretization of partial differential equations (PDEs). IN is quite robust
and efficient for smooth nonlinear problems, but if the solution of
the problem or its derivatives has certain discontinuity, the conver-
gence rate of IN degrades, and the method may fail to converge even
used together with globalization techniques, such as linesearch or
trust region [8,15]. Such problems appear often in computational
fluid dynamics involving, for examples, shock waves, boundary lay-
ers, and corner singularities. To overcome the problem, we develop
a nonlinear preconditioning technique in this paper.

Nonlinear preconditioning can be applied on the left or on the
right of the nonlinear function. The basic idea of left preconditioning
is to change the function of the system to a more balanced system
and then solve the new system by IN. The additive Schwarz precon-
ditioned inexact Newton algorithm (ASPIN) [3,11] belongs to this
class. ASPIN has been applied successfully to incompressible high
Reynolds number flows [3,4,6,11,12], transonic compressible flows
[5,13,20], flows in porous media [19], unconstrained optimization
problems arising in nonlinear elasticity problems [9], and image
processing [22]. On the other hand, right preconditioning is to
et al. [13] employs a nonlinear elimination (NE) technique [14] as
a right preconditioner for a quasi one-dimensional shocked duct
flow calculation. The key idea of NE is to implicitly remove these
components that cause trouble for IN. In order to use the algorithm
proposed in [13], one has to assume that the components to be elim-
inated are known in advance. However, in practice it may not always
be possible to determine these components. The main contribution
of this paper is to propose a new algorithm, namely an adaptive non-
linear elimination (ANE) preconditioned inexact Newton method
that does not require this assumption. In the proposed algorithm,
we use the intermediate IN solution to identify these components
to be eliminated before a new global IN iteration. One potential
application of the proposed algorithm is for the time-dependent
PDE problems solved by a fully implicit scheme. In this paper, we
focus only on a steady-state problem, namely the full potential
equation in two different computational domain. The subspace cor-
rection phase can be done before a global Newton iteration is per-
formed so that the overall performance of IN-based kernel solver
is improved.

The rest of the paper is organized as follows. The next section
describes the full potential equation discretized using a finite dif-
ference method with density upwinding. Section 3 provides a
detailed description of the proposed algorithm. Section 4 presents
the numerical results, including parallel performance of the pro-
posed algorithm. Section 5 summarizes the main contributions of
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this paper and points out some potential applications of the
algorithm.
2. Full potential flow equation and its discretization

We consider the full potential flow equation [10,18], which is
often used for modeling transonic flows passing an airfoil,

r � ðqð/Þr/Þ ¼ 0; ð1Þ

where / is the velocity potential, ðu1;u2Þ ¼ r/ is the velocity field,
and the density function q is given as

qð/Þ ¼ q1 1þ c� 1
2

M2
1 1� kr/k2

2

q2
1

 ! !1=ðc�1Þ

: ð2Þ

Here, c ¼ 1:4 is the specific heat for air. The constants q1, M1 and
q1 represent the density, the Mach number, and the speed at the far
field, respectively. In this work, two test cases, namely a flow pass-
ing the NACA0012 airfoil case [2,18], and a channel flow passing
through a circular bump [7,16].

The geometrical configuration for a transonic flow passing the
NACA0012 airfoil is shown in the left figure of Fig. 1, where the
computational domain is ½0;1� � ½0;1� and the shape of the
NACA0012 model is described by the function

f ðxÞ ¼ 0:17814ð
ffiffiffi
x
p
� xÞ þ 0:10128ðxð1� xÞÞ � 0:10968x2ð1� xÞ

þ 0:06090x3ð1� xÞ;

for x 2 ð0;1Þ and then re-scaled into ½1=3;2=3� through x ¼ 3t � 1,
for t 2 ½1=3;2=3�. The boundary conditions are specified as follows.

1. / ¼ 0 on the inflow boundary C6;/ ¼ q1 on the outflow bound-
ary C4, and the freestream boundary on C5, which are described
by / ¼ /1 ¼

R
x q1 dx. The freestream speed q1 is normalized to

be 1.
2. A homogenous Neumann boundary condition is imposed on C1,

and C3, i.e., @/
@y ¼ 0. This condition implies that the flow is sym-

metric with respect to the boundaries and no flow penetrate
through the boundaries.

3. A transpiration boundary condition is given on C2 by
@/
@y ¼ �q1f 0ðxÞ.

As a second example, we consider a channel flow as shown in
the right figure of Fig. 1. The computational domain is defined as
Fig. 1. The geometrical configuration for the airfoil problem (left) and
½�1:0;4:0� � ½0:0;2:073�. The shape of the bump is described by
the function.

f ðxÞ ¼ 4txð1� xÞ

for 0 6 x 6 1; t ¼ 0:042. The settings of the boundary conditions are
similar to the airfoil case, except that the freestream boundary con-
dition on C5 is replaced by a homogenous Neumann boundary con-
dition as on C1 and C3 and / ¼ 0 and / ¼ 1 on C6 and C4,
respectively.

To discretize (1) by a finite difference method with density
upwinding [10], we begin by introducing a set of mesh points,
ðxi; yjÞ;0 6 i 6 nx and 0 6 j 6 ny with the mesh size hx ¼ lx=nx and
hy ¼ ly=ny, where lx and ly are the lengths of the computational
domain in the x- and y-directions, respectively. Let U ¼ ½/i;j�

T be
the numerical approximations at mesh points (including the
Dirichlet and Neumann boundary points) in the natural ordering.
We denote xiþ1=2 and yiþ1=2, as the midpoints of subintervals
½xi; xiþ1� and ½yj; yjþ1�, respectively. We discretize the full potential
Eq. (1) at the interior point ðxi; yjÞ using a second-order centered
finite difference method, i.e.,

FIðUÞ � hy qiþ1
2;j
ðu1Þiþ1

2;j
� qi�1

2;j
ðu1Þi�1

2;j

h i
þ hx qi;jþ1

2
ðu2Þi;jþ1

2
� qi;j�1

2
ðu2Þi;j�1

2

h i
¼ 0;

where the velocity components u1 and u2 at ðxiþ1=2; yjÞ and
ðxi; yjþ1=2Þ, respectively, are approximated as

ðu1Þiþ1=2;j � ð/iþ1;j � /i;jÞ=hx ð3Þ
ðu2Þi;jþ1=2 � ð/i;jþ1 � /i;jÞ=hy ð4Þ

and ðu1Þi�1=2;j and ðu2Þi;j�1=2 are approximated similarly. For purely
subsonic flows, using (2) for calculating the flow density at
ðxi�1=2; yjÞ and ðxi; yj�1=2Þ, i.e., qi�1=2;j ¼ qðkqki�1=2;jÞ and
qi;j�1=2 ¼ qðkqki;j�1=2Þ, is sufficient. Here,

qiþ1=2;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1Þ2iþ1=2;j þ ðu2Þ2iþ1=2;j

q
and qi;jþ1=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1Þ2i;jþ1=2 þ ðu2Þ2i;jþ1=2

q
with ðu1Þiþ1=2;j and ðu2Þi;jþ1=2 defined as (3) and (4), and

ðu2Þiþ1=2;j � ð/iþ1;jþ1 þ /i;jþ1 � /iþ1;j � /i;jÞ=ð2hyÞ
ðu1Þi;jþ1=2 � ð/iþ1;jþ1 þ /iþ1;j � /i;jþ1 � /i;jÞ=ð2hxÞ:

However, for transonic flows, this formulation needs to be modified
in order to capture the shock. By applying a first-order density
upwinding scheme as suggested by Young et al. [2,21], a modified
the internal channel flow with a circular bump problem (right).
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flow density value at the points ðxiþ1=2; yjÞ and ðxi; yjþ1=2Þ are
expressed as

qiþ1=2; j ¼
qiþ1=2; j � eli;jðqiþ1=2; j � qi�1=2; jÞ if ðu1Þiþ1=2; j > 0;

qiþ1=2; j þ eliþ1; jðqiþ1=2; j � qiþ3=2; jÞ if ðu1Þiþ1=2; j < 0;

8<:
and

qi; jþ1=2 ¼
qi; jþ1=2 � eli; jðqi; jþ1=2 � qi; j�1=2Þ if ðu2Þi; jþ1=2 > 0;

qi; jþ1=2 þ eli; jþ1ðqi; jþ1=2 � qi; jþ3=2Þ if ðu2Þi; jþ1=2 < 0;

8<:
where the first-order switching parameter eli; j is defined aseli; j ¼maxfls;tg, for s ¼ i� 1; i; iþ 1 (i ¼ 1; . . . ;m) and
t ¼ j� 1; j; jþ 1 (j ¼ 1; . . . ;n) with the zeroth-order switching

parameter ls;t ¼maxf0;1� bM2
c =M2

s;tg. Here bMc is called a pre-
selected cutoff Mach number and Ms;t is the numerical local Mach
number at ðxs; ytÞ given by

Ms;t � M1 qs;t=q
1

c�1
s;t

� �
ð5Þ

with qs;t ¼ ðqsþ1=2;t þ qs�1=2;t þ qs;tþ1=2 þ qs;t�1=2Þ=4 and qs;t ¼ qðqs;tÞ.
To close the system, we impose the boundary condition at the left-
most and rightmost mesh points, for j ¼ 0; . . . ; ðny � 1Þ

FLðUÞ � /0;j ¼ 0

and
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Fig. 2. The airfoil case. Computed potential curves along the vertical midline at x ¼ 0:5
(bottom-right) and different mesh sizes.
FRðUÞ � /nx ;j � 1:0 ¼ 0:

For the topmost mesh points, we have, for i ¼ 1; . . . ; ðnx � 1Þ

FTðUÞ � /i;ny
� ihx ¼ 0; ðThe airfoil caseÞ

or

FTðUÞ � /i;ny
� /i;ny�1 ¼ 0; ðThe channel flows caseÞ:

For the bottommost mesh points, when 1=3 6 ihx 6 2=3 for the
NACA0012 case (or 0 6 ihx 6 1 for the channel flow case), we have

FBðUÞ � /i;1 � /i;�1 � 2hyq1f 0ðjhxÞ ¼ 0

else

FBðUÞ � /i;1 � /i;0 ¼ 0;

for i ¼ 1; . . . ; ðnx � 1Þ. Here, a horizontal layer of ghost points
ðj ¼ �1Þ is included to avoid unphysical solution. In summary, the
discretized transonic full potential flow problem is written as a
large sparse nonlinear system of algebraic equations,

FðxÞ ¼ 0; ð6Þ

where x ¼ ½/i; j�
T is a solution vector containing the numerical

approximations at the mesh points in the natural ordering. Here
F ¼ ðF1; . . . ; FnÞT and Fi ¼ Fiðx1; . . . ; xnÞ.
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3. Inexact Newton and nonlinear preconditioning

We briefly review the classical inexact Newton method with
backtracking (INB) [8,15] which will be used as the basis of the
proposed algorithm.

Algorithm 1 [Inexact Newton with Backtracking (INB)]

Given an initial guess xð0Þ

Evaluate Fðxð0ÞÞ and kFðxð0ÞÞk
Set k ¼ 0
While kFðxðkÞÞk > eglobal nonlinear atol do

Compute the Jacobian matrix F 0ðxðkÞÞ
Inexactly solve the Jacobian system F 0ðxðkÞÞsðkÞ ¼ �FðxðkÞÞ
Update xðkþ1Þ ¼ xðkÞ þ kðkÞsðkÞ, where kðkÞ 2 ð0;1� is determined
to satisfy

kFðxðkÞ þ kðkÞsðkÞÞk 6 ð1� akðkÞÞkFðxðkÞÞk
Set k ¼ kþ 1

End While

In INB, we first find the search direction by solving inexactly the
Jacobian system, then compute the next approximate solution
along this search direction. How far we should go from the current
approximation is determined by the damping scalar, kðkÞ.
eglobal nonlinear atol is the absolute tolerance and a is employed to
assure that the reduction of kFðxÞk2 is sufficient. Observed from
many numerical experiments, the size of kðkÞ could be very small
due to the existence of some bad components in the function
FðxÞ. These bad components are often associated with certain inter-
esting physics of the solution, e.g., the shock wave located in a
small region for the transonic full potential flow problem. On the
other hand, in our proposed algorithm, NE is a subproblem solver
inside a global INB that is designed to smooth out these ‘‘bad com-
ponents’’ so that the total number of global INB is reduced. It is
important to note that by nonlinear elimination we change the
sequence xð0Þ; xð1Þ, . . ., but we do not change the final solution
obtained by INB.

To define a nonlinear elimination based preconditioner, we
introduce some notations. Let S ¼ f1;2; . . . . . . ;ng be an index set
and each index corresponds to an unknown component xi and a
nonlinear residual component, Fi. We classify the nonlinear resid-
ual components, F1; F2; . . . ; Fn, into two groups for the ‘‘good com-
ponents’’ and ‘‘bad components’’. Let k be the global Newton
iteration number. Assume that SðkÞb (‘‘b’’ for bad) is a subset of S with
mðkÞ components and SðkÞg (‘‘g’’ for good) with ðn�mðkÞÞ components
is its complement; that is

S ¼ SðkÞb [ SðkÞg : ð7Þ

Usually mðkÞ 	 n. For this partition, we define two subspaces

V ðkÞb ¼ fv jv ¼ ðv1; . . . ;vnÞT 2 Rn;v i ¼ 0 if i R SðkÞb g

and

V ðkÞg ¼ fv jv ¼ ðv1; . . . ;vnÞT 2 Rn;v i ¼ 0 if i R SðkÞg g;

respectively, and the corresponding restriction operators, RðkÞb and
RðkÞg , which map vectors from Rn to V ðkÞb and V ðkÞg , respectively. Using
the restriction operator RðkÞb , we define a nonlinear function
FSb

1
: Rn ! V ðkÞb as

F
SðkÞ

b
ðxÞ ¼ RðkÞb ðFðxÞÞ:

For any given x 2 Rn; TðkÞb ðx): Rn ! V ðkÞb is defined as the solution of
the following subspace nonlinear system,
F
SðkÞ

b
ðRðkÞg xþ TðkÞb ðxÞÞ ¼ 0: ð8Þ

Using the subspace mapping functions, we introduce a new global
nonlinear function,

y ¼ GðkÞðxÞ � RðkÞg xþ TðkÞb ðxÞ:

Note that for a given x, the evaluation of GðkÞðxÞ is not straightfor-
ward, a nonlinear system corresponding to the subspace Vb

1 has to
be solved using typically the classical INB algorithm. The adaptivity
is reflected in the fact that this nonlinear function changes with k.
Now INB in conjunction with ANE can be described as follows.

Algorithm 2 [INB-ANE]

Given an initial guess xð0Þ.

Initialize the partition: Sð0Þb ¼ ; and Sð0Þg ¼ S; k ¼ 0

Evaluate Fðxð0ÞÞ and kFðxð0ÞÞk
While ðkFðxðkÞÞk > eglobal nonlinear atolÞ do

Subspace correction:
Given xðkÞ, solve the subspace problem

FSðkÞ
b
ðRðkÞg xðkÞ þ TðkÞb Þ ¼ 0 for TðkÞb .

Compute z ¼ GðkÞðxðkÞÞ ¼ RðkÞg xðkÞ þ TðkÞb .
Global update:

Compute JðzÞ
Approximately solve JðzÞsðkÞ ¼ �FðzÞ
Update xðkþ1Þ ¼ zþ kðkÞsðkÞ, where kðkÞ is determined to

satisfy

kFðzþ kðkÞsðkÞÞÞk 6 ð1� akðkÞÞkFðzÞk
Determine a new partition: S ¼ SðkÞb [ SðkÞg .

Set k ¼ kþ 1
End While

Remarks:

1. The basic idea of INB-ANE is to approximately eliminate the
local high nonlinearities before applying a global Newton itera-
tion. Skipping the subspace correction phase, INB-ANE is
reduced to the classical INB.

2. When the ‘‘bad’’ subspace SðkÞb is empty, it does not mean all the
equations are good. It may indicate that all the equations are
bad; bad in a global way.

3. A physics-based strategy can be used to determine the subset of
indices containing all the bad components, SðkÞb . For the applica-
tions considered in the paper, the bad components correspond
to the transonic flow region. In our implementation, we calcu-
late the local Mach number Ms;t using (5) for each Newton iter-
ation. The bad components are therefore defined by the local
Mach number, if Mc < Ms;t , whereas the good components cor-
respond to the subsonic flow region, i.e., Ms;t < Mc. Here, Mc is a
pre-selected cuf-off Mach number for ANE. The effect of differ-
ent values of Mc on the overall performance of INB-ANE will be
investigated in Section 4.2.

4. The partition for the nonlinear elimination changes with k. As
shown in Section 4.2 the bad components might not be clearly
identified at the beginning, since the early approximate solution
is far from the final solution. But as Newton progresses toward
the final solution, the solution provides more accurate informa-
tion for the partition.

An important feature of the right-nonlinear preconditioner is
that there are some flexibilities to select the global Jacobian solver
and it is easier to develop preconditioning strategies for the linear
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part of the algorithm to enhance the overall scalability of the algo-
rithm. To define the parallel restricted Schwarz preconditioner for
the global Jacobian system, we introduce another non-overlapping
partition of the index set S, i.e.,

S ¼ [Ns
i¼1Si; Si \ Sj ¼ ; if i – j; and Si 
 S;

where ni is the dimension of Si and
PNs

i¼1ni ¼ n. Here Ns is the num-
ber of processors of the parallel computer. Note that this partition is
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Fig. 3. The airfoil case. A comparison of potential contours (1st row), the Mach number co
solution using INB (left column) and INB-ANE (right column). M1 ¼ 0:8 and h ¼ 1=512.
needed for the Schwarz preconditioning, and it is not related to the
‘‘good/bad’’ partition, which is for the purpose of removing the local
high nonlinearity. To obtain overlapping subdomains, we expand
each Si to a larger Sd

i , Here d is an integer indicating the level of over-
lap. The meaning of d is explained as follows. Sd

i contains the mesh
points in S, whose distance to Si is less than or equal to d and the all
points in Si. When d ¼ 0, we have S0

i ¼ Si. Using the overlapping par-
tition of S, we introduce some subspaces of Rn and the correspond-
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ntours (2nd row), and the pressure coefficients (3rd row) obtained by the numerical
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ing restriction and extension operators. For each Sd
i , we define

Vd
i 
 Rn as

Vd
i ¼ fvjv ¼ ðv1;v2; . . . ; vnÞT 2 Rn; vk ¼ 0 if k R Sd

i g
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Fig. 4. The channel flow case. The Mach number contours for M1 ¼ 0:8;0:835;0:8435, an
mesh with h ¼ 1=160.
and a n� n restriction matrix and also an extension matrix, Rd
i ,

whose diagonal element, ðRd
i Þkk ¼ 1 if k 2 Sd

i ; otherwise, ðRd
i Þkk ¼ 0.

Using the restriction and extension matrices, we define the one-
level restricted additive Schwarz preconditioner as
ber

1.5 2 2.5 3

0.6

0.7

0.8

0.9

1

1.1

1.2

ber

1.5 2 2.5 3

0.6

0.7

0.8

0.9

1

1.1

1.2

ber

1.5 2 2.5 3

0.6

0.7

0.8

0.9

1

1.1

1.2

ber

1.5 2 2.5 3

0.6

0.7

0.8

0.9

1

1.1

1.2

d 0:85 (from top to bottom) obtained by the numerical solution using INB-ANE on a



0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Pressure coefficient

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Pressure coefficient

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Pressure coefficient

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Pressure coefficient
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obtained by the numerical solution using INB-ANE on a mesh with h ¼ 1=160.

Table 1
Number of Newton iterations when using INB for different values of M1 and different
mesh size. ‘‘F’’ means that INB fails to converge.

Mesh sizes (h) Airfoil case

1/64 1/128 1/256 1/512 1/1024

M1 = 0.1 2 4 4 4 4
M1 = 0.3 3 4 3 4 4
M1 = 0.5 3 4 3 4 4
M1 = 0.8 7 10 17 31 F

Channel flow case

1/40 1/80 1/160 1/320

M1 = 0.8 6 6 5 6
M1 = 0.835 22 37 74 F
M1 = 0.8435 32 55 109 F
M1 = 0.85 42 82 F F
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M�1
RAS1 ¼

XNs

i¼1

R0
i J�1

i Rd
i ; ð9Þ

where Ji is the subdomain Jacobian matrix evaluated at
xðkÞ; Ji ¼ Rd

i JðxðkÞÞRd
i . To enhance the scalability of the algorithm, a

coarse space is necessary. Let Sc be an index set corresponding to
the coarse mesh points and Vc be the coarse subspace of V. Similar
for the subdomains, we introduce another pair of restriction and
extension operator to map the data between the spaces of coarse
mesh and fine mesh, Vc and V, denoted by IH

h and Ih
H , respectively.

Here, the multiplication of the symmetrized multiplicative two-
level restricted Schwarz preconditioner with a given vector r is car-
ried out in the following steps:

1. uð1Þ  
PNs

i¼1R0
i J�1

i Rd
i r

2. rð0Þ  IH
h ðr � Juð1ÞÞ

3. uð0Þ  J�1
c rð0Þ

4. uð1Þ  uð1Þ þ Ih
Huð0Þ

5. uð1Þ þ
PNs

i¼1R0
i J�1

i Rd
i ðr � Juð1ÞÞ

Here, Jc is the coarse Jacobian matrix obtained by the Galerkin

formulation, i.e. Jc ¼ IH
h JIh

H . The above procedure can be understood
as a two-grid correction scheme, where the one-level restricted
additive Schwarz preconditioner is used as the pre- and post-
smoothers.

4. Numerical results and discussion

In this section, we present some numerical results for solving
the transonic full potential flow problem (1) using the classical
inexact Newton method and the new algorithm proposed in the
previous section. The stopping condition
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kFðxðkÞÞk 6 10�8;

and a zero initial guess are used for both methods and for all test
cases. For the INB-ANE algorithm, the subspace nonlinear problem,

GðzÞ � F
SðkÞ

b
ðRðkÞg xþ zÞ ¼ 0:

is inexactly solved by INB until the stopping condition,

kGðzðlÞÞÞk 6 maxfelocal nonlinear rtolkGðzð0ÞÞk;10�10g;

is satisfied. A left-preconditioned restarted GMRES [17] is used for
solving the global Jacobian system with zero initial guess and the
restarting number is set to be 200. The stopping condition for
GMRES is

kM�1
k ðFðxðkÞÞ þ JðxðkÞÞÞsðkÞk 6 maxfgkFðxðkÞÞk;10�10g:

Here g ¼ 10�6 and M�1
k is the one-level or symmetrized multiplica-

tive two-level restricted Schwarz preconditioner. In the tests, we
partition the computational domain in the regular checkerboard
fashion. Each subdomain problem is assigned to a compute core
and is solved by the sparse direct LU decomposition. The global
Newton step is updated by

xðkþ1Þ ¼ xðkÞ þ kðkÞsðkÞ:

The step length, kðkÞ 2 ½kmin; kmax� 
 ð0;1�, is selected so that

kFðxðkÞ þ kðkÞsðkÞÞk 6 ð1� akðkÞÞkFðxðkÞÞk;

where the two parameters kmin and kmax act as safeguards, which are
required for strong global convergence and the parameter a is used
to assure that the reduction of kFk is sufficient. Here, a cubic line-
search technique [8] is employed to determine the step length
kðkÞ, with a ¼ 10�4; kmin ¼ 1=10 and kmax ¼ 1=2. We use the Portable,
Extensible Toolkits for Scientific computation (PETSc) [1] for the
parallel implementation. The numerical results are obtained on a
cluster of computers.

4.1. Validation of algorithm and software

In the case of linear preconditioning, it is obvious that the pre-
conditioned system and the original system have the same solu-
tion, but in the case of nonlinear preconditioning, the situation is
not obvious, especially for the full potential equation whose
uniqueness theory has not been established in the transonic
regime. To validate the proposed approach, we first perform a
few experiments for different values of M1 ¼ 0:1;0:3;0:5, and 0.8
for the airfoil case. The mesh size changes from h ¼ 1=64 to
h ¼ 1=1024. The nonlinear systems are solved in parallel with the
number of processors (np), np ¼ 16. Fig. 2 shows the computed
potential curves along the vertical midline x ¼ 0:5 and it is clear
that the computed solutions converge as the mesh is refined.
Fig. 3 shows a comparison of the potential contours, the Mach
number contours and the pressure coefficients along the airfoil
obtained from the numerical solutions by INB (left) and INB-ANE
(right), where the pressure coefficient, Cp, is calculated using

Cp ¼
2

cM2
1

1þ c� 1
2

M2
1ð1� q2Þ

� �c=ðc�1Þ

� 1

 !
:

We see that these two set of results are almost indistinguishable.
This provides a numerical evidence that the numerical solution is
not altered with the proposed nonlinear preconditioner. In addition,
Figs. 4 and 5 provide a comparison of the Mach number contour and
the pressure coefficient distribution for the channel flow case along
the circular bump wall with four different values of M1, i.e., 0.8,
0.835, 0.8435, and 0.85. For the M1 ¼ 0:8 case, almost all region
is subsonic. As the value of M1 increases to near the critical value,
e.g., M1 ¼ 0:835, a shock appears near the circular bump.

4.2. A comparison of INB and INB-ANE

In Table 1, we summarize the number of Newton iterations on
five different meshes, 1/64, 1/128, 1/256, 1/512, and 1/1024 with
four different values of M1 ¼ 0:1;0:3;0:5, and 0.8 for the airfoil
case and with four different values of M1 ¼ 0:8; 0:835;0:8435,
and 0.85 for the channel flow case. As expected, INB works quite
well for the cases of subsonic flows, M1 ¼ 0:1;0:3;0:5 (the airfoil
case) and M1 ¼ 0:8 (the channel flow case), which are mathemat-
ically classified as nonlinear elliptic problems. On the other hand,
for the airfoil case, when a shock shows up in the solution when
M1 ¼ 0:8, the number of INB iterations increases quickly as we
increase the resolution. When the strong discontinuity of the solu-
tion is resolved, INB often fails to converge. Note that for the chan-
nel flow case with M1 ¼ 0:85, the transonic region covers almost
everywhere. Hence, the cost for the subspace correction phase in
INB-ANE becomes too high. For this case, the INB-RAS algorithm
proposed in [6] might be more appropriate. In the following dis-
cussion, we restrict ourselves to the cases of M1 ¼ 0:835 and
0.8435.

We next focus on the cases that INB has some trouble to con-
verge to the desired solution. Fig. 6 shows the histories of the non-
linear residuals of INB and INB-ANE with different mesh sizes for
both test cases. We observe from the figures that (1) INB-ANE con-
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Table 2
A comparison of the cutoff Mach number for INB-ANE for the airfoil case and the
channel flow case for different mesh sizes.

INB INB-ANE

Mesh sizes (h) Mc ¼ 0.8 0.85 0.9

Airfoil case, M1 ¼ 0:8
1/128 Global 10(33.7) 5(33.6) 7(34.4) 8(34.5)

Subspace — 10(22.0) 11(6.3) 13(3.0)
Time (secs) 0.5 0.7 1.8 0.7

1/256 Global 17(45.1) 6(46.0) 7(47.7) 8(47.0)
Subspace — 20(29.3) 23(7.7) 23(4.8)
Time (secs) 4.7 5.6 4.7 4.5

1/512 Global 31(61.0) 6(62.2) 7(64.6) 9(64.4)
Subspace — 32(38.9) 41(10.1) 49(5.6)
Time (secs) 55.1 52.6 37.0 39.5

Channel flow case, M1 ¼ 0:835

Mc ¼ 0.85 0.87 0.90

1/40 Global 22(33.8) 15(34.5) 17(33.8) 21(33.8)
Subspace — 28(13.5) 29(9.8) 36(5.9)
Time (secs) 1.6 2.6 2.6 3.0

1/80 Global 37(44.9) 15(46.5) 17(46.4) 23(45.4)
Subspace — 58(17.0) 55(12.8) 60(6.4)
Time (secs) 16.8 20.3 19.2 20.6

1/160 Global 71(61.1) 15(63.4) 17(62.5) 24(61.0)
Subspace — 107(22.4) 111(16.0) 118(7.2)
Time (secs) 215.7 195.8 182.2 161.0

Channel flow case, M1 ¼ 0:8435

Mc ¼ 0.85 0.87 0.90

1/40 Global 32(34.8) 27(34.7) 30(34.8) 33(34.8)
Subspace — 50(14.6) 53(12.6) 36(6.8)
Time 2.6 4.6 4.8 4.0

1/80 Global 56(46.0) 27(46.8) 39(46.8) 54(46.1)
Subspace — 96(18.7) 85(15.7) 67(9.2)
Time 25.5 37.9 37.9 36.6

1/160 Global 109(62.2) 27(63.7) 64(63.8) 88(62.9)
Subspace — 190(23.2) 165(20.3) 173(11.6)
Time 350.7 375.4 401.6 429.7
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verges for all mesh sizes; and (2) the number of Newton iterations
is independent of the mesh sizes.

We further investigate how the ‘‘bad’’ region changes during the
iterations of NB-ANE. As shown in Fig. 7 for the case of h ¼ 1=256.
the distribution of the bad components to be eliminated is marked
as red in the first six global Newton iterations. Note that the total
number of bad components remains unchanged since the 5th glo-
bal nonlinear iteration. We observe that by comparing with the
converged final Mach number contour plots in Fig. 3, INB-ANE is
able to identify the transonic region correctly within the first few
iterations by computing the local Mach number obtained from
intermediate Newton solutions. Furthermore, the percentages of
the number of bad components compared to the total number of
unknowns are quite low, only about 5%. Hence the overhead due
to the subspace solution is relatively small. On the other hand,
Fig. 8 shows the bad components at the final iterations for the
channel flow case, M1 ¼ 0:835 and 0.8435. Obviously, the percent-
ages of bad components are about 20% for these cases, which is lar-
ger than the airfoil case.

Next we study other parameters that impact the performance of
INB-ANE. These parameters include the cutoff Mach number (Mc)
(Table 2) and the subspace nonlinear stopping condition
(esubspace�nonlinear�rtol) (Table 3).

The major role of Mc is to balance the costs of solving the global
and subspace nonlinear problems. When the value of Mc is large,
the number of global Newton iterations decreases. But the
dimension of the subspace nonlinear problem increases, hence
the cost for solving subspace nonlinear problems increases.
Observed from the table, we find that Mc ¼ 0:85 is appropriate
for most cases that compromises the costs between the global
and subspace solves to minimize the overall computing time.

From the numerical experiments, we find that the number of
global Newton iterations is not sensitive to the stopping condition
for the subspace nonlinear problem (esubspace�nonlinear�rtol). A very
loose tolerance, say 10�1 is sufficient. This is very different from
the case of left nonlinear preconditioning, e.g. ASPIN [3,11]. For
ASPIN, the subspace nonlinear problems need to be solved accu-
rately enough in order not to change the solution of targeted non-
linear problems. It is worth mentioning that even performing only
one Newton iteration for the subspace nonlinear problem helps the
overall convergence of the global Newton iterations comparing to
INB, sometimes it is even faster than the case with several more
subspace Newton iterations. However, some dependency on the
mesh size is observed. Hence, for numerical experiments reported
in the next section, we select esubspace�nonlinear�rtol to be 10�1 with
Mc ¼ 0:85.

4.3. Parallel performance study

An important feature of INB-ANE is that the selections of linear
preconditioners for the solution of the global/subspace Jacobian
systems are more flexible than ASPIN, since we do not have to
worry about changing the solution of the original nonlinear sys-
tem. Here, we consider two preconditioned GMRES for solving
the global and local Jacobian systems, i.e. one-level restricted addi-
tive Schwarz and two-level Schwarz preconditioners. For the two-
level method, a redundant sparse direct approach is used for the
solution of the coarse mesh problem, i.e., the coarse mesh problem
is distributed to each processor and solved redundantly by the LU
decomposition. From Table 4–7, we summarize the performance of
one- and two-level INB-ANE as well as INB if it converges success-
fully (Tables 4 and 5 for the NACA0012 case; Tables 6 and 7 for the
channel flow case). The tables present the total computing time,
the number of global nonlinear iterations and the number of sub-
space nonlinear iterations, and in the parenthesis, the average
number of iterations for solving the global and subspace Jacobian
systems, respectively.

Several observations are summarized as follows.

1. As expected, both INB and INB-ANE are nonlinearly scalable but
not linearly scalable without a coarse space, in terms of the
number of iterations. On the other hand, when including a
coarse mesh correction, the number of iterations for solving
the Jacobian systems is almost independent of the number of
processors in the two-level INB-ANE algorithm.

2. In general, for a fixed number of processors, the two-level
INB-ANE is about 33% or more faster than INB for the airfoil
case, and 13% faster for the channel flow case. The only excep-
tion is the case of channel flow, M1 ¼ 0:8435 with h ¼ 1=160.
Notice that for M1 ¼ 0:8435, the number of INB iterations is
quite sensitive to the Jacobian solution, which is the Newton
search direction. The number of Newton iterations is down
to 26 from 109, when the number of processors increases
from 40 to 160. Hence, the gain by using nonlinear precondi-
tioning is marginal.

3. If the problem size is not large enough, e.g., the case shown in
Tables 4 and 6, the parallel performance of the two-level INB-
ANE with 128 processors is degraded. The benefit of using the
two-level method for problems of larger size is more obvious.
The main reason is that the two-level INB-ANE method consists
of a sequential component, i.e., a redundant LU solve is



Table 3
The airfoil case. Mesh sizes, h ¼ 1=128, 1/256 and 1/512 with different values of M1 . A comparison of subspace nonlinear stopping conditions for the one-level INB-ANE.

INB INB-ANE

Mesh sizes (h) esubspace�nonlinear�rtol ¼ 10�6 10�4 10�2 10�1 Only 1 ite

Airfoil case M1 ¼ 0:8
1/128 Global 10(33.7) 6(34.3) 6(34.3) 6(34.3) 7(34.4) 7(34.6)

Subspace — 43(6.0) 30(5.9) 17(5.9) 11(6.3) 6(6.2)
Time (secs) 0.5 1.3 1.0 0.7 1.8 0.5

1/256 Global 17(45.1) 6(47.5) 6(47.5) 6(47.5) 7(47.7) 10(64.9)
Subspace — 88(7.7) 59(7.7) 32(7.7) 23(7.7) 9(7.7)
Time (secs) 4.7 11.2 8.1 5.3 4.7 4.3

1/512 Global 31(61.0) 6(64.0) 6(64.0) 6(64.0) 7(64.6) 18(63.1)
Subspace — 194(10.0) 128(10.0) 61(10.0) 41(10.1) 17(10.0)
Time (secs) 55.1 130.0 87.7 48.4 37.0 44.5

Channel flow case, M1 ¼ 0:835
1/40 Global 22(33.8) 15(34.5) 15(34.5) 15(34.5) 15(34.5) 16(33.9)

Subspace — 65(13.4) 62(13.5) 45(13.6) 28(13.5) 15(13.5)
Time (secs) 1.6 4.0 3.9 3.1 2.6 1.9

1/80 Global 37(44.9) 15(46.5) 15(46.5) 15(46.5) 15(46.5) 22(46.6)
Subspace — 129(17.0) 125(17.0) 89(17.0) 58(17.0) 21(17.4)
Time (secs) 16.8 37.2 36.2 28.6 20.3 15.2

1/160 Global 71(61.1) 14(63.4) 14(63.4) 14(63.4) 15(63.4) 35(62.8)
Subspace — 243(22.3) 240(22.3) 172(22.3) 107(22.4) 34(22.7)
Time (secs) 215.7 353.6 352.5 264.1 195.8 171.6

Channel flow case, M1 ¼ 0:8435
1/40 Global 32(34.8) 27(34.7) 27(34.7) 26(34.7) 27(34.7) 27(34.9)

Subspace — 101(14.5) 99(14.5) 70(14.6) 50(14.6) 26(14.7)
Time (secs) 2.6 6.7 6.5 5.2 4.6 3.5

1/80 Global 56(46.0) 26(46.8) 26(46.8) 26(46.8) 27(46.8) 35(46.8)
Subspace — 217(18.2) 212(18.3) 147(18.4) 96(18.7) 34(18.7)
Time (secs) 25.5 64.9 66.1 49.7 37.9 24.8

1/160 Global 109(62.2) 26(63.7) 26(63.7) 26(63.7) 27(63.7) 58(61.9)
Subspace — 427(22.6) 422(22.7) 298(22.8) 190(23.2) 57(24.0)
Time (secs) 350.7 688.8 681.5 506.6 375.4 293.7

Table 4
The airfoil case. Mesh size h ¼ 1=512 (and H ¼ 1=64 for the two-level method) with M1 ¼ 0:8. A comparison of the parallel performance for INB, one-level INB-ANE, and two-level
INB-ANE.

INB One-level INB-ANE Two-level INB-ANE

np Its Time Global its Subspace its Time Global its Subspace its Time

4 31(39.8) 271.9 7(40.0) 41(9.8) 119.8 7(6.0) 41(9.8) 112.9
16 31(61.0) 55.1 7(64.6) 41(10.1) 37.0 7(6.3) 41(10.1) 33.8
32 31(83.7) 34.9 7(89.3) 41(19.2) 24.2 7(6.3) 41(19.3) 22.0
64 31(90.0) 17.6 7(97.0) 41(19.5) 13.0 7(6.3) 41(19.5) 11.3

128 31(123.9) 12.1 7(132.1) 41(29.6) 8.3 7(8.0) 41(30.4) 8.3

Table 5
The airfoil case. Mesh size h ¼ 1=1024 (H ¼ 1=128 and H ¼ 1=32 for the two-level method) with M1 ¼ 0:8. A comparison of the parallel performance for one-level INB-ANE, and
two-level INB-ANE.

One-level INB-ANE Two-level INB-ANE (H ¼ 1=128) Two-level INB-ANE (H ¼ 1=32)

np Global its Subspace its Time Global its Subspace its Time Global its Subspace its Time

4 7(53.9) 87(12.8) 1259.5 7(6.1) 86(12.8) 984.6 7(10.1) 89(12.8) 1101.9
16 7(88.0) 86(13.1) 392.4 7(6.1) 85(13.1) 358.6 7(10.7) 89(13.2) 372.3
32 7(121.9) 87(25.4) 261.2 7(6.6) 85(25.4) 255.0 7(11.1) 89(25.4) 266.4
64 7(132.1) 84(25.6) 133.8 7(6.7) 88(25.7) 118.5 7(11.4) 89(26.5) 126.4

128 7(187.1) 87(42.6) 83.0 7(8.3) 85(42.5) 77.2 7(13.1) 89(42.5) 80.8
256 7(209.4) 88(43.6) 41.2 7(8.7) 87(43.5) 42.9 7(14.7) 90(43.6) 38.8
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employed as the coarse mesh solver, and the cost of that is not
negligible for smaller problems. A scalable parallel coarse mesh
solver is needed. In addition, the issue of load balancing is
important in parallel computing, but is not addressed in this
paper. For the ease of implementation, we do not redistribute
dynamically the subspace nonlinear problems. As a result, the
heavy computing is concentrated on a subset of processors.
The parallel efficiency of the algorithm is expected to be
improved when the subspace nonlinear problem is evenly
redistributed to processors and then solved in parallel.



Table 6
The channel flow case. Mesh size h ¼ 1=160 and H ¼ 1=20 for the two-level method with M1 ¼ 0:835 and 0.8435. A comparison of the parallel performance for INB, one-level
INB-ANE, and two-level INB-ANE.

INB One-level INB-ANE Two-level INB-ANE

np Its Time Global its Subspace its Time Global its Subspace its Time

M1 ¼ 0:835
10 71(61.1) 215.7 15(63.4) 107(22.4) 195.8 15(11.5) 118(22.3) 181.7
40 69(103.6) 79.7 15(107.7) 107(33.7) 70.7 15(12.5) 118(33.7) 61.1

160 72(165.8) 31.5 15(166.5) 107(61.4) 25.4 15(22.7) 118(61.4) 25.7

M1 ¼ 0:8435
10 109(62.2) 350.7 27(63.7) 190(23.2) 375.4 26(12.1) 205(23.1) 351.5
40 109(106.1) 137.3 27(108.9) 190(38.2) 129.8 26(16.4) 205(38.2) 111.9

160 26(173.5) 13.3 9(190.8) 39(70.6) 13.0 9(23.8) 41(70.9) 12.4

Table 7
The channel flow case. Mesh size h ¼ 1=320 (H ¼ 1=40 for the two-level method) with
M1 ¼ 0:835 and 0.8435. A comparison of the parallel performance for INB, one-level
INB-ANE, and two-level INB-ANE.

np One-level INB-ANE Two-level INB-ANE

Global its Subspace its Time Global its Subspace its Time

M1 ¼ 0:835
10 15(236.7) 208(29.5) 2440.9 14(10.4) 224(29.4) 1957.3
40 15(186.8) 208(44.2) 750.3 14(13.8) 224(44.2) 666.7

160 15(341.2) 208(92.5) 305.3 14(27.4) 224(92.4) 271.7

M1 ¼ 0:8435
10 28(255.7) 403(30.7) 7294.7 26(11.0) 397(30.2) 4301.0
40 29(233.9) 366(50.4) 1552.6 26(16.1) 409(50.4) 1279.0

160 10(400.1) 78(107.3) 153.1 11(29.1) 84(109.5) 119.5
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5. Conclusions

In this work, we proposed a new algorithm, namely a parallel
adaptive nonlinear elimination preconditioned inexact Newton
method. The key idea of the method is to remove the unbalanced
nonlinearity before performing a global Newton update. The effec-
tive identification of the bad components to be eliminated plays an
important role in the success of the algorithm. We use information
obtained from an intermediate solution of INB to select adaptively
these to-be-eliminated components. For some transonic flow prob-
lems we studied the parallel performance of the new algorithm
and found that INB-ANE is nonlinearly scalable with respect to
the number of processors. Due to the flexibility for the selection
of the global Jacobian solver, near linear scalability is achieved by
a two-level Schwarz preconditioned Krylov subspace method. For
the transonic full potential flow problems considered in this paper,
the criteria for determining the bad components is based on a
physical approach that identifies the components corresponding
the transonic flow region. But for other applications, different cri-
teria may be necessary.
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