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Abstract. Existing approaches for solving the lattice Boltzmann equations with finite difference
methods are explicit and semi-implicit; both have certain stability constraints on the time step size.
In this work, a fully implicit second-order finite difference scheme is developed. We focus on a parallel,
highly scalable, Newton–Krylov–RAS algorithm for the solution of a large sparse nonlinear system
of equations arising at each time step. Here, RAS is a restricted additive Schwarz preconditioner
based on a first-order spatial discretization. We show numerically that by using the fully implicit
method the time step size is no longer constrained by the CFL condition, and the Newton–Krylov–
RAS algorithm is scalable on a supercomputer with more than ten thousand processors. Moreover,
to calculate the steady state solution we investigate an adaptive time stepping strategy. The total
compute time required by the implicit method with adaptive time stepping is much smaller than
that of an explicit method for several test cases.
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1. Introduction. In recent years, simulating complex fluid flows based on the
lattice Boltzmann equations (LBEs) has become increasingly popular [5, 17, 41]. Un-
like the Navier–Stokes equations, the unknown in the LBEs is the density distribu-
tion function fα of particles instead of the macroscopic variables and the macroscopic
quantities (velocity and density) are obtained by taking the summation of the den-
sity distribution function fα. The most popular approach for solving the LBEs is
the lattice Boltzmann method (LBM) [14, 16, 35, 43]. Compared to traditional CFD
methods, the parallel implementation of LBM is much easier since the communication
is purely local. A typical LBM implementation comprises a collision and a streaming
step. In the collision step, the particle distribution function is updated at equally
distributed lattice points, and in the streaming step, the particle distribution func-
tion is shifted between lattice points. The consistency requirement between the mesh
points and lattice points makes LBM inconvenient to apply in the case of nonuniform
mesh or complex geometry. The Courant–Friedrichs–Lewy (CFL) number for LBM
has to be 1, because the particle distribution function can only be shifted between
neighboring lattice points. Whether an explicit, semi-implicit, or implicit LBM is
applied, the time step size is severely limited by the CFL number. To obtain a steady
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state solution, a large number of time steps is usually required, especially for high
resolution simulations.

To overcome the limitations of LBM, several approaches have been introduced to
directly discretize the temporal and spatial derivatives using finite difference methods
[30], finite volume methods [47], or finite element methods [40]. In [36], a fourth-
order central scheme for space and an explicit fourth-order Runge–Kutta scheme for
time are introduced on a uniform mesh. Cao et al. [13] provides an extension of
this method to the case of nonuniform mesh. In [30] a semi-implicit finite difference
method in curvilinear coordinates is studied using body-fitted non-uniform meshes. In
this approach, the collision term is treated implicitly while other terms are discretized
explicitly. Similar semi-implicit methods are studied in [2, 33, 45, 46]. In [25] a special
distribution function is used to remove the implicitness in the numerical scheme. By
using the new distribution function, an explicit scheme is obtained even though the
collision term is treated implicitly.

In the finite difference lattice Boltzmann method, the velocity lattice is uncou-
pled from the spatial mesh which allows us to choose the discrete velocity model and
the space-time discretization independently. In this paper, we employ a second-order
spatial discretization and a fully implicit second-order temporal discretization. The
fully implicit method treats both the collision term and the streaming term implicitly,
and might be much more expensive than an explicit and semi-implicit method due
to the need for solving nonlinear systems at each time step. Compared with explicit
and semi-implicit methods, the fully implicit method is usually more stable with a
much larger time step size, which depends only on the accuracy requirement. It is
worth pointing out that similar fully implicit methods have recently been success-
fully applied to several classes of important applications [8, 22, 28, 32, 37, 39, 50],
but we haven’t seen any similar publications for the LBEs with a fully implicit finite
difference method.

In the fully implicit method, the most expensive step is to solve a large sparse
nonlinear algebraic system at every time step. We present a parallel, highly scalable,
Newton–Krylov–RAS (restricted additive Schwarz) algorithm for solving such a sys-
tem. In the Newton–Krylov algorithm, the nonlinear system is solved by an inexact
Newton method whose Jacobian problem is solved with a preconditioned Krylov sub-
space method. In our approach, the Jacobian matrix is calculated analytically, and
an overlapping RAS is used as the preconditioner in which the subdomain problem is
solved with a point-block LU or ILU factorization. The point-block size is equal to the
number of distribution functions per grid point. To reduce the cost and improve the
scalability of the RAS preconditioner, a first-order discretization is developed just for
the preconditioning step and the preconditioner is recomputed only once per time step.

In the implicit approach the time step size is selected based on the desired solution
accuracy and certain features of the problem such as the oscillational rate of the
solution about time. For steady state calculations, we propose an adaptive time
stepping algorithm which changes the time step size as the system evolves. Several test
cases are carefully investigated to show the performance of the proposed algorithm.
For the purpose of comparison, we also implement an explicit algorithm and compare
it with the fully implicit approach. The total compute time of the fully implicit
method is much smaller than that of the explicit method. Scalability results on a
supercomputer with more than ten thousand processors are reported.

The remainder of this paper is organized as follows. In section 2, we present
the LBEs and a fully implicit second-order discretization scheme. The initial and
boundary conditions are carefully discussed in the same section. The details of the
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parallel domain decomposition solver are described in section 3, in which an adaptive
time stepping method is also introduced. Several numerical results are reported in
section 4 and concluding remarks are given in section 5.

2. A fully implicit second-order discretization. In this paper, we consider
the LBEs with the D2Q9 model [34] without the external force,

(2.1)
∂fα
∂t

(x, t) + eα · �fα(x, t) = Θα, α = 0, 1, . . . , 8, x ∈ Ω, t ∈ (0, T ),

where fα is the particle distribution function, eα = (eα1, eα2) is the discrete particle
velocity, Θα is the collision operator, Ω ∈ R2 is the computational domain, and
(0, T ) is the time interval. The macroscopic density ρ and the macroscopic velocity
u = (u1, u2) of the fluid are, respectively, induced from the particle distribution
function by

(2.2) ρ =
∑
α

fα, u =
1

ρ

∑
α

fαeα.

Based on the kinetic theory, the collision operator is a sixfold integral in the
phase space. After applying the single time relaxation approximation proposed in
[6], the collision term is simplified to a function of the relaxation time τ , the density

distribution function fα, and the local equilibrium distribution function (EDF) f
(eq)
α .

As suggested in [34], a suitable EDF can be chosen in the following form,

(2.3) f (eq)
α = wαρ

[
1 +

1

c2s
eα · u+

1

2c4s
(eα · u)2 − 1

2c2s
|u|2
]
,

where |u| = (u2
1 + u2

2)
1/2, and the discrete velocities are given by e0 = (0, 0) and

eα = λα(cos θα, sin θα) with λα = 1, θα = (α− 1)π/2 for α = 1, 2, 3, 4, and λα =
√
2,

θα = (α − 5)π/2 + π/4 for α = 5, 6, 7, 8, and cs = 1/
√
3 is the speed of sound [34].

The weighting factors are defined as w0 = 4/9, wα = 1/9 for α = 1, 2, 3, 4, and
wα = 1/36 for α = 5, 6, 7, 8. Using the EDF, the collision operator is defined as

Θα = − 1

τ
(fα(x, t)− f (eq)

α (x, t)).

In the incompressible limit of low Mach number, the approximate Navier–Stokes
equations can be derived from (2.1) through a Chapman–Enskog expansion procedure
[17]:

(2.4)

⎧⎪⎨
⎪⎩

∂ρ

∂t
+ � · (ρu) = 0,

∂(ρu)

∂t
+ � · (ρu · u) = −�p+ � · [ρν(� · u+ u · �)],

where p = c2sρ is the pressure and ν is the shear viscosity defined by

(2.5) ν = c2sτ.

2.1. Spatial discretization. We suppose Ω is the unit square covered by a
uniform N × N mesh with mesh size h = 1/(N − 1). As shown in Figure 1, let
(xi

1, x
j
2), i, j = 0, 1 . . . , N − 1, be the mesh points. To obtain a second-order scheme
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Fig. 1. Computational domain with mesh points and ghost points. Here solid circles represent
the mesh points and hollow circles represent the ghost points.

in space, we introduce a layer of ghost points outside each boundary of Ω denoted
by (x−1

1 , xj
2), (x

N
1 , xj

2), (x
i
1, x

−1
2 ), and (xi

1, x
N
2 ), respectively. To discretize the spatial

gradient operator � in (2.1), the simplest method is a first-order upwinding scheme

(2.6)
∂fα
∂xi

k

=

⎧⎪⎨
⎪⎩

1

h

[
fα(x

i
k, ·)− fα(x

i−1
k , ·)] if eαk ≥ 0, 1 ≤ i ≤ N − 2,

− 1

h

[
fα(x

i
k, ·)− fα(x

i+1
k , ·)] if eαk < 0, 1 ≤ i ≤ N − 2.

The scheme is easy to implement, however, our experiments show that the accuracy
of the scheme is usually not acceptable. But, on the other hand, it can be used to
construct an efficient preconditioner for a higher-order scheme. To improve the accu-
racy, we study a family of fully implicit finite difference schemes originally proposed
in [25, 30]. Let us define a scheme ∂fα

∂xi
k

|m in the family as

(2.7)
∂fα
∂xi

k

∣∣∣∣
m

= ε
∂fα
∂xi

k

∣∣∣∣
u

+ (1− ε)
∂fα
∂xi

k

∣∣∣∣
c

, k = 1, 2, i = 1, 2, . . . , N − 2,

where ∂fα
∂xi

k

|u is an upwinding scheme, ∂fα
∂xi

k

|c is a second-order central scheme, and

0 ≤ ε ≤ 1 is a control parameter to adjust the weights of the two components. Here
∂fα
∂xi

k

|u and ∂fα
∂xi

k

|c are, respectively, defined by

∂fα
∂xi

k

∣∣∣
u
=

⎧⎪⎨
⎪⎩

1

2h

[
3fα(x

i
k, ·)− 4fα(x

i−1
k , ·) + fα(x

i−2
k , ·)] if eαk ≥ 0,

− 1

2h

[
3fα(x

i
k, ·)− 4fα(x

i+1
k , ·) + fα(x

i+2
k , ·)] if eαk < 0,
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and

∂fα
∂xi

k

∣∣∣∣
c

=
1

2h

[
fα(x

i+1
k , ·)− fα(x

i−1
k , ·)].

To make the schemes second-order accurate in space, we introduce a third-order ap-
proximation at the ghost points. For brevity, we only show the approximation ap-
proach for the ghost points below the bottom wall. For any given ghost point (xi

1, x
−1
2 ),

i = 0, 1, . . . , N − 1, a third-order approximation is given as

fα(x
i
1, x

−1
2 ) = 2fα(x

i
1, x

0
2)− 2fα(x

i
1, x

2
2) + fα(x

i
1, x

3
2).

2.2. Initial and boundary condtions. In traditional flow simulations, initial
and boundary conditions are often available in terms of the macroscopic variables u
and ρ. How to determine the initial and boundary values of the particle distribution
function fα in (2.1) is an important issue for Boltzmann-based computations. In this

paper, fα(x, 0) is set to be the EDF, i.e fα(x, 0) = f
(eq)
α (x, 0) by the equilibrium

method.
Wall boundary conditions, originally taken from the lattice gas automata, are

among the most broadly applied boundary conditions in Boltzmann models. In [29],
a bounce-back scheme for the particle distribution function is used on the walls to
obtain a no-slip velocity condition. The bounce-back scheme is easy to apply, but is
only first-order accurate on the boundary [19]. To improve the numerical accuracy,
other boundary treatments have been proposed. One is the extrapolation method
[18] that views LBM as a special finite difference scheme. The method preserves the
overall accuracy of LBM, and can be applied to a variety of boundary conditions.
Based on it, Mei and Shyy [30] presented a method for their finite difference based
LBM. But the numerical stability of this extrapolation method is rather poor for high
Reynolds number flows [51]. To overcome this difficulty, an alternative nonequilibrium
extrapolation method (NEM) is introduced in [26].

In the NEM proposed in [26], the particle distribution function fα at bound-

ary points is decomposed into an equilibrium part f
(eq)
α and a nonequilibrium part

f
(neq)
α . The equilibrium part f

(eq)
α is calculated by (2.3) with the macroscopic bound-

ary conditions, and the nonequilibrium part f
(neq)
α is approximately obtained by an

extrapolation approximation. If we take a point (xi
1, x

0
2) on the bottom wall as an

example, the extrapolation approximation of the nonequilibrium part f
(neq)
α (xi

1, x
0
2)

is given by

(2.8) f (neq)
α (xi

1, x
0
2) ≈ f (neq)

α (xi
1, x

1
2) = fα(x

i
1, x

1
2)− f (eq)

α (xi
1, x

1
2).

Since the extrapolation approximation given by (2.8) is only first-order accurate, we
call it first-order NEM in what follows.

We show later in the numerical tests that the accuracy of the first-order NEM
is low, therefore we propose a second-order NEM here to improve the accuracy. In

the second-order NEM, the equilibrium part f
(eq)
α is also calculated by (2.3), but a

second-order extrapolation approximation is used to obtain the nonequilibrium part

f
(neq)
α . For the point (xi

1, x
0
2) on the bottom wall, the second-order extrapolation

approximation is defined as

(2.9) f (neq)
α (xi

1, x
0
2) ≈ 2f (neq)

α (xi
1, x

1
2)− f (neq)

α (xi
1, x

2
2).

Some numerical results are given in section 4 to compare the accuracy of the first-order
NEM and the second-order NEM.

D
ow

nl
oa

de
d 

10
/3

1/
15

 to
 1

28
.1

38
.6

4.
22

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S296 JIZU HUANG, CHAO YANG, AND XIAO-CHUAN CAI

2.3. A fully implicit second-order temporal discretization. After spa-
tially discretizing (2.1) with the second-order finite difference scheme, we obtain a
semidiscrete system

(2.10)
∂

∂t
X(t) + G(X(t)) = 0.

Here G is a nonlinear function of X(t) which depends on the spatial discretization
and the collision term. We organize the solution vector in a pointwise (field-coupling)
order instead of a componentwise (field-splitting) order; i.e., the solution vector X(t)
is defined as

X(t) = (f00
0 (t), f00

1 (t), . . . , f00
8 (t), f10

0 (t), f10
1 (t), . . . , f10

8 (t), . . .)T .

Similarly, the pointwise order is used for G. This order helps in improving not only the
cache performance but also the parallel efficiency in load and communication balance;
see [24] for example.

Assume (0, T ) is divided into time intervals [tn, tn+1], where n is the time step in-
dex. At the (n+1)th time step, let us define the time step size as Δtn+1 = tn+1− tn,
and denote Xn+1 ≈ X(tn+1) as the approximate solution of (2.1) at tn+1. In or-
der to obtain high numerical stability and accuracy in time, we employ a fam-
ily of explicit-first-step, single-diagonal-coefficient diagonally implicit Runge–Kutta
(ESDIRK) methods [7]

(2.11)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X(0) = Xn,

1

Δtn+1

(
X(p) −X(0)

)
+

p∑
q=0

apqG(X(q)) = 0, p = 1, . . . , s,

Xn+1 = X(s),

where s ≥ 1 is the number of implicit stages. We denote an ESDIRK method with s
implicit stages as ESDIRK(s). In this work, we focus on an ESDIRK(2) method with
coefficients

app = a10 = 1−
√
2/2, a20 = a21 =

√
2/4, p = 1, 2,

which is both L-stable and second-order accurate [44].
For comparison purpose, we also implement an explicit second-order strong sta-

bility preserving Runge–Kutta (SSP RK-2) method [4]

(2.12)

⎧⎨
⎩

X(1) = Xn −ΔtG(Xn),

Xn+1 =
1

2

(
Xn +X(1)

)− Δt

2
G(X(1)),

in which we use a fixed time step size Δt determined by a given CFL number. Here
the CFL number is calculated via

CFL = max
α�=0

(e2α1 + e2α2)
1/2Δt

mini,j
(
(xi

1 − xi+eα1
1 )2 + (xj

2 − xj+eα2

2 )2
)1/2 .D
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3. Parallel domain decomposition and adaptive time stepping. In the
ESDIRK(2) method, two nonlinear algebraic systems are constructed and solved at
each time step. In order to solve the nonlinear algebraic systems efficiently, we present
a Newton–Krylov–Schwarz (NKS) [9, 10] type algorithm. In the algorithm, a New-
ton method is employed as the outer iteration, and a Krylov subspace method with
Schwarz preconditioning is applied as inner iteration. Next let us discuss some details
about the NKS method for a given nonlinear system F(X) = 0.

At the (m + 1)th step of the Newton iteration, we obtain a new approximate
solution Xm+1 from the current approximation Xm through

(3.1) Xm+1 = Xm + λmSm, m = 0, 1, . . . .

Here X0 is chosen as the solution at the previous time step, λm is the step length
determined by a line search procedure [20], and Sm is the search direction obtained by
solving the following Jacobian system approximately using a Krylov subspace method
with a preconditioner

(3.2) JmSm = −F(Xm),

where the Jacobian matrix Jm = F ′(Xm) is calculated at the current approximate
solution Xm. In the inexact Newton method, the linear system (3.2) does not need
to be solved exactly. In our study, a restarted GMRES method [38] is applied to
approximately solve the right-preconditioned system

(3.3) JmM−1
m (MmSm) = −F(Xm),

until the linear residual rm = JmSm + F(Xm) satisfies the stopping condition∥∥rm∥∥ ≤ max
{
ξr‖F(Xm)‖, ξa

}
,

where ξr, ξa ≥ 0 are linear tolerances and M−1
m is an additive Schwarz-type precon-

ditioner to be defined shortly. To achieve a more uniform distribution of residual
errors of all time steps [48], the stopping condition for the Newton iteration (3.1) is
adaptively determined by

(3.4) ‖F(Xm+1)‖ ≤ min
{
γ̂a,max{γr‖F(X0)‖, γa,}

}
,

where the safeguard γ̂a and the relative tolerance γr are both fixed for all time steps,
and the absolute tolerance γa is chosen as γa,1 ∈ [0, γ̂a) at the first time step and then
adaptively determined by

γa = max
i=1,2,...,n−1

{‖F(Xi)‖}
at the nth time step.

Newton methods can be implemented with or without the explicit formulation of
the Jacobian matrix. In this study, we focus on the explicitly calculated Jacobian and
compare different preconditioners. To define the RAS preconditioner, we decompose
the domain Ω into Np nonoverlapping subdomains Ωi (i = 1, . . . , Np), such that Ω =

∪Np

i=1Ω
i
and Ωi ∩ Ωi′ = ∅ ∀i �= i′. Here Np is the number of processors and also the

number of subdomains. In order to obtain overlapping subdomains, we extend each
subdomain Ωi with δ layers to a larger subdomain Ωi,δ ⊂ Ω.
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Let � be the total number of mesh points in Ω and �i,δ the total number of mesh
points in Ωi,δ. Then the restriction operator Ri,δ is an �i,δ × � block matrix that is
defined as follows: its 9× 9 block element (Ri,δ)p1,p2 is an identity block if the integer
indices 1 ≤ p1 ≤ �i,δ and 1 ≤ p2 ≤ � correspond to a mesh point in Ωi,δ, or a block of
zeros otherwise. The Ri,δ serves as a restriction matrix because its multiplication by
a block �× 1 vector results in a shorter �i,δ block vector by dropping the components
corresponding to mesh points outside Ωi,δ. Note that Ri,0 denotes the restriction to
the nonoverlapping subdomain. For each of the overlapping subdomains, we define
Bm

i = Ri,0Bm(Ri,δ)
T as the restriction of a global matrix Bm to the overlapping

subdomain Ωi,δ. The one-level left RAS preconditioner is defined as [12]

(3.5) M−1
m =

Np∑
i=1

(Ri,0)
T (Bm

i )−1Ri,δ.

In this paper, the matrix-vector multiplication with (Bm
i )−1 is calculated by a point-

block LU or ILU factorization.
The global matrix Bm is computed at each Newton iteration by taking the deriva-

tive of a nonlinear function, which is constructed by a given spatial discretization
scheme at Xm in the domain Ω. By using spatial discretization scheme (2.6) or (2.7)
for the nonlinear function, we obtain a first-order discretization based preconditioner
(FODBP) and a second-order discretization based preconditioner (SODBP), respec-
tively. SODBP should be effective in terms of the number of GMRES iterations, but
the compute time may be greater than that of FODBP due to the high bandwidth
and a larger number of nonzeros in the sparse matrix. Some numerical results will be
shown later to compare the performances of FODBP and SODBP. For the NKS algo-
rithm with a standard RAS preconditioner, we need to update the RAS preconditioner
at each Newton iteration. Since the cost of constructing the RAS preconditioner is
high, we freeze the preconditioner for all Newton iterations within a time step.

For long-term simulation, especially when calculating the steady state solution,
the evolution of the system usually admits various time scales and the calculation
often lasts for a long time. Therefore, an adaptive time step control is necessary in
the numerical simulation. The idea of the adaptive time stepping algorithm we use
in the study is analogous to the switched evolution/relaxation method in [31] and [1].
When incorporating those schemes into the implicit method, divergence may occur if
the time step size increases too fast. Some safeguard mechanisms are included in our
method to avoid the situation. At the (n+ 1)th time step, ‖G(Xn)‖ is the Euclidean
norm of G(Xn) which measures the departure from convergence. The numbers of
nonlinear and linear iterations, Nn

its, N
n
lits, at the nth time step can be viewed as

a measure of the computational cost. We then use ‖G(Xn)‖, ‖G(Xn−1)‖, Nn
its, and

Nn
lits to determine the time step size at the (n+ 1)th time step. The algorithm goes

as follows.
1. Start with a reasonably small time step size Δt1 and choose the control param-

eters β1 = 1.5, β2 = 0.75. Set the maximum allowable number of nonlinear
and linear iterations as Nmax

its and Nmax
lits , respectively.

2. At the (n+ 1)th time step, Δtn+1 is adjusted to

Δtn+1 = min

{
Δtmax,max

{
2

3
,min

{
β1,

(‖G(Xn−1)‖
‖G(Xn)‖

)β2
}}

Δtn

}
,
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where β1 and β2 are defined as

β1 =

{
1 if Nn

its > Nmax
its or Nn

lits > Nmax
lits ,

1.5 otherwise,
(3.6)

β2 =

{
0.75 if Nn

its > Nmax
its or Nn

lits > Nmax
lits ,

1.5 otherwise.
(3.7)

Here Δtmax is a predetermined safeguard time step size.
3. If the Newton iteration diverges with the current Δtn+1, then a smaller

time step size 0.5Δtn+1 is chosen to restart the Newton calculation. The
maximum allowable number of nonlinear and linear iterations Nmax

its and
Nmax

lits are adjusted to Nmax
its = 0.75 × min(Nmax

its , Nn
its) and Nmax

lits = 0.75 ×
min(Nmax

lits , Nn
lits), respectively.

The choice of Δt1, N
max
its , Nmax

lits , Δtmax is problem dependent and will be dis-
cussed in the next section. A similar but slightly simpler version of the algorithm is
used in [49] for phase field problems. For the problems studied in this paper, the time
step size should be relatively small at the beginning steps, otherwise divergence may
occur in some later iterations.

Remark 3.1. We remark here that the class of NKS algorithms has been applied
successfully to solving Navier–Stokes equations [11], etc., but as far as we know this is
the first time it is used for the LBEs. The subdomain solve we define in (3.5) implies
that a zero Dirichlet boundary condition is applied to all 9 variables on the subdomain
boundary that is in the interior of Ω. On the physical boundary, the original boundary
is applied.

Remark 3.2. For the steady state simulation, the stopping condition can be given

as ‖Xn−Xn−1

Δtn
‖ ≤ �a or ‖G(Xn)‖ ≤ �a. In the adaptive time stepping algorithm,

‖G(Xn)‖ is already calculated, therefor we use ‖G(Xn)‖ ≤ �a to determine the
convergence to the steady state.

4. Numerical experiments. In this section, we investigate the numerical be-
havior and parallel performance of the newly proposed algorithm. We consider three
test cases, namely, a steady state Poiseuille flow, an unsteady Couette flow, and a
steady state driven cavity flow. We focus on (1) the verification of the numerical ac-
curacy of the fully implicit method, (2) a comparison of different preconditioners, (3)
a comparison of the performance of an explicit method and the fully implicit method
with adaptive time stepping, and (4) the parallel performance of the fully implicit
method.

We implement the new algorithm described in the previous sections based on
PETSc [3]. The numerical tests are carried out on the Tianhe-2 supercomputer,
which tops the top-500 list as of June, 2014. The computing nodes of Tianhe-2 are
comprised of two 12-core Intel Ivy Bridge Xeon CPUs with 64 GB local memory,
and are interconnected via a proprietary high performance network. In the numerical
experiments we use all 24 CPU cores in each node and assign one subdomain to each
core. The stopping conditions for the nonlinear and linear iterations are as follows.

• The relative tolerance for nonlinear solver: γr = 10−6.
• The absolute tolerance for nonlinear solver: γa,1 = 10−10.
• The safeguard tolerance for nonlinear solve: γ̂ = 10−6.
• The relative tolerance for linear solver: ξr = 10−3.
• The absolute tolerance for linear solver: ξa = 10−11.

On each subdomain, we apply a sparse point-block LU or ILU factorization as the
subdomain solver and set the overlapping size between subdomains to be δ = 0, h, 2h,
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where h is the spatial mesh size. GMRES, with restarts at every 30 iterations, is
used to solve the Jacobian system at each Newton step. To test the accuracy of our
scheme, we define the relative l2 error as follows:

l2 =

⎛
⎜⎜⎝
I

(
8∑

k=0

(fα − f̃α)
2

)

I

(
8∑

k=0

f̃2
α

)
⎞
⎟⎟⎠

1
2

, I(�) =

N−1∑
i=0

N−1∑
j=0

�ij ,

where fα is the numerical solution, f̃α is the analytical solution, and I is the discrete
summation computed over all mesh points.

4.1. The Poiseuille flow. The Poiseuille flow is a channel flow driven by a
constant force along the x1 direction between two parallel plates. There is a steady
state solution that can be expressed as a parabola centered around the axis of the
channel,

(4.1) ũ1(x1, x2) = 4U0
x2

H

(
1− x2

H

)
, ũ2(x1, x2) = 0 for ∀x1, 0 ≤ x2 ≤ H,

where H is the channel height, U0 = FH2/(8ρ0ν) is the peak velocity, F is the driven
force, and ρ0 is the initial density of the flow. Due to the existence of the external
force, (2.1) should be changed to

(4.2)
∂fα
∂t

(x, t) + eα · �fα(x, t) = Θα + wαeα1F/c
2
s, α = 0, 1, . . . , 8.

The Reynolds number of the Poiseuille flow is a function of the peak velocity, the
channel height H , and the shear viscosity ν, Re = HU0/ν. Assuming Re is given, the
driven force is set to be F = 0.08ρ0/(Re ×H) so that the peak velocity U0 is equal
to 0.1.

The density and velocity of the fluid are initialized to be ρ0 = 1.0 and (u1, u2) =
(0, 0) for the whole domain. The equilibrium method is used to initialize the particle
distribution function. The second-order NEM is applied to the top and bottom walls
of the channel for no-slip boundary conditions, and periodic boundary conditions
are applied to the inlet and exit of the channel. In the experiments, we set Re =
10, 50, 100 and L = H = 1.0, where L is the length of the channel. A uniform mesh
of size N ×N is used. Since this is a steady state calculation, adaptive time stepping
is used in the fully implicit algorithm.

Numerical results of both the explicit method (Δt = 0.015) and the fully implicit
method with the central, upwinding, and mixed (ε = 0.1, 0.5) schemes are shown in
Figures 2(a), (b) together with the analytical solution, which verifies the consistency
between the explicit and the fully implicit method. For the purpose of comparison,
we also implement the first-order NEM to the top and bottom walls. The numerical
results with the first-order NEM are presented in Figures 2(c), (d). In Figures 2(c) and
(d), artificial wiggles appear in the central scheme, which shows that the central finite
difference scheme with the first-order NEM is not stable for this test case. Table 1
shows the l2 errors of u1 for the implicit method and explicit method with different
boundary conditions. From Table 1, we conclude that the second-order NEM is more
accurate than the first-order NEM by orders of magnitude. Figure 3 shows the history
of the CFL numbers calculated from the adaptively selected time steps. Except for the
central finite difference scheme, the other three schemes increase the CFL smoothly.
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Fig. 2. Velocity profiles of the Poiseuille flow, Re = 10, N = 21, t = 100, δ = h. (a) The
explicit method with the second-order NEM and Δt = 0.015. (b) The implicit method with the
second-order NEM and adaptive time stepping. (c) The explicit method with the first-order NEM
and Δt = 0.015. (d) The implicit method with the first-order NEM and adaptive time stepping.

Table 1

The l2 errors of u1 for the implicit method and explicit method with different boundary condi-
tions. The Poiseuille flow, Re = 10, N = 21, t = 100. The time step size for the explicit method
is 0.015. In the implicit method, the adaptive time step algorithm is used to adaptively adjust time
step size.

ε 0 0.1 0.5 1

l2 error of u1

Implicit
First-order NEM 0.766 0.0289 0.0210 0.0160

Second-order NEM 0.0097 3.45e-5 3.14e-5 2.81e-5

Explicit
First-order NEM 0.766 0.0288 0.0209 0.0160

Second-order NEM 0.0096 5.44e-5 4.96e-5 4.47e-5

It is further observed that the adaptive time stepping algorithm works well even with
a relatively large initial time step size, as shown in Figure 3(b). The performance of
the adaptive time stepping method is remarkable; the CFL number increases by over
two orders of magnitude during the simulation.

To understand the accuracy of the spatial discretization scheme with the second-
order NEM, we run the tests with Re = 10, 50, and 100 on increasingly refined
meshes. The explicit method with a fixed time step size, and the fully implicit method
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Fig. 3. The Poiseuille flow. History of CFL number for the fully implicit method with adaptive
time stepping, Re = 10, N = 21, Nmax

its = 5, Nmax
lits = 500, and δ = 2h: (a) Δt0 = 0.45; (b)

Δt1 = 1.8.

Fig. 4. l2 error of the Poiseuille flow, Re = 10, t = 4, (a) the explicit method with Δt = 0.1h,
(b) the implicit method with adaptive time stepping, Δt1 = 18h.

with adaptive time stepping are considered. Since the particle distribution function
fα is unknown in the case, we take the numerical solution obtained by the explicit
method with a very fine mesh 641 × 641 and small time step size Δt = 1.56 × 10−4

as the analytical solution f̃α. For Re = 10, the l2 errors at t = 4 for the central,
upwinding, and mixed (ε = 0.1, 0.5) schemes are plotted in Figure 4. The l2 errors
for Re = 50 and 100 are very similar to that of Re = 10. It is observed that the
mixed (ε = 0.1) scheme for both the explicit method and the fully implicit method
produce smaller error than that of the other three schemes. Furthermore, all the
four schemes show a second-order convergence rate in space. We then investigate the
performance of the preconditioners introduced previously in the paper. We first look
at FODBP and SODBP, and compare their performances in terms of the number of
nonlinear and linear iterations, and the compute time. Table 2 shows that the change
of preconditioners has no influence on the number of Newton iterations. It is important
to note that the timing results obtained by using FODBP are much better than that
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Table 2

A comparison of FODBP and SODBP. 1,024 × 1,024 mesh (# of unknowns = 9,437,184), the
time step size Δt = 0.02, Re = 10, 10 time steps, δ = h, and the point-block LU subdomain solver.

Np
Newton/Time step GMRES/Newton Compute time (s) Speedup
SODBP FODBP SODBP FODBP SODBP FODBP SODBP FODBP

128 4.0 4.2 3.0 11.8 987.92 196.76 1 1
256 4.0 4.1 3.7 12.0 432.66 80.08 2.28 2.46
512 4.0 4.1 3.7 12.1 127.97 29.79 7.72 6.61
1024 4.0 4.0 3.7 11.8 61.65 14.20 16.03 13.86
2048 4.0 4.1 4.0 12.1 19.34 6.97 51.09 28.24

Fig. 5. A comparison between the standard and the frozen preconditioner. 1,024× 1,024 mesh
(# of unknowns = 9,437,184), the time step size Δt = 0.02, Re = 10, 10 time steps, δ = 1, and the
point-block LU subdomain solver. Here, “standard preconditioner” denotes the standard FODBP;
“frozen preconditioner” denotes the frozen FODBP.

with SODBP even though the number of GMRES iterations increases. We also observe
that the fully implicit method with both preconditioners offer superlinear speedup
with up to 2,048 processors. We believe that the reason for the superlinear speedup is
due to the increasingly better cache performance in the sparse LU factorization as the
subdomain problem becomes smaller [15, 21]. Since the RAS preconditioner does not
change the accuracy of the Newton–Krylov solver, we further experiment by freezing
the preconditioner at each time step. This technique saves some computational time
by avoiding repeated factorizations of the subdomain matrix at each Newton step.
Figure 5 presents a comparison between the standard and the frozen preconditioner.
The results indicate that the frozen technique can save nearly 50% of the compute
time, while still maintaining the superlinear speedup.

Now let us compare the fully implicit method with the explicit method. For the
explicit method, we use a fixed time step size Δt determined by CFL = 0.3. For
the implicit method, we apply the adaptive time stepping algorithm, and RAS with
FODBP. The mesh resolution increases from 16× 16 to 256× 256, and the number of
processors increases from 2 to 512. From Table 3, it is clear that the total compute
time of the fully implicit method is smaller than that of the explicit method.

Table 3 also shows the weak scalability of the fully implicit method and the explicit
method. Due to the stability restriction on the time step size, the total number of time
steps as well as the total compute time for the explicit method doubles as the mesh
is refined. For the fully implicit method, both the total number of implicit time steps
and the total number of Newton iterations increase slowly as more processors are used,
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Table 3

The Poiseuille flow. A comparison between the fully implicit method and the explicit method,
mixed scheme with ε = 0.1, δ = h, Nmax

its = 5, Nmax
lits = 1,000, point-block LU subdomain solver,

first-order discretization based preconditioner.

Mesh size N 16 32 64 128 256
Number of processors 2 8 32 128 512
Implicit time steps 8 9 10 16 28

Average CFL 281.3 516.7 945.0 1,190.6 1,366.1
Total Newton 59 54 55 76 142
Total GMRES 457 983 1,390 3,813 13,064

Total compute time 0.60 0.74 0.91 2.22 7.34
Explicit time steps 7,500 15,500 31,500 63,500 127,500

CFL 0.3 0.3 0.3 0.3 0.3
Total compute time 1.00 1.94 4.05 8.17 16.41

especially at low resolution; but the total compute time increases more rapidly due to
the increased number of GMRES iterations. It is observed that neither the explicit
method nor the implicit method reaches the ideal performance. We believe adding
some coarse level corrections in the additive Schwarz preconditioner may improve the
weak scaling of the fully implicit solver and plan to study this issue in the future.

4.2. The unsteady Couette flow. The unsteady Couette flow is a channel
flow driven by the top plate which moves from left to right with a constant velocity
U0 = 0.1 along the x1 direction. The Reynolds number is defined as Re = HU0/ν,
where H is the channel height. If the initial velocity is zero, then the analytical
solution is

(4.3)
ũ1(x2, t)

U0
=

x2

H
+ 2

∞∑
m=1

(−1)m

λmH
exp(−νλ2

mt) sin(λmx2), ũ2 = 0,

where λm = mπ/H, m = 1, 2, . . . . The density and velocity of the fluid are initialized
to be ρ0 = 1.0 and (u1, u2) = (0, 0) and the equilibrium method is used to initialize
the particle distribution function. The second-order NEM is applied on the top and
bottom of the channel for no-slip boundary conditions, and a periodic boundary con-
dition is applied to the inlet and exit. In the experiment, we set Re = 10, 50, 100
and L = H = 1.0, where L is the channel length. A uniform mesh of size N × N is
used. A mixed scheme with ε = 0.1 is considered and the fully implicit method with
a fixed time step size Δt = 0.25 is applied. The time step size for the explicit method
is fixed to be Δt = 0.005. Since the unsteady Couette flow slowly approaches the
steady-state solution ũ1(x1, x2) = U0x2/H , we also use the adaptive time stepping
algorithm and compare the total compute time with the explicit method.

A series of velocity profiles at different time steps, together with the analytical
solution, are shown in Figure 6(a). It is clear that the numerical solution of the
explicit method and the fully implicit method both agree with the analytical solution.
Numerical experiments with different Reynolds numbers are also carried out. All
results match well with the analytical solution. The history of the CFL numbers
up to t = 120 with the adaptive time stepping algorithm and some typical velocity
profiles are presented in Figure 6(b). As seen in Figure 6(b), by using the adaptive
time stepping algorithm, the CFL number increases from a relatively small number
to about 200 times larger.

We then compare the fully implicit method and the explicit method in terms of
the total compute time. The CFL number of the explicit method is fixed at 0.3.
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Fig. 6. Results of the unsteady Couette flow on a 41 × 41 uniform mesh and Re = 10. (a)
Velocity profiles at different times. (b) History of CFL number up to t = 120 with the adaptive time
stepping algorithm, Δt1 = 0.5, Nmax

its = 5, Nmax
lits = 500, and δ = h.

Table 4

The unsteady Couette flow. A comparison of the fully implicit method and the explicit method,
mixed scheme with ε = 0.1, δ = h, Nmax

its = 5, Nmax
lits = 1,000, point-block LU subdomain solver, and

first-order discretization based preconditioner.

Mesh size N 16 32 64 128 256
Number of processors 2 8 32 128 512
Implicit time steps 7 8 10 13 20

Average CFL 321.4 581.3 945 1,465.4 1,912.5
Total Newton 38 43 54 62 96
Total GMRES 321 904 1,826 5,093 19,705

Total compute time 0.43 0.71 1.14 2.74 10.34
Explicit time steps 7,500 15,500 31,500 63,500 127,500
Total compute time 0.97 1.95 4.09 8.13 16.35

Details of the fully implicit method are shown in subsection 4.1. Table 4 shows a
comparison of the computational costs of both method. It is observed that the total
compute time of the fully implicit method is smaller than that of the explicit method
for all tested meshes. Similarly to the Poiseuille flow, both methods have poor weak
scalability.

For the purpose of comparison, we also compute the unsteady Couette flow by
using the first-order NEM. Because of the rapid change of the velocity u1 near the
top wall, the first-order NEM on a uniform mesh can’t depict a sufficiently accurate
solution. To overcome this difficulty, the first-order NEM with a nonuniform mesh
is used to solve the unsteady Couette flow [25]. It is worth pointing out that the
numerical results with the second-order NEM are more accurate than that of the
first-order NEM. So even on a uniform mesh, the second-order NEM also can produce
a sufficiently accurate solution.

4.3. Lid-driven cavity flow. The third test case is a lid-driven cavity flow
which has been used as a benchmark problem for many numerical methods due to its
simple geometry and complicated flow behaviors. In the flow problem, the top plate
moves from left to right along the x1 direction with a constant velocity U0 = 0.1,
and the other three walls are fixed. The second-order NEM is applied as boundary
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conditions on all walls, and the equilibrium method is used to initialize the particle
distribution function by setting ρ = 1.0 and u = (0, 0) in the cavity. The Reynolds
number is defined as Re = U0H/ν with H = 1.0. In our experiments, Re is chosen to
be 400, 1,000, 3,200, 5,000, 7,500, and 10,000.

Since the Navier–Stokes equations can be derived from the LBEs (2.1) through
a Chapman–Enskog expansion in the incompressible limit of low Mach number, we
compare the results of the LBEs solved by the fully implicit method with that of the
Navier–Stokes equations given by Ghia, Ghia, and Shin [23]. Vorticity contours for
each case are plotted in Figure 7. It is observed that the flow structures are visually
identical to the benchmark results obtained in [23], which verifies the agreement be-
tween the Navier–Stokes equations and the LBEs. The effect of the Reynolds number
is clearly shown in these plots more details in [23]).

To quantitatively compare the results, the two velocity components u1 and u2

along the vertical and horizontal lines through the cavity center are shown in Figure 8,
together with the benchmark solutions of Ghia, Ghia, and Shin [23]. Agreements are
obtained. We find that the profiles become nearly linear in the center of the cavity
as Re increases. The computed velocities obtained by the fully implicit method are
closer to the benchmark solutions than the velocities profile obtained by an explicit
method given by [25], especially when the Reynolds number is high. The possible
reason is that the explicit method stagnates at a pseudo-steady state and the fully
implicit method with adaptive time stepping allows us to obtain the steady state
solution.

For the lid-driven cavity flow, the vorticity contour and the streamline pattern
are often used to describe the performance of the flow. It is worth pointing out that
our result is the first report that shows the exact consistency between the Boltzmann
model and the Navier–Stokes model. In [25], by solving the LBEs using an explicit
finite difference method, streamline patterns for Re = 400, 1,000, 3,200, and 5,000 are
plotted. Vortex centers of streamline patterns for Re = 3,200 and 5,000 are different
from that of the Navier–Stokes equations given by [23]. Reference vorticity contours
and streamline patterns obtained by solving the LBEs with LBM can be found in [27].
It is clear that some discrepancies exist between two models.

4.3.1. Performance of the fully implicit method. In this subsection, we fo-
cus on the parallel performance of the method. Several issues are carefully discussed
including the influence of different overlaps and subdomain solvers, the strong scala-
bility study, and a comparison of the explicit method and the fully implicit method.

As is well known, the performance of the Schwarz preconditioner depends on the
overlapping size and the subdomain solver. To investigate the influence, we focus on
the lid-driven cavity flow with Re = 1, 000 by running the tests with 256 processors on
a 1,024×1,024 mesh with a fixed time step size Δt = 0.098 for the first ten time steps.
The overlapping size is adjusted from 0 to 2h and different subdomain solvers including
the point-block sparse LU factorization and the point-block sparse ILU factorization
with different levels of fill-in are considered. We observe that the total number of
Newton iterations is insensitive to the overlapping size and subdomain solver. The
number of GMRES iterations and the compute time are shown in Table 5. It is clear
that by increasing the overlapping size or by increasing the fill-in level, the number of
GMRES iterations becomes smaller, but the compute time does not necessarily reduce
because of the increased cost of communication or subdomain solver. In particular,
when LU instead of ILU is used as the subdomain solver, GMRES converges with
fewer iterations but the compute time is larger because LU is more expensive than
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Fig. 7. Vorticity contours for the driven cavity flow problem at different Reynolds numbers.D
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Fig. 8. Velocity profiles of the cavity flow at different Reynolds numbers through the center of
the computational domain. (a) u1, from left to right: Re = 400, 1,000, 2,000, 3,200, 5,000, 7,500,
10,000; (b) u2, from bottom to top: Re = 400, 1,000, 2,000, 3,200, 5,000, 7,500, 10,000. Note that
the profiles are shifted for visual comparison.

Table 5

Performance of NKS with different overlapping size and subdomain solvers. The lid-driven
cavity flow with Re = 1,000, and 1,024× 1,024 mesh with 256 processors. The time step size is fixed
at Δt = 0.098 and the results are averaged over the first ten time steps.

δ
GMRES/Newton Compute time (s)/Newton

LU ILU(0) ILU(1) ILU(2) LU ILU(0) ILU(1) ILU(2)
0 20.1 27.3 23.8 22.8 1.578 0.637 0.620 0.644
h 19.3 25.7 21.8 20.8 1.610 0.623 0.596 0.622
2h 18.8 25.3 21.3 20.6 1.712 0.633 0.603 0.636

Table 6

The lid-driven cavity flow problem. Test results using different subdomain solvers and number
of processors, 6,144×6,144 mesh (# of unknowns = 339,738,624), t0 = 0, time step size Δt = 0.0163,
CFL = 100, Re = 1,000, and 10 time steps.

Np
Newton(avg.) GMRES/Newton Compute time Speedup
LU ILU(1) LU ILU(1) LU ILU(1) LU ILU(1)

1024 6 6 15.7 16.7 1,231.9 318.9 1 1
2048 6 6 15.8 16.8 496.0 147.1 2.48 2.17
4096 6 6 16.3 17.2 265.4 89.4 4.64 3.57
8192 6 6 16.6 17.6 117.5 51.8 10.49 6.16
16384 6 6 17.0 17.9 62.6 29.0 19.67 11.01

ILU. In summary, we find that the optimal choice in terms of the total compute time
is ILU(1) subdomain solver with δ = h.

To study the parallel scalability, a 6,144 × 6,144 mesh is considered. We run
tests with Re = 1,000 and a fixed time step size Δt = 0.0163 for 10 time steps. In
the experiment, we use both sparse ILU(1) and LU as the subdomain solver. The
numbers of linear and nonlinear iterations and the compute time results are reported
in Table 6. We can see that the number of nonlinear iterations per time step is almost
independent of the number of processors and subdomain solvers. But the number
of linear iterations grows slowly with the increase of the number of processors. A
remarkable speedup is obtained from 1,024 to 16,384 processors. Figure 9 shows the
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Fig. 9. Strong scaling results for solving the driven cavity flow problem as in Table 6. The
implicit method with different subdomain solvers and a fixed time step size Δt = 0.0163; the explicit
method with a fixed time step size Δt = 9.8× 10−6.

total compute time and the speedup with respect to the number of processors. For
the purpose of comparison, the performance results of the explicit SSP RK-2 method
is also included. It is observed that both the explicit and the implicit methods with
ILU(1) subdomain solver have nearly linear speedup, and the implicit method with LU
subdomain solver has a better speedup performance. More importantly, the implicit
method with ILU(1) subdomain solver outperforms the other methods by several
times in terms of the total compute time.

Remark 4.1. For an elliptical problem with classical additive Schwarz precon-
ditioner, the convergence theory indicates that the condition number of the precon-
ditioned system satisfies κ ≤ C(1 + H/δ)/H2 for the one-level method and κ ≤
C(1+H/δ) for the two-level method, whereH is of order N

−1/2
p for a two-dimensional

(2D) problem and C is a constant independent of H , δ, and the mesh size [42]. The
condition number of the one-level method indicates an increase in the number of
iterations with the increase of the number of processors. The two-level method is
often preferred in order to remove the dependency of the number of iterations on the
number of processors and also to obtain an ideal strong scalability. However, the
optimal convergence theory of RAS is still not available, even for elliptic equations.
The Jacobian systems in this paper are not elliptic and the abovementioned condition
number estimates do not apply. However, our numerical results of the one-level RAS
method suggest that the condition number increases more slowly than that in the
elliptic case. A similar observation was made for another time dependent problem
[48]. The time step size plays a role, but we don’t theoretically understand how it
impacts the convergence rate.

The CFL histories for Re = 5,000, 7,500, 10,000 with the adaptive time stepping
algorithm are given in Figure 10 together with several plots of the vorticity contour
at different times. It is clear that adaptive time stepping is able to select a large time
step size while the solution changes slowly. This reduces tremendously the overall
computational cost because large CFL numbers are used for almost 90% of the time,
which reveals the advantage of the fully implicit method with adaptive time stepping
for the steady state calculation. Table 7 gives a comparison of the compute time using
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Fig. 10. The histories of CFL number for the lid-driven cavity flow problem at different
Reynolds numbers.

the fully implicit method with adaptive time stepping and the explicit method. The
fully implicit method is a clear winner, especially for high Reynolds number.

Remark 4.2. As shown in Table 7, the control parameter ε is adjusted according
to the Reynolds number. The average CFLs for the implicit method with different
Reynolds numbers are greater than 400, which shows that the fully implicit method
is unconditionally stable and is quite robust with respect to the Reynolds number.
However, the stability of the explicit method is strictly dependent on the control

D
ow

nl
oa

de
d 

10
/3

1/
15

 to
 1

28
.1

38
.6

4.
22

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

IMPLICIT METHOD FOR LATTICE BOLTZMANN EQUATIONS S311

Table 7

A comparison between the fully implicit method and the explicit method for the 2D lid-driven
cavity flow, mixed scheme, δ = h, Nmax

its = 5, Nmax
lits = 1,000, point-block LU subdomain solver, and

first-order discretization based preconditioner.

Reynolds number 400 1,000 3,200 5,000 7,500 10,000
Mesh size N 129 129 129 257 257 257

Number of processors 128 128 128 512 512 512
ε 0.1 0.07 0.05 0.025 0.01 0.01

Implicit time steps 72 175 548 1,632 2,979 5,948
Average CFL 889 731 467 627 859 861

Newton 654 1,633 5,066 14,307 22,647 39,351
GMRES/Newton 113.97 87.50 71.98 139.73 149.72 131.6

Total compute time 46.5 91.6 238.0 769.4 1,649.6 3,964.8
Explicit time steps 4.0e+5 1.8e+6 1.3e+7 3.4e+7 1.3e+8 5.1e+8

CFL 0.16 0.07 0.02 0.03 0.02 0.01
Total compute time 52.4 245.2 1,702.5 4,437.5 16,717.5 67,074.7

parameter ε. For this reason, the optimal CFL for the explicit method with different
Reynolds number has to be picked by hand. For this test case, the CFL number for
the explicit method is experimentally selected to be the largest allowable value for
which the instability doesn’t occur.

5. Concluding remarks. In this paper, a fully implicit second-order finite dif-
ference method and a highly parallel solution algorithm were proposed and studied for
solving the LBEs in 2D. The Newton–Krylov–RAS method converges well for several
tests with various level of difficulties. For the steady state calculation, an adaptive
time stepping strategy is successfully incorporated into the implicit time integration
scheme so that large CFL numbers are allowed when the flow is close to steady state.
Overlapping domain decomposition methods with both FODBP and SODBP were
proposed, and we found that FODBP has a better performance in terms of the to-
tal compute time while the second-order discretization scheme (2.7) is used for the
residual computation. A comparison between an explicit method with a fixed time
step size and the fully implicit method with both fixed time step size and adaptive
time step sizes was presented. Accuracies of the explicit method and the fully implicit
method are close to each other, but the fully implicit method with adaptive time step-
ping has lower computational cost in all steady state calculations. The fully implicit
method exhibits a superlinear speedup for tests with up to 0.34 billion unknowns on a
supercomputer with up to 16,384 processors. Excellent agreement between computed
solutions of the LBEs and the Navier–Stokes equations for the 2D lid-driven cavity
flow problem with high Reynolds numbers was achieved. As far as we know, such
results were not available in any previously published reports.

Acknowledgment. The authors would like to thank the referees for many con-
structive suggestions leading to the improvement of the paper.
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