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1 Introduction

Tissue stiffness is one of the qualitative properties to distinguish abnormal tis-
sues from normal tissues, and the stiffness changes are generally described in
terms of the Lamé coefficient. In this paper, an all-at-once Lagrange-Newton-
Krylov-Schwarz algorithm is developed to solve the inverse problem of re-
covering the Lamé coefficient in biological tissues. Specifically, we propose
and study a multiplicative two-level domain decomposition preconditioner in
the inexact Newton step. Numerical experiments are presented to show the
efficiency and scalability of the algorithm on supercomputers.

2 Recovering the Lamé coefficient in biological tissues

One of the signs in many diseases is abnormal tissue, of which shear stiffness
differs greatly from that of normal tissue. Therefore, it is possible for scientists
and engineers to develop new techniques for disease detection and diagnosis
through reconstruction of high-resolution images of shear stiffness. In this pa-
per, we focus on the inverse problem derived from transient elastography ex-
periments. Previous work has shown that transient elastography experiments
can determine the elastic wave displacement history through scans of the tar-
get tissue (Catheline et al. [1999], Sandrin et al. [2002], Ji and McLaughlin
[2004]). Our goal is to identify the Lamé coefficient that describes the shear
wave speed or the mechanical stiffness changes inside the target tissue from
the elastic wave time-dependent displacement.

The normalized 2D scalar wave equation that describes the shear wave
displacement has the following form

∇ · (c2
0 ρ∇d) − dtt = 0, (1)
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with the boundary condition
∂d

∂y
= g(t) at y = 0, where d(x, y, t) describes the

local time-dependent displacement inside the tissue, c0 represents the speed of
the background shear wave, and g(t) describes the boundary source. ρ is called
the Lamé coefficient, representing the stiffness profile of the tissue. Practically,
ρ and d are generally twice continuously differentiable.

Without losing generality, we restrict ourselves to 2D domain problems:

Ω = {(x, y) ∈ R × R,−6 (cm) ≤ x ≤ 6 (cm), 0 (cm) ≤ y ≤ 12 (cm)}
with piecewise smooth boundary Γ = ∂Ω and outer unit normal n. For con-
venience, the boundary Γ is separated into four pieces and is named as the
North (y = 0), South (y = 12), West (x = −6), and East (x = 6) boundary,
respectively.

We then take the Fourier transform of (1) and obtain the following
Helmholtz equation:

−∇ · (ρ∇u) − k2u = 0, for y > 0 (2)

with the boundary conditions










∂u

∂r
= f(τ), at y = 0,

lim
r→∞

1√
r

(

∂us

∂r
− ĩkus

)

= 0, for the scattered field us,
(3)

where u and f are the Fourier transform of d and g.
Here, the spatial variable r equals

√

x2 + y2. The wave number k equals
τ/c0. u is the total field u = ui + us, which is the sum of the incident wave ui

and the scattered field us. ui equals
1

ĩk
feĩky, where ĩ represents the imaginary

unit
√
−1 throughout this paper.

Furthermore, the experiments of Catheline et al. show that there exists
a dominant frequency represented as τ∗, called the central frequency (Ji and
McLaughlin [2004], McLaughlin and Renzi [2006], Catheline et al. [1999]).
The largest contribution of the Fourier transform is at this central frequency.
Consequently, we evaluate the equation (2) and (3) at the central frequency
τ∗ and arrive at the following equations:































−∇ · (ρ∇u) − k2u = 0, (x, y) ∈ Ω
∂u

∂n
= f, North boundary

∂u

∂n
− ĩku = 0, South boundary

∂u

∂n
− ĩku = −feĩky, East boundary and West boundary.

(4)

We hereby focus on the inverse problem of recovering a high resolution im-
age of the coefficient ρ from the observed data of u and the corresponding
boundary conditions in (4).
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3 Lagrange-Newton-Krylov-Schwarz algorithm

To solve the inverse problem of recovering ρ from u, we apply the Tikhonov
regularization method and solve the following minimization problem:

minimize J(ρ, u) =
1

2

∫

Ω

|u − z|2 dΩ +
β

2

∫

Ω

|∇ρ|2 dΩ, (5)

where z(x, y) denotes the measured value of u(x, y). This minimization prob-
lem is subject to (4), and the semi-H1 norm is applied as the regularization
because of the continuous differentiability of ρ.

To solve this constraint optimization problem, we introduce the La-
grangian functional L as:

L(ρ, u, λ) =
1

2

∫

Ω

(u1 − z1)
2 dΩ +

1

2

∫

Ω

(u2 − z2)
2 dΩ +

β

2

∫

Ω

|∇ρ|2 dΩ

+

∫

Ω

ρ∇u1 · ∇λ1 dΩ −
∫

Ω

k2u1λ1 dΩ

−
∫

N
fρλ1 dΓ +

∫

S
ku2ρλ1 dΓ +

∫

E & W
(ku2 + fcos(ky))ρλ1 dΓ

+

∫

Ω

ρ∇u2 · ∇λ2 dΩ −
∫

Ω

k2u2λ2 dΩ

−
∫

S
ku1ρλ2 dΓ −

∫

E & W
(ku1 − fsin(ky))ρλ2 dΓ ,

(6)
where u1 and u2 represent the real and imaginary parts of u, z1 and z2 repre-
sent the real and imaginary parts of z, and λ1 and λ2 are the corresponding
Lagrange multipliers.

The solution of the minimization problem is then obtained by solving the
following saddle-point system:























F (ρ) ≡ ∂L
∂ρ

≡ −β ∆ρ + ∇Re(u) · ∇Re(λ) + ∇Imag(u) · ∇Imag(λ) = 0

F (u) ≡ ∂L
∂u

≡ (u − z) −∇ · (ρ∇λ) − k2λ = 0

F (λ) ≡ ∂L
∂λ

≡ −∇ · (ρ∇u) − k2u = 0.

(7)
With a finite difference discretization of the saddle-point system and a

fully coupled ordering of the variables and the equations, we obtain a large
system of nonlinear equations F (X) = 0 (Cai et al. [2009]). This system is
then solved by an inexact Newton method, and the Newton step is computed
by:

Xk+1 = Xk + ξk∆Xk, k = 0, 1, ...
J(Xk)∆Xk = −F (Xk),

(8)

where X0 is an initial approximation, J(Xk) = F ′(Xk) is the Jacobian matrix
at Xk, and ξk is the steplength determined by a linesearch procedure.
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The generalized minimal residual method (GMRES) is applied to solve the
Jacobian system, and the key step is to employ a good preconditioner. In our
algorithm, the two-level multiplicative domain decomposition preconditioner
is applied as a right preconditioner, and the preconditioning matrix is defined
as:

M−1
mult = A−1[I − (I − AM−1

AS)(I − AM−1
c )(I − AM−1

AS)], (9)

where M−1
AS represents the one-level additive preconditioning matrix (Toselli

and Widlund [2005], Cai et al. [2009]). M−1
c , equal to If

c A−1
c Rc

f , is derived

from the inverse Jacobian matrix defined on a coarse mesh; If
c and Rc

f repre-
sent the restriction and interpolation operators.

4 Numerical results and discussion

Three different functions are tested in this paper. In Test 1, the Lamé coeffi-
cient to be identified is

ρ(x, y) = 1 + exp

[

−2(y − 3)2 − 1

2
x2

]

.

In Test 2, the Lamé coefficient to be identified is

ρ(x, y) = 1 + exp

[

−2(y − 3)2 − 1

2
x2

]

+ exp

[

−2(y − 9)2 − 1

2
x2

]

.

In Test 3, the Lamé coefficient to be identified is

ρ = 3(1 − x)2exp
[

−x2 − (y − 5)2
]

− 1

3
exp

[

−(x + 1)2 − (y − 6)2
]

− 10

[

1

5
x − x3 − (y − 6)5

]

exp
[

−x2 − (y − 6)2
]

+ 8.

To test the robustness of the algorithm, random noise is added to the
observation data as zδ = z ( 1 + nǫ rand(x, y) ). In this paper, the noise level
nǫ is chosen to be 0% or 1%.

We test our algorithm for different wave numbers, and the algorithm re-
covers the Lamé coefficient efficiently in all three test problems with wave
numbers up to 15. The numerical solutions of ρ when k equals 8 are shown in
Fig. 1. We also display the numerical solution of u for Test 3 when k equals
1, 8, or 15 in Fig. 2. This figure demonstrates that our algorithm recovers the
Lamé coefficient well from observed data of low frequency, modest frequency,
and high frequency.

To test the computing time and scalability of our algorithm, we define the
problem on a fine mesh with 1601 × 1601 mesh points. The coarse mesh is
chosen to be 81× 81 or 101× 101. When the observed data are only available
on a coarse level, we interpolate the observed data to the fine mesh using the
bilinear interpolation before we solve the inverse problems.
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Fig. 1. This figure shows the numerical results of ρ in Test 1, 2, and 3 (from top to
bottom) with wave number k equal to 8. The left column shows the numerical results
of ρ, and the right column shows the difference between the numerical solutions and
the analytic solutions.

The number of Newton iterations, the average number of linear iterations,
and the computing time are shown in Table 1 and 2. Since the choice of the
coarse mesh only affects the preconditioner, the number of Newton iterations
is generally not changed. The number of average linear iterations rises slightly
as the number of processors increases. The 101×101 coarse mesh provides more
information than the 81×81 one and improves the preconditioner in our two-
level algorithm, hereby saving almost 50% of the linear iterations. However,
the increasing cost on the coarse level dramatically raises the computing cost
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Fig. 2. This figure shows the numerical results of u in Test 3 for wave number k

equal to 1, 8, and 15 from top to bottom. The left column shows the real part of
the numerical solution of u, and the right column shows the imaginary part of the
numerical solution of u.

per iteration. Therefore, total computing time is not saved and the scalability
is worse.

The computing time and the strong scalability of our algorithm are shown
in Fig. 3, where the observed data originally come from a 801 × 801 mesh.
Linear and super-linear scalability are achieved for up to 400 processors. When
the number of processors exceeds 900, we achieve over 75% scalability of the
ideal case.
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Table 1. The table shows the numerical results of Test 3, when β equals 10−5 and
nǫ equals 0%. The observed data are measured on a 801 × 801 mesh.

np Newton Average Linear Time(s) Newton Average Linear Time(s)

Coarse mesh: 81 × 81 Coarse mesh: 101 × 101

100 36 81.1 18005.3 36 40.4 11767.5
144 36 86.6 13756.4 36 43.7 9715.8
256 36 82.1 9239.0 36 43.8 7517.2
400 36 88.5 6590.4 36 44.7 4326.1
900 36 91.0 4219.3 36 50.0 3390.1
1600 36 83.4 2276.5 36 59.0 2742.8

Table 2. The table shows the numerical results of Test 3, when β equals 10−5 and
nǫ equals 1%. The observed data are measured on a 801 × 801 mesh.

np Newton Average Linear Time(s) Newton Average Linear Time(s)

Coarse mesh: 81 × 81 Coarse mesh: 101 × 101

100 38 74.2 17730.9 38 39.0 12077.8
144 38 68.9 12014.1 38 39.6 9856.3
256 38 70.3 8573.7 38 41.7 7664.3
400 38 77.8 6245.4 38 43.0 4449.3
900 38 72.8 3697.6 38 47.4 3453.4
1600 38 71.2 2137.4 38 52.5 2679.8

5 Concluding remarks

In this paper, a two-level multiplicative domain decomposition algorithm is
developed to solve this inverse problem of recovering the Lamé coefficient,
which is usually difficult, expensive, and noise-sensitive. The algorithm can
solve the inverse problem accurately and efficiently, when the observed data
have random noise or are only available on a coarse mesh. The algorithm is
fairly scalable considering the linear and nonlinear iteration numbers. Rela-
tively scalable computing time is observed on supercomputers with up to 1600
processors.
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