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Abstract—The phase field crystal equation has become a
popular model for simulating micro-structures in materials
science but is very computationally expensive to solve. A highly
scalable solver for phase field crystal modeling is presented
in this paper. The equation is discretized with a stabilized
implicit finite difference method and the time step size is
adaptively controlled to obtain physically meaningful solutions.
The nonlinear system arising at each time step is solved by
using a parallel Newton-Krylov-Schwarz algorithm. In order to
achieve good performance, low-order homogeneous boundary
conditions are imposed on subdomain interfaces in the Schwarz
preconditioner. Experiments are carried out to exploit optimal
choices of the preconditioner type, the subdomain solver and
the overlap size. Numerical results are provided to show that
the solver is scalable to thousands of processor cores.
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I. INTRODUCTION

Modeling micro-structural properties of crystalline mate-
rials poses a severe computational challenge, due in large
part to the complexity in the non-equilibrium dynamics.
The phase field crystal (PFC) equation, introduced by Elder
et. al. [8], [9], has proven to be a versatile approach to
model complicated micro-structures (e.g., defects) that most
crystals exhibit, and has become increasingly popular in
materials science; see, e.g., [10], [11], [18], [20], [22], [23].

The basis of the PFC equation is the free-energy func-
tional that origins from the more advanced density functional
theory of Hohenberg and Kohn [16]. In a PFC model, the
density wave structure of a crystalline material is modeled
by a high-order partial differential equation (PDE) that is
valid at atomic-length level and is evolved with diffusive
time-scale. Compared to molecular dynamics that are also
accurate to describe microstructures on the atomic scale, the
PFC equation allows time-scales that are typically magni-
tudes larger.

It is not easy to obtain an analytic solution of the PFC
equation due to the nonlinearity of the problem. Therefore
the PFC equation is usually solved numerically. Obtaining
physically meaningful solutions of the PFC equation is
computationally expensive because: (1) the PFC equation
contains time scales that change in magnitudes during the
time evolution; and (2) material scientists are often interested

in the long-time dynamics of crystalline materials. It is
therefore of great importance to study scalable parallel algo-
rithms for the PFC equation. Although numerical methods
for the PFC equation have been investigated in a number of
publications, e.g., [5], [14], [17], [26], [28], works dedicated
to parallel algorithms are not yet to be seen. There are some
successful studies on scalable parallel algorithms for some
other phase-field problems such as the Cahn-Hilliard equa-
tion [29], [31] and the coupled Allen-Cahn/Cahn-Hilliard
equations [24], [27], [30]. However, it is not clear if those
algorithms can be applied to the PFC equation, because
the PFC equation, compared to other phase-field models,
contains solutions that are highly oscillatory due to the sixth-
order differential term in the PDE.

In this paper a highly scalable parallel solver for PFC
simulations is presented. In the solver we discretize the
PFC equation with a stabilized implicit finite difference
method and adaptively control the time step size during the
simulation. A parallel Newton-Krylov-Schwarz algorithm is
then applied to solve the nonlinear system arising at each
time step. Several key issues in the method, including the
type of the Schwarz preconditioner, the interface conditions
for subdomain problems, the overlap size and the solver
used to solve subdomain problems, are discussed and tested.
Numerical experiments reveal that the PFC solver based on
the Newton-Krylov-Schwarz algorithm performs well on a
supercomputer with thousands of processor cores.

The rest of the paper is organized as follows. In Section II
we introduce the PFC equation and the numerical methods
to effectively discretize it in space and time. A detailed
introduction of the Newton-Krylov-Schwarz algorithm to
solve the nonlinear system at each time step is given in
Section III. We then provide in Section IV some numerical
results including experiments on the homogeneous crystal-
lization in a supercooled liquid, performance tuning of the
Schwarz perconditioner and scalability tests with thousands
of processor cores. The paper is concluded in Section V.

II. PHASE-FIELD CRYSTAL EQUATION

Non-equilibrium dynamics modeled in phase field simu-
lations are often based on the minimization of a free energy
functional. A typical free energy functional often found in



PFC simulations exhibits the following dimensionless form:
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where γ < 0 is a parameter representing the quench depth
for supercooling the material and φ stands for a periodic
order parameter (i.e., probability density) that is a function
of the spatial variable x ∈ Ω ⊂ R2 and the temporal variable
t ∈ [0,+∞).

In PFC modeling, the density distribution of φ is con-
sidered to be conserved during the non-equilibrium process.
Inserting (1) into the system of conserved dynamics

∂φ

∂t
= ∇2 δE(φ)

δφ
,

we obtain the PFC equation

∂φ

∂t
= ∇2

[
φ3 + (1 + γ)φ+ 2∇2φ+∇4φ

]
, (2)

which is a sixth-order parabolic PDE. The PFC equation (2)
is closed with periodic boundary conditions and an initial
condition φ = φ0 at t = 0.

A cell-centered finite difference scheme on a uniform
mesh is employed to spatially discretize the PFC equation.
Due to existence of the sixth-order differential term in the
equation, the stencil for the finite difference scheme exhibits
a diamond shape with stencil width 3. In other words, the
finite difference on mesh cell (i, j) depends on the values on
mesh cell (i′, j′), where |i′− i|+ |j′− j| ≤ 3. Omitting the
lengthy details of the scheme, we denote the cell-centered
values of φ as φi,j (i, j = 1, 2, ..., N ) and the discrete form
of the Laplacian operator ∇2 as ∇2

h.
Special care should be taken when choosing method to

integrate the PFC equation in the temporal direction. Explicit
methods are too expensive to apply due to the severe stability
limit on the time step size, which roughly reads

∆t ≤ Ch−6,

where h is the mesh size and C is a constant. On the other
hand, although greatly relaxed, fully implicit methods also
suffer from stability issues because of the simultaneously
diffusive-antidiffusive property of the PFC equation. To
construct a stable scheme, we use the method introduced
by Eyre [12], [13] in which the free energy functional is
splitted into a convex part

E1(φ) =
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and a concave part

E2(φ) = −
∫

Ω

∣∣∇φ∣∣2dx.
Then the terms related to the convex part are treated im-
plicitly and the rest explicitly. By using the convex splitting

method, we obtain the following stabilized implicit scheme
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for k = 0, 1, 2, .... Here f(φ) = φ3 +(1+γ)φ is a nonlinear
function, ∆tk is the step size and φki,j is the solution at
the kth time step. By using the above scheme, the energy
of the discretized equation decays, which is consistent with
the energy dissipation property of the PFC equation.

The PFC equation admits time scales that change in
magnitudes as the dynamical system evolves. Therefore it
is often impractical to use a fixed time step size during
the entire simulation, especially when the long-time dy-
namics of a crystalline material are of interest. In order to
conduct physically meaningful simulations and reduce the
computational cost, we adaptively control the time step size
∆tk by using a strategy that is analogous to the switched
evolution/relaxation method [15], [19]. More specifically, we
start with a relatively small time step size ∆t0 and adjust
its value according to

∆tk = max (1/α,min (α, β)) ∆tk−1 (4)

for k = 1, 2, .... Here α > 1 is a safeguard to avoid excessive
change of the time step size between any two immediate time
steps and β is obtained from

β =
(
‖rk−1‖2/‖rk‖2

)p
,

where 0 < p < 1 is used the control the adaptivity (larger p
results in more aggressive adjustment of the time step size)
and rk is the residual with its components calculated by

rki,j = ∇2
h

[
f(φki,j) + 2∇2

hφ
k
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hφ
k
i,j

]
.

In our PFC solver, we set the adaptivity parameters to be
α = 1.5 and p = 0.75.

III. NEWTON-KRYLOV-SCHWARZ ALGORITHM

After applying the stabilized implicit scheme (3), the PFC
equation (2) is discretized into a nonlinear system

F (X) = 0 (5)

at each time step. We employ a Newton-Krylov-Schwarz
(NKS) algorithm [3] to solve (5) efficiently on parallel
supercomputers. The NKS algorithm consists of three im-
portant components: (i) an inexact Newton method for the
nonlinear system; (ii) a Krylov iterative method for the
linear Jacobian system at each Newton iteration; and (iii)
a Schwarz preconditioner for the linear solver.

In the NKS algorithm, an inexact Newton method is
applied to solve the nonlinear system (5) at each time
step. Choosing the initial guess X0 for the inexact Newton
iteration may have a great impact on the convergence of the
iteration. For a time-dependent problem such as the PFC
equation, the solution of the previous time step serves as a



good initial guess. Given the current approximate solution
Xn for (5), the inexact Newton method seeks the next
approximate solution Xn+1 via

Xn+1 = Xn + λnSn, n = 0, 1, ... (6)

Here λn is the steplength determined by a linesearch pro-
cedure (see, e.g., [6, Sec. 6.3]). The purpose of using the
linesearch is to ensure that at each Newton iteration a local
minimizer is found along the search direction.

In (6), Sn is the Newton correction vector, which is ob-
tained by approximately solving the linear Jacobian system

JnSn = −F (Xn), (7)

where Jn = ∂F (Xn)
∂Xn

is the Jacobian matrix. Compared to
the classical Newton method, the inexact method is superior
especially when the number of unknowns is large (e.g., of the
order of millions or larger) due to the reason that the linear
Jacobian system is solved approximately instead of exactly,
leading to a substantial reduction of the computational cost.
In the NKS algorithm, the linear Jacobian system (7) is
solved by using a Krylov subspace methods. In practice,
the Generalized Minimal RESidual (GMRES) method that
restarts every 30 iterations is employed in our PFC solver.

To accelerate the convergence of the linear solver, we
solve the right-preconditioned linear system

JnM
−1(MSn) = −F (Xn) (8)

instead of the original one (7). Here the preconditioner M−1

is the key to the success of the linear solver. In large-scale
parallel computing, additive Schwarz preconditioners based
on domain decomposition theory [21], [25] not only help
in improving the convergence but also are beneficial to the
scalability of the linear solver.

To define the preconditioner M−1, We first partition the
computational domain Ω into np non-overlapping subdo-
mains Ωp(p = 1, 2, ..., np), then extend each subdomain
by δ mesh layers to form an overlapping decomposition
Ω = ∪npp=1Ωδp. The classical additive Schwarz (AS, [7])
preconditioner is defined as

M−1
δδ =

np∑
p=1

(Rδp)
T inv(Ap)R

δ
p. (9)

Here Rδp serves as a restriction operator which restricts a
vector to a new one that is defined in the overlapping subdo-
main Ωδp, by discarding the components outside Ωδp; (Rδp)

T

represents an extension operator that maps a vector defined
in the overlapping subdomain Ωδp to a new one defined in the
whole domain, by putting zeros at the components outside
Ωδp.

There are two modified versions of the AS preconditioner
that may have some potential advantages. The first one is

the left restricted additive Schwarz (left-RAS, [4]) precon-
ditioner that reads

M−1
0δ =

np∑
p=1

(R0
p)
T inv(Ap)R

δ
p. (10)

The only difference between the left-RAS preconditioner
and the AS preconditioner is the extension operator. Instead
of (Rδp)

T , the left-RAS preconditioner uses (R0
p)
T which

puts zeros not only outside Ωδp but also outside Ωp. The
other modification to the AS preconditioner is the right
restricted additive Schwarz (right-RAS, [2]) preconditioner
that is given by

M−1
δ0 =

np∑
p=1

(Rδp)
T inv(Ap)R

0
p. (11)

The only difference between the right-RAS preconditioner
and the AS preconditioner is the restriction operator. Instead
of Rδp, the right-RAS preconditioner uses R0

p which ignores
the entries outside Ωp when doing the extension.

In (10), inv(Ap) represent a solution of the subdomain
problem defined by Ap. Here the subdomain matrix can be
directly generated as

Ap = RδpA(Rδp)
T , A = Jn. (12)

However, the cost of (12) could be high because of the
usage of the global matrix A in the formula. Therefore,
instead of using (12), we choose to generate Ap from the
discretization of the subdomain problem. Except for the
boundaries that coincide with the boundary of the whole
domain, there are interfaces between subdomains that re-
quire extra boundary conditions. Choosing different interface
conditions for the subdomain problems can lead to very
different convergence results. In our approach, we find that
low-order homogeneous boundary conditions work well for
this type of problem, because they are not only easy to
implement, but also helpful in reducing the number of linear
iterations. More precisely, we employ the following interface
condition

u =
∂u

∂n
=
∂2u

∂n2
= 0, ∂Ωδ+3/2

p \∂Ω, (13)

where n is the outward normal of ∂Ω
δ+3/2
p . Here Ω

δ+3/2
p

is a domain that is obtained by further extending the
overlapping subdomain Ωδp by one and a half mesh layers.
The purpose of using ∂Ω

δ+3/2
p instead of Ωδp is to ensure

when solving the subdomain problem, all mesh points in Ωδp
have sufficient information, including the ghost points (i.e.,
halos) to perform the stencil calculations. We remark here
that other interface conditions are also tested but only lead
to poor convergence of linear solver. Similar observations
were reported for the solution of the Cahn-Hilliard equation
in [31]. After defining suitable interface conditions for the
subdomain problems, we then solve them either directly by



using a sparse LU factorization or approximately by using
a sparse incomplete LU (ILU) factorization.

A great advantage of the additive Schwarz preconditioners
is that communication only occurs between neighboring
subdomains during the restriction and extension processes.
The major cost of the additive Schwarz preconditioners is
the subdomain solves which are done sequentially without
any inter-process communication. Therefore the locality of
the additive Schwarz preconditioners are naturally good for
massive parallel as long as the number of iterations is
kept low. We further remark that compared to the classical
AS preconditioner, the communication in the two restricted
versions is reduced approximately by half because only the
restriction or the extension step requires communication.
This may further improve the performance of the precon-
ditioner.

IV. NUMERICAL EXPERIMENTS

Numerical experiments are performed on Janus, a Dell
supercomputer located at the University of Colorado Boul-
der. The computing nodes of Janus are interconnected via
a non-blocking QDR Infiniband high performance network,
with two hex-core 2.8Ghz Intel Westmere processors and
24GB local memory in each node.

Our algorithm is implemented based on the Portable,
Extensible Toolkits for Scientific computations (PETSc, [1])
library. In the numerical experiments we use all 12 cores in
each node and assign one subdomain to each processor core.
The Newton iteration stops when the 2-norm of the nonlinear
residual is smaller than 1 × 10−7 or at least 1 × 10−6

smaller than the residual of the first Newton iteration. The
relative stopping condition for the GMRES iteration is set
to 1× 10−3.

A. Homogeneous crystallization in a supercooled liquid

The generation of polycrystal in a supercooled homo-
geneous liquid is studied in the test. The simulation is
conducted on a periodic square domain Ω = [0, 128]2 with a
random initial condition φ0 = 0.07(1+δφ), where ‖δφ‖∞ ≤
1. The quench depth takes the value of γ = −0.025. Similar
experiments were reported in, e.g., [5], [17].

We perform the simulation on a 384 × 384 mesh with
an initial time step size ∆t0 = 0.001. The time step size
is then adaptively controlled by using (4). Contour plots of
the density distribution are shown in Fig. 1, from which we
observe: (1) from t = 0 to around t = 5000 the fluid quickly
crystallizes under the supercooling; (2) from around t =
5000 to around t = 20000 the crystallized material gradually
stabilizes as a solid lattice with periodic hexagonal pattern.
We show in Fig. 2 the evolution history of the time step
size and the total free energy. It can be seen that by using
the adaptive strategy, the time step is successfully adjusted
by nearly four magnitudes. The total free energy decreases

monotonically to the minimizer as the solution evolves to
the steady-state.

B. Performance tuning

There are several parameters in the Schwarz precondi-
tioner that have major impact on the performance of the
NKS solver. In order to find the optimal choice of those
parameters, we run the test on a 1728×1728 mesh with 576
processor cores. To avoid the excessively small time scale
at the early stage of the simulation, we take the numerical
solution at t = 5 as the initial condition. Then we fix the time
step size as ∆t = 0.1 for the rest of the test. We examine
the total numbers of Newton and GMRES iterations as well
as the total compute time for the first 20 time steps.

First we examine the performance of the NKS solver
when different subdomain solvers are utilized. To focus on
the influence of the subdomain solvers, we limit the test
to the classical AS preconditioner (9) and fix the overlap
size to δ = 4. The subdomain solvers that we try in the
test include ILU factorizations with 2, 4 and 8 levels of fill-
in and LU factorizations with and without a reuse strategy.
The results are summarized in Table I, where the total
numbers of Newton and GMRES iterations as well as the
total compute time are provided (In the table “n/c” means
no convergence of the GMRES solver). We observe from

Table I
Performance results with different subdomain solvers.

ILU(2) ILU(4) ILU(8) LU LU-reuse

#Newton n/c n/c n/c 40 40
#GMRES n/c n/c n/c 2196 2200
Time (s) n/c n/c n/c 73.7 52.8

the table that GMRES doesn’t converge when ILU is used
as the subdomain solver, even when the fill-in level is large.
After replacing the ILU with the LU factorization, GMRES
converges without any problem; the averaged number of
GMRES iteration per Newton iteration is about 110. At
each time step, since the Jacobian matrices of the Newton
iteration have very similar structures, it is possible to save
the compute time by only performing the LU factorization
once and reusing the factorized matrices within the same
time step. It can be seen from the table that with the reuse
strategy, although the total number of GMRES iterations
slight increases, the total number of Newton iterations stays
unchanged and the total compute time is save by nearly 30%.

We then investigate the performance of the NKS solver
when different types of the AS preconditioners are employed
and when different overlaps are taken. Based on the previous
test, we use the sparse LU factorization as the default
subdomain solver and apply the reuse strategy throughout
the test. We test the classical-AS (9), the left-RAS (10)
and the right-RAS (11) preconditioners. For each case, the
overlap size δ is gradually increased from 1 to 5. The



Figure 1. Results of homogeneous crystallization in a supercooled liquid. Shown in the pictures are contour plots of the density distribution.
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Figure 2. The evolution history of the time step size (left panel) and the total free energy (right panel).

Table II
Performance results with different overlaps.

classical-AS left-RAS right-RAS
δ 0, 1, 2 3 4 5 6 0, 1, 2 3 4 5 6 0, 1, 2 3 4 5 6

#Newton n/c 40 40 40 40 n/c 40 40 40 40 n/c 40 40 40 40
#GMRES n/c 2200 1000 740 600 n/c 6001 1434 900 682 n/c 1422 819 600 460
Time (s) n/c 52.8 39.2 41.0 48.3 n/c 123.9 46.5 47.1 48.7 n/c 39.7 36.0 40.1 44.2



special case with zero overlap, which is equivalent to a
block Jacobian preconditioner, is also examined in the test.
The performance results are shown in Table II, where the
total numbers of Newton and GMRES iterations as well as
the total compute time are listed. We notice from the table
that when the overlap size is smaller than the stencil width,
i.e., when δ < 3, no convergence result is obtained, no
mater which type of the AS preconditioner is applied. This
indicates that to precondition the PFC equation, it is crucial
to include all information including the ghost points (i.e.,
halos) for subdomain problems; otherwise, the linear solver
may not even converge. For δ ≥ 3, observations can be made
from the table that: (1) the number of Newton iterations is
always insensitive to δ in the tests; (2) for a given type
of the AS preconditioner, the number of GMRES iterations
decreases as δ becomes larger and the fastest compute time
is obtained when δ = 4; (3) for a fixed δ, among the three
AS preconditioners, the left-RAS preconditioner performs
the worst while the right-RAS preconditioner performs the
best, in terms of both the number of GMRES iterations and
the total compute time.

C. Parallel scalability

Based on the observations from the above tests, we use
the right-RAS preconditioner with a fixed overlap δ = 4
and employ the sparse LU factorization with the reuse
strategy as the subdomain solver. The scalability tests are
also performed on a fixed 1728 × 1728 mesh for 20 time
steps with ∆t = 0.1, with the initial condition obtained from
the numerical solution at t = 5 in a previous simulation.

Provided in Figure 3 are the results on the numbers of
Newton and GMRES iterations. From the figure we observe
that when the number of processor cores becomes larger the
total number of Newton iterations does not change while
the total number of GMRES iterations slowly increases.
Figure 4 shows the results on the total compute time and
the parallel scalability. Despite the increase of the GMRES
iterations, it can be seen from the figure that the total
compute time decreases almost linearly, as the number of
processor cores increases. We believe this is because only
one LU factorization is performed within each time step
due to the reuse strategy. The overall speedup from 144 to
2304 cores is around 16.7, which indicates an ideal parallel
efficiency.

V. CONCLUSIONS

In this paper, we present a highly scalable parallel solver
for phase field crystal modeling. To conduct stable and
physically meaningful simulations, the phase field crystal
equation is discretized with a stabilized implicit finite dif-
ference method and integrated using an adaptive time step
control strategy. A parallel Newton-Krylov-Schwarz algo-
rithm is then applied to solve the nonlinear system arising
at each time step. To obtain good parallel performance, we

Figure 3. The total numbers of Newton and GMRES iterations in the
scalability tests.

Figure 4. The total compute time and the relative scalability in the
scalability tests.

study several important issues in the Schwarz preconditioner,
including the type of the Schwarz preconditioner, the overlap
size, the interface condition and the subdomain solver.
Numerical results are provided to show that the proposed
solver performs well on a supercomputer with thousands of
processor cores.
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