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Abstract. We present parallel Schwarz type domain decomposition preconditioned recycling
Krylov subspace methods for the numerical solution of stochastic elliptic problems, whose coefficients
are assumed to be a random field with finite variance. Karhunen-Loève (KL) expansion and double
orthogonal polynomials are used to reformulate the stochastic elliptic problem into a large number
of related, but uncoupled deterministic equations. The key to an efficient algorithm lies in “recycling
computed subspaces”. Based on a careful analysis of the KL expansion we propose and test a grouping
algorithm that tells us when to recycle and when to recompute some components of the expensive
computation. We show theoretically and experimentally that the Schwarz preconditioned recycling
GMRES method is optimal for the entire family of linear systems. A fully parallel implementation
is provided and scalability results are reported in the paper.
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1. Introduction. Many physical phenomena are modeled by partial differential
equations whose coefficients are measured through experiments which often contain
some levels of uncertainty. To understand the model accurately, the randomness must
be considered in the differential equations. In the last decade, many researchers have
studied the so-called stochastic partial differential equation (SPDE). One of the ap-
proaches for numerically solving SPDEs is known as the stochastic Galerkin method,
see for example [1, 2, 11, 17, 22, 25, 30] and references therein. The method expands
the random field in the equation. Several such expansions are available, for example,
[1, 2, 9, 13, 20] use the Karhunen-Loève expansion introduced in [21], [17, 29, 30]
use the Wiener Chaos expansion [31], and [29] uses the generalized Chaos expansion.
With the expansion, the SPDE is reduced to a high dimensional deterministic equa-
tion, which can be solved by different numerical methods. Based on the solution, the
statistics of the physical solution of the original stochastic partial differential equation,
such as the mean and the variance, can be derived.

In this paper, we focus on elliptic problems with stochastic diffusion coefficients.
For this type of SPDEs, we use the double orthogonal basis [3, 16] to decouple the high
dimensional equation in the probability space and produce a sequence of independent
equations. After the discretization, we obtain a large number of linear systems:

Aixi = bi, i = 1, 2, · · ·(1.1)

where the matrices Ai and right-hand sides bi are closely related but independent from
each other. There are a number of techniques for solving a sequence of related linear
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systems of equations. In this paper, we focus on the recently introduced recycling
Krylov subspace method [24], which retains a Krylov subspace generated while solving
a previous system with GMRES and uses it to reduce the cost of solving the current
system. In our implementation, we extend the original algorithm in [24] to the flexible
version of GMRES, which allows the change of preconditioner during the iteration.

Mathematically we prove, under certain assumptions, that all these linear systems
from the KL expansion are spectrally equivalent, however, we also show numerically
that it is generally not a good idea to recycle or reuse the same Krylov subspace and/or
preconditioner for the entire sequence of linear systems since some of the spectrally
equivalent systems are quite different. Based on some analysis of the KL expansion
and the lower bounds of the elliptic coefficients we propose a grouping algorithm which
partitions the large number of systems into several groups and our tests show that
within each group, recycling Krylov subspaces and recycling preconditioners can be
safely and efficiently applied.

For preconditioning, we use an overlapping additive Schwarz domain decomposi-
tion method [27]. Our parallel implementation is based on the Portable Extensible
Toolkit for Scientific computation (PETSc) package from Argonne National Labo-
ratory [4]. The scalability and parallel performance of the algorithm are studied
theoretically and experimentally.

The rest of the paper is organized as follows. In Section 2, we describe the stochas-
tic Galerkin method including the stochastic weak formulation, the Karhunen-Loève
expansion, the double orthogonal basis, and the discretization. Section 3 presents
the additive Schwarz preconditioned recycling Krylov subspace method. A grouping
algorithm for efficiently recycling the Krylov subspace and the preconditioner is also
introduced. Some experimental results are reported in Section 4 and some concluding
remarks are given in Section 5.

2. Stochastic Galerkin method. In this section, we briefly describe how to
transform a stochastic elliptic partial differential equation to a sequence of indepen-
dent deterministic partial differential equations. We use an elliptic equation with a
stochastic diffusion coefficient as a model problem. See [16] for a complete description
of the methodology.

2.1. The stochastic weak formulation. We begin with a brief review of nota-
tions. Given a probability space (Ω,A,P) with sample space Ω, σ-algebra A and prob-
ability measure P , a real-valued random variable is a function ξ(ω): Ω → R. The prob-
ability distribution measure of ξ is defined on the Borel set B as µ(B) = P(ξ−∞(B)).
The mean, or expected value of ξ(ω), is

〈ξ〉 =

∫

Ω

ξ(ω)dP(ω) =

∫

R

zdµ(z) =

∫

R

zρ(z)dz,(2.1)

where ρ is the probability density function of ξ. We also define the space

L2(Ω) =

{

ξ(ω)

∣

∣

∣

∣

∫

Ω

|ξ|2dP(ω) <∞
}

.

Let D ⊂ R2 be the domain of the variable x. A random field a(x, ω): D×Ω → R

is a real-valued function jointly measurable with respect to the Lebesgue measure on
D and the probability measure P on Ω. Define the space

L2(D × Ω) = {u(x, ω)| 〈‖u(x, ω)‖L2(D)〉 <∞}.
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The stochastic Sobolev space H1
0 (D × Ω) is defined analogously. Now recall that for

the classical deterministic 2D elliptic equation:

{

−∇ · (a(x)∇u(x)) = f(x) in D
u(x) = 0 on ∂D,

(2.2)

the weak form of the problem is to find u(x) ∈ H1
0 (D) such that

B[u, v] = (f, v) ∀v ∈ H1
0 (D),(2.3)

where

B[u, v] =

∫

D

a(x)∇u(x) · ∇v(x)dx, (f, v) =

∫

D

f(x)v(x)dx.

If the diffusion coefficient is a random field a(x, ω) ∈ L2(D ×Ω), so is the solution u.
Consequently, we have the stochastic elliptic equation

{

−∇ · (a(x, ω)∇u(x, ω)) = f(x) x ∈ D, ω ∈ Ω
u(x, ω) = 0 x ∈ ∂D, ω ∈ Ω.

(2.4)

The weak form of (2.4) is to find u(x, ω) ∈ H1
0 (D × Ω) such that

〈B[u, v]〉 = 〈(f, v)〉 ∀v ∈ H1
0 (D × Ω).(2.5)

We assume that a(x, ω) ∈ L∞(D × Ω) is strictly positive, with lower and upper
bounds α and β respectively,

0 < α ≤ a(x, ω) ≤ β.(2.6)

Under this assumption, the existence and uniqueness of a solution u to (2.4) follow
from the Lax-Milgram lemma. Note that we assume the source term f is deterministic.
This condition can be relaxed to include randomness.

2.2. The Karhunen-Loève expansion. Here, we use the Karhunen-Loève
(KL) expansion [21] of the random field a(x, ω) to separate the deterministic and
stochastic components. We assume the mean and the covariance of a(x, ω) are known
respectively as

a0(x) =

∫

Ω

a(x, ω)dP (ω) and Ca(x, x′) =

∫

Ω

(a(x, ω)−a0(x))(a(x
′, ω)−a0(x

′))dP (ω).

(2.7)
By the KL expansion, a(x, ω) can be represented in the form of a series as follows

a(x, ω) = a0(x) +

∞
∑

j=1

√

λj kj(x) yj(ω),(2.8)

where λj and kj(x) are the eigenvalues and orthogonal eigenfunctions of Ca(x, x′);
i.e.,

∫

D

Ca(x, x′)kj(x
′)d(x′) = λjkj(x).(2.9)

This series converges in the mean-square sense.
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By definition, Ca(x, x′) is symmetric and positive semidefinite. This implies
that there exists a countable sequence of eigenpairs {(λj , kj)} where the eigenval-
ues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ · · · → 0 are nonnegative and the eigenfunctions {kj(x)} are
orthogonal in L2(D). Moreover, {yj} is a set of uncorrelated random variables with
mean value zero. If the eigenfunctions are normalized, yj all have unit variance; i.e.,
〈yj(ω)〉 = 0, 〈yi(ω)yj(ω)〉 = δij . For the computation, we approximate a(x, ω) by a
truncation of (2.8),

aM (x, ω) = a0(x) +

M
∑

j=1

√

λj kj(x) yj(ω),

where M denotes the number of terms in the truncation.
In this paper, we also assume the {yj}M

j=1 are independent. The probability
density function of yj is denoted as ρj . The joint probability density function of y =
(y1, · · · , yM ) is ρ = ρ1×· · ·×ρM . Let Γj denote the image of yj and Γ = Γ1×· · ·×ΓM .
We treat aM: D × Γ → R as

aM (x, y) = a0(x) +

M
∑

j=1

√

λj kj(x) yj(ω).(2.10)

Now, we arrive at the following deterministic elliptic problem,

−∇(aM (x, y)∇uM (x, y)) = f(x), uM (x, y) in H1
0 (D) × L2(Γ, ρ).(2.11)

2.3. Double orthogonal basis. For y ∈ Γ, we use the double orthogonal poly-
nomial function space [3, 16] to approximate L2(Γ, ρ), which decouples the equation in
the y-space, yielding a sequence of uncoupled equations. The double orthogonal basis
is constructed as follows. For any r ∈ N, the space of single-variable polynomials of
degree at most r is

Pr := span{1, t, t2, · · · , tr}.(2.12)

For r = (r1, r2, · · · , rM ) ∈ NM , we construct the multi-variable polynomial space

Pr := Pr1
⊗ Pr2

⊗ · · · ⊗ PrM
∈ L2(Γ, ρ).(2.13)

For the space Prj
, j = 1, 2, · · · ,M , we use the double orthogonal functions, de-

noted as {ψk,j(t)}rj

k=0, as basis instead of {1, t, t2, · · · , trj}. We require that ψk,j(t), k =
0, · · · , rj satisfy two orthogonality conditions:















∫

Γj

ψp, j(t)ψq, j(t)ρj(t)dt = δp,q, p, q = 0, · · · , rj ,
∫

Γj

tψp, j(t)ψq, j(t)ρj(t)dt = Cp, jδp,q, p, q = 0, · · · , rj ,
(2.14)

where {Cp, j}rj

p=0 are nonzero constants. Next we construct a basis function of Pr by
selecting one polynomial basis function from each Prj

, j = 1, · · · ,M , and then multiply
these selected M basis functions together. So given a r = (r1, r2, · · · , rm) ∈ NM , there

are total Ny =
∏M

j=1(rj + 1) basis functions for Pr(y1, y2, · · · , yM ).
Let i = {i1, i2, · · · , iM}. If 0 ≤ ij ≤ rj , ∀1 ≤ j ≤ M , we say that i ≤ r. It is

obvious that there are Ny multi-indices i, which are less than or equal to r. Each i
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corresponds to one basis function of Pr. We denote all the basis functions of Pr as
the set







ψi(y)

∣

∣

∣

∣

∣

∣

ψi(y) =

m
∏

j=1

ψij ,j(yj), ij ∈ {0, 1, · · · , rj}







i≤r

.(2.15)

Finding {ψk, j(yj)}rj

k=0 for spaces Prj
, j = 1, · · · ,M , results in an eigenproblem (c. f.

section 8.7.2 in [18]). For the probability space of y, generally we do not need high
order polynomials. So the computational work for these eigenproblems is negligible
compared with the cost required to solve the coupled equations.

2.4. Discretization. We use a Galerkin method with a double orthogonal basis
for the discretization of (2.11) in the y-space. Let

uM (x, y) =
∑

i≤r

ui(x)ψi(y)

such that for any v(x, y) = h(x)ψj(y) ∈ H1
0 (D) × Pr(Γ), we have

〈
∫

D

aM (x, y)∇uM (x, y) · ∇v(x, y)dx
〉

=

〈
∫

D

f(x)v(x, y)dx

〉

.(2.16)

Writing in an explicit form,

〈
∫

D

aM (x, y)∇uM (x, y) · ∇v(x, y)dx
〉

=

M
∑

j=1

∑

i≤r

√

λj (kj(x)∇ui(x), ∇h(x))
∫

Γ

yjψi(y)ψj(y)ρ(y)dy.

The two orthogonality conditions (2.14) imply that

∫

Γ

yjψi(y)ψj(y)ρ(y)dy = Cij ,jδi, j.

Consequently,

〈
∫

D

aM (x, y)∇uM (x, y) · ∇v(x, y)dx
〉

=

M
∑

j=1

∑

i≤r

√

λj (kj(x)∇ui(x), ∇h(x))Cij ,j δi,j.

On the other hand,

〈
∫

D

f(x)v(x, y)dx

〉

=

∫

D

f(x)h(x)dx〈ψj(y)〉.

Now, it is easy to see that the variational form of (2.11)

〈B[uM , v]〉 = 〈(f, v)〉,
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implies that

−∇ (aM, i(x)∇uM, i(x)) = fi(x) in H
1
0 (D), with(2.17)















aM, i(x) := a0(x) +
M
∑

j=1

√

λj kj(x)Cij , j ,

fi(x) := f(x) ·
M
∏

j=1

∫

Γj

ψij , j(t)ρj(t)dt.

(2.18)

Thus, we have decoupled the equation (2.11) into Ny deterministic diffusion problems
(2.17) and (2.18) in D. The stochastic solution is

uM (x, y) =
∑

i≤r

uM, i(x)ψi(y).(2.19)

We discretize the left-hand side of (2.17) and obtain a sequence of matrices Ai, i =
1, · · · , Ny. It can be shown that these systems are positive definite, if M is large
enough. The following result is useful.

Lemma 2.1. If Ca is piecewise smooth on D ×D and yj , j = 1, · · · ,M , are all
bounded, then for any i,

α

2
≤ aM,i(x) ≤ 2β

if M is large enough. Constants α and β are defined in (2.6).

Proof. By Proposition 4.3 in [16]: α/2 ≤ aM (x, y) ≤ 2β for any x, y. The constant
Cij , j in (2.18) and (2.14) is bounded by |yj | in (2.10):

|Cij , j | ≤
∫

Γj

|yj |ψij j(yj)
2dyj ≤ max |yj|

∫

Γj

ψij , j(yj)
2dyj = max |yj|.

This implies that aM,i are also bounded in [α/2, 2β].

The statistics of the solution can be found from the approximate solutions. For
example, the mean of u(x, y) can be approximated by,

〈uM 〉 =
∑

i≤r

uM, i(x)

∫

Γ

ψi(y)ρ(y)dy =
∑

i≤r

uM, i(x)

M
∏

j=1

∫

Γj

ψij , j(t)ρj(t)dt.

3. Numerical method. After the discretization of (2.18) we obtain a sequence
of independent linear systems of the form (1.1). In this section we propose an addi-
tive Schwarz preconditioned recycling Krylov subspace method for solving these sys-
tems. The recycling Krylov subspace method, Generalized Conjugate Residual with
implicit inner Orthogonalization and Deflated Restarting (GCRO-DR) [24], reduces
some work in constructing the Krylov subspace for a new system and the additive
Schwarz algorithm [27] provides a preconditioner and a data structure for a paral-
lel implementation. Note that we also reuse the preconditioner to further save the
computational time.
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3.1. Recycling Krylov subspace method. There are several recycling Krylov
subspace methods, see for example [8, 14, 15, 19, 23, 26] and references therein. In
our case which has a sequence of linear systems with changing left-hand side matrices
and right-hand side vectors, we use GCRO-DR. Here, we only present the main steps
of this method. For a detailed description and derivation of the algorithm, we refer
to [24].

The idea of GCRO-DR is to retain a Krylov subspace for subsequent restarted
GMRES cycles, or for solving other linear systems. For generality, we extend the GM-
RES framework introduced in [24] to include the flexible version of GMRES (FGM-
RES). Suppose we have solved the ith system with FGMRES. We retain k vectors

Ỹk = [ỹ1, ỹ2, · · · , ỹk].(3.1)

Let Ck = Q, Uk = ỸkR
−1 where Q and R be from the reduced QR decomposition of

Ai+1Ỹk. Uk, Ck ∈ Rn×k satisfy

Ai+1Uk = Ck, CH
k Ck = Ik.(3.2)

Let x0 and r0 be the initial guess and initial residual of Ai+1xi+1 = bi+1. We
update the solution as x = x0 +UkC

H
k r0, and set r = r0 −CkC

H
k r0. In our numerical

experiment, we find that for some systems, this updated solution x already satisfies
the error tolerance so that we do not need any more iterations after the initial step.

However, if the x is still not good enough, we continue to generate a Krylov
subspace of dimension m − k + 1 with (I − CkC

H
k )Ai+1, where m is the maximum

number of iterations before restarting. In the case of recycling FGMRES, it produces
the Arnoldi relation

(I − CkC
H
k )Ai+1Zm−k = Vm−k+1H̄m−k,(3.3)

where the columns of Zm−k are the preconditioned orthogonal vectors Vm−k. In the
case of GMRES, Zm−k should be replaced by Vm−k everywhere in the algorithm.

Each of the Arnoldi vectors Vm−k+1 = [v1, v2, · · · , vm−k+1] is orthogonal to the
range of Ck. We can rewrite (3.3) as

Ai+1[Uk Zm−k] = [Ck Vm−k+1]

[

Ik Bm−k

0 H̄m−k

]

,(3.4)

where Bm−k = CH
k Ai+1Zm−k. For numerical reasons, we normalize the column

vectors of Uk and replace the identity matrix Ik above with a diagonal matrix Dk,
such that UkDk has unit columns denoted as Ũk. We define

V̂m = [Ũk Zm−k], Ŵm+1 = [Ck Vm−k+1], Ḡm =

[

Dk Bm−k

0 H̄m−k

]

(3.5)

and write (3.4) more compactly as

Ai+1V̂m = Ŵm+1Ḡm.

Note that Ḡm = ŴH
m+1Ai+1V̂m is upper Hessenberg with diagonal Dk. The columns

of Ŵm+1 are orthogonal, but this is not true for the columns of V̂m.
In each cycle, we need to find y to minimize

‖r −Ai+1V̂my‖2 = ‖r − Ŵm+1Ḡmy‖2

= ‖ŴH
m+1r − Ḡmy‖2

= ‖ek+1‖r‖2 − Ḡmy‖2.
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Once we have y, the residual and solution are updated by

r := r −Ai+1V̂my = r − Ŵm+1Ḡmy and x := x+ V̂my.(3.6)

Next, we solve the generalized eigenvalue problem

ḠH
mḠmzi = θiḠ

H
mŴm+1V̂mzi.(3.7)

The k vectors Ỹk are chosen from ỹi = V̂mzi, i = 1, 2, · · · ,m. Theoretically, any k
eigenvectors zi can be used to compute Ỹk. In our implementation, we choose the
eigenvectors corresponding to the eigenvalues of smallest magnitude [24]. For more
details in computing the recycling Krylov subspace between cycles and systems, we
refer to [24].

3.2. Additive Schwarz preconditioning. In this section, we show that all
matrices in the sequence of linear systems are spectrally equivalent, and therefore
an optimal preconditioner for anyone of the matrices is also optimal for the whole
sequence. Here “optimal” means that the number of iterations is independent of
the mesh size and the number of subdomains. Note that “optimal” does not mean
the number of iterations is small or the computing time is small, which is of course
more important. In the next section, we will introduce a method that partitions the
sequence of linear systems into groups and within each group we apply the precondi-
tioning techniques to be discussed briefly below.

We start with a coarse triangulation T H = {τH
i } and a fine triangulation T h =

{τi} of the domain D. Let N (T H) be the set of nodal points of T H . Let hi =
diameter of τi, and h = maxi{hi}. We assume that the coarse and fine triangulation
are shape regular in the sense common to finite element theory. We then partition
D into nonoverlapping subdomains {Di}, i = 1, · · · , N . Let Hi = diameter of Di,
H = maxi{Hi}, We extend each Di to a larger region D

′

i ⊂ D. We assume that the

distance between the boundaries ∂Di and ∂D
′

i inside D is bounded from below by a

fixed fraction of Hi, and that ∂D
′

i does not cut through any elements.
Let V h and V0 be the finite element spaces of continuous, piecewise linear func-

tions associated with the triangulations T h and T H respectively. Let Vi = {v ∈ V h :
v(x) = 0, x 6∈ D

′

i}, i ≥ 1. Our finite element space V h can be represented as:

V h = Ih
HV0 + V1 + · · · + VN ,

where Ih
H is a coarse to fine mesh interpolation operator [7]. We approximate H1

0 (D)
by V h and define the finite element problem of (2.17) as: Find uh ∈ V h such that

∫

D

aM,i(x)∇uh∇vhdx =

∫

D

fivhdx, ∀ v ∈ V h.(3.8)

For simplicity, we denote the aM,i(x) and fi for system i, where i = 1, 2, · · · , Ny, as
ai(x) and fi(x) respectively. a0(x) is still the mean of a(x). We define the bilinear
form, for any u, v ∈ H1

0 (D),

A(u, v) =

∫

D

a1(x)∇u∇vdx,

Bi(u, v) =

∫

D

ai(x)∇u∇vdx, i = 1, 2, · · · , Ny.
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We now define the projection operators, which are the main building blocks of the
additive Schwarz methods.

Definition 3.1. P0: V
h −→ V0,

Bi(P0u, v) = Bi(u, v), ∀ v ∈ V0.

For i = 1, 2, · · · , N , Pi: V
h −→ Vi,

A(Piu, v) = Bi(u, v), ∀ v ∈ Vi.

Note that for subdomain problems, we define the preconditioners using a bilinear
form defined by a system usually different from the one being solved. But for the
coarse problem, the preconditioner is defined by using the bilinear form of the same
linear system. If we view the additive Schwarz method as a preconditioner, the matrix
form of Pi is,

Pi = RTK−1
i RK,(3.9)

where Ki is the stiffness matrix from system 1 associated with subdomain D
′

i and K
is the stiff matrix from system i, i = 1, 2, · · · , Ny, associated with D. R is a restriction
matrix. The additive Schwarz operator is defined by

P =

N
∑

i=0

Pi.(3.10)

Using the standard techniques ([27, 28]), we show easily
Theorem 3.2. If the coarse mesh is sufficiently fine, then there exist positive

constants cp and Cp independent of h and H, such that for any u ∈ V h,

cpA(u, u) ≤ A(u, Pu), A(Pu, Pu) ≤ CpA(u, u).(3.11)

According to [5, 6, 7, 10], the convergence rate of the additive Schwarz preconditioned
GMRES is bounded by the ratio Cp/cp, and the theorem implies that the convergence
rate is independent of the mesh size h and the number of subdomains N .

3.3. Some analysis of the sequence of linear systems and a grouping

algorithm. In this section we provide some analysis of the linear systems. Although
mathematically we can prove that all of the matrices are spectrally equivalent, in
practice, some of the systems are quite different from the others and the same pre-
conditioner may not work well for all the systems. Similarly, simple recycling of the
Krylov subspace from the previous system may not work well for these “bad” systems.
Therefore it is very important to identify these bad systems and exclude them from
the rest of the systems that can be solved with the recycling of Krylov subspaces and
preconditioners.

It is easy to see that the matrices depend on the diffusion coefficients aM,i(x), i ≤
r. From (2.18), it is obvious that the differences among these coefficients aM,i(x) are
determined by the eigenvalues, the eigenfunctions, and the constants Cij ,j. If any of
them change drastically, the diffusion coefficient changes drastically.

We note that the eigenfunctions are normalized in (2.18) and the eigenvalues
λj , j = 1, 2, · · · ,M , are not increasing and converge to zero as j goes to infinity.
Therefore, the changes of the constants Cij ,j, j = 1, 2, · · · ,M , play the main role in
the perturbation of aM,i for the terms corresponding to larger values of λj ; i.e. when
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j is small. Based on the eigenvalues and the constants Cij ,j , we provide an estimate
of when the diffusion coefficients aM,i have a relatively large change. If the constants
Cij ,j , corresponding to large eigenvalues, change drastically, the corresponding sys-
tems may become very different from the previous systems. In this case the recycled
Krylov subspace and the preconditioner should not be used.

Following the index of the diffusion coefficient aM,i(x), the sequence of systems
are currently labeled by the M -dimensional index i which is not too convenient for
the purpose of putting the systems into different groups. We next turn the M -
dimensional index i into a one-dimensional array. Given r = {r1, r2, · · · , rM}, the
index set {i = {i1, i2, · · · , iM} ≤ r} is ordered as follows:

Re-ordering Scheme for the Multi-index i:

k = 1;
for i1 = 0, 1, · · · , r1

for i2 = 0, 1, · · · , r2
· · ·

for iM = 0, 1, · · · , rM
“system k” := “system i”, with i = {i1, i2, · · · , iM};
k = k + 1;

end

An important characteristic of this ordering is that ik changes only after all possible
ordering of {ik+1, · · · , iM}. Following this one-dimensional re-index of i, the set of
basis functions ψi has a new index.

As is known that there is a decay of the eigenvalues, consequently, the first few
terms in the KL expansion carry a lot more weight in perturbing the diffusion coeffi-
cient. Using the eigenvalue information, and the values of Cij ,j, we derive a heuristic
algorithm that put the matrices into several groups.

We first use the mean value of the diffusion coefficient to determine which eigen-
values should be considered to carry more weight. For this purpose, we choose a
parameter

θ =
1

3
max

x∈N (T H)
{a0(x)},(3.12)

where N (T H) is the set of coarse mesh nodes of the domain D. If an eigenvalue is
greater than θ, we consider that the change in the term associated with this eigenvalue
causes large change in the diffusion coefficient. Assume, by this criterion, we have
decided that the first p terms may cause large perturbation. Then the sequence of
linear systems are divided into (r1 + 1) × (r2 + 1) × · · · × (rp + 1) groups. In each
group, there are (rp+1 + 1)× · · · × (rM + 1) systems. The systems in different groups
have different constants Cij ,j , j = 1, 2, · · · , p, in the first p terms of the KL expansion.
While the systems in the same group have the same first p terms of the KL expansion.

In most situations, the systems in the same group have small differences such that
we can use one of the systems to construct a Krylov subspace and a preconditioner
that can be reused for solving systems in the whole group. However, in some cases,
a subset of systems in the group may be close to being singular, and this subgroup
of systems needs to be treated separately. More precisely, for certain systems in
a given group of systems, we note that when the minimum value of the diffusion
coefficient is close to zero, these systems are more sensitive to small perturbations.
The iterative solver may not converge well even when the preconditioner is constructed
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from another system in the same group. To single out these bad systems, we choose
a cutoff parameter δ > 0, and if

min
x∈N (T H )

{ai(x)} ≤ δ(3.13)

we consider the system as nearly singular. In our numerical experiments, δ = 0.03. In
the heuristic estimate, there is no need to compute the minimum value too accurately,
we use a coarse mesh to find the minimums of the diffusion coefficients. If the mini-
mum is less than δ, we consider this system too sensitive to be preconditioned by any
other systems that are not close to being singular. We collect these sensitive systems
together into a subgroup. Experiences show that systems in the subgroup have simi-
lar lower bounds, and therefore we can solve them by recycling the Krylov subspace,
recycling the symbolic factorizations of the subdomain matrices, but not the precon-
ditioner, within the subgroup. We note that these sparse matrices have the same
nonzero pattern, and by using this fact, certain data structures and communication
information can be recycled.

Furthermore, based on the eigenfunctions and the values of Cij ,j, j = 1, 2, · · · ,M ,
we may narrow down the interval in which the sensitive systems belong to without
searching through every group of systems.

To help the discussion, we consider an example with the mean and covariance
functions

a0(x) = 3 + sin(πx1) Ca(x, x′) = e−|x−x′|2 , x ∈ [0, 1]2.(3.14)

M = 11 and r = (3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1). This implies that there are 9216 systems
of form (2.18). We assume that yj in the KL expansion is uniformly distributed in
Γj = [−

√
3,
√

3].
In Fig. 3.2 we show the decay of the eigenvalues. With the above ordering, for the

example (3.14), Fig. 3.3 illustrates how the upper and lower bounds of the diffusion
coefficient aM,i change with i. Note that some of the lower bounds are quite close to
zero.

Since λ1 is dominantly large compared with other eigenvalues, we consider the
first term has more weight in perturbing the diffusion coefficient. r1 = 3 implies there
are four possible corresponding constants: Ci1,1, i1 = 0, 1, 2, 3. The four constants
Ci1,1, i = 0, 1, 2, 3 evenly divide all the systems into 4 groups. According to the Re-
ordering Scheme for the Multi-index i, the first group includes systems 1 to 2304,
in which all the systems’ diffusion coefficients share the constant Ci1,1, i1 = 0 in
the first term of the KL expansion. Similarly, the second group from 2305 to 4608
corresponds to Ci1,1, i1 = 1, the third group corresponds to Ci1,1, i1 = 2 and the last
group corresponds to Ci1,1, i1 = 3. We can see clearly that the bounds of the diffusion
coefficient have a dramatic change for systems 2305, 4609, 6913. This matches with
the change of Ci1,1, i1 = 0, 1, 2, 3, which are 1.49, 0.59,−1.49,−0.59 respectively by
numerical computation. Cij ,j decreases from 1.49 to 0.59 and then to −1.49. In
the end, it increases to −0.59. Correspondingly, the bounds of the last group in the
Fig. 3.3 increases too compared with the third group. In particular, since the third
constant −1.49 is the smallest value among the first four constants, the minimum
values of some diffusion coefficients, which are close to zero, are all in the third group
4609− 6912. These systems are the bad cases, for which the iterative solver does not
converge well if using a preconditioner not in the same subgroup.

Fig. 3.1 shows the surface plots of the diffusion coefficients of systems 4608 to
4613. We can see clearly that the plot for system 4608 is significantly different from
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Fig. 3.1. Surface plots of diffusion coefficients of systems 4608 − 4613. The top surface is for

system 4608, and the bottom cluster of surfaces is for systems 4609 − 4613.

that of the other systems. The plots for systems 4609 to 4613 have very small differ-
ences. In particular, the minimums values of the diffusion coefficients of systems 4609
to 4613 are close to zero.

Generally speaking, we would like to recycle both the Krylov subspace and the
preconditioner as much as possible. For the preconditioner, there are two ways to
recycle, namely (1) recycle the symbolic factorization of the subdomain matrices to
save the computational work in the construction of the preconditioners for the next
system; and (2) recycle the preconditioner for the next system. Obviously, the second
choice saves more work than the first. However, when the matrices have significant
differences from each other, the number of iterations can be large if we reuse the old
preconditioner, and therefore a new preconditioner is preferred.

We summarize our analysis in term of a grouping algorithm which provides an
estimate of when the systems have relatively large change and when the systems are
close to be singular.

A Grouping Algorithm:

• ChooseM and r = {r1, r2, · · · , rM}. Generate a new index for i ≤ r according
to the Re-ordering Scheme. Compute the double orthogonal basis and obtain
the corresponding constants Cij ,j, j = 1, 2, · · · ,M . Compute the eigenvalues
λj and eigenfunctions kj , j = 1, 2, · · · ,M . Choose the parameters δ > 0 and
θ > 0 (In our example, we choose θ = 1/3 maxx∈N (T H ){a0(x)} and δ = 0.03).
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Fig. 3.2. The decay of eigenvalues when Ca(x, x′) = e−|x−x′|2 , x ∈ [0, 1]2.

• Compute p = max{i | |λi| > θ, i = 1, 2, · · · ,M}. Divide the systems into
(r1 + 1) × · · · × (rp + 1) groups. In each group, there are q = (rp+1 + 1) ×
· · · × (rM + 1) systems.

• Compute the approximate minimum value of each diffusion coefficient on the
coarse mesh, minx∈N (T H){ai(x)}. If the minimum is less than or equal to δ,
the corresponding system is labeled as nearly singular or a “bad case”.

• Put these bad cases in a subgroup. Construct a Krylov subspace and a
preconditioner from one system in the subgroup and then recycle the Krylov
subspace and recycle the symbolic factorization of the subdomain matrices
for other systems in the subgroup.

• For the other systems in each group, construct a Krylov subspace and a
preconditioner from one system and then recycle the Krylov subspace and
recycle the preconditioner for other systems in this group.

4. Numerical experiments. We test the performance of the additive Schwarz
preconditioned recycling FGMRES algorithm for solving the model problem (2.4) on
a two-dimensional domain D = [0, 1]2. The source term f(x) = 1. The mean and
covariance functions are explicitly given as

a0(x) = 3 + sin(πx1) Ca(x, x′) = e−|x−x′|2 .

For the KL expansion of a(x, ω), we choose M = 11 truncation terms as the
approximation. This implies the dimension for the y-space is 11. By the selecting
algorithm provided in [16], we choose r = (3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1). Consequently, we
have 9216 systems of form (2.18). At the same time, we assume that yj, j = 1, 2, · · · , 11
are uniformly distributed in Γj = [−

√
3,
√

3]. So the probability density function
ρj = 1/(2

√
3). Note that this implies that the variance of yj is unity. We compute

the eigenpairs (λj , kj(x)) using MATLAB. kj(x) is saved as a step function together
with eigenvalues into a file to be used in the main program. The computation of the
orthogonal polynomials (2.14) involves the generalized eigenvalue problem Ax = λBx
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Fig. 3.3. Top curve is the maximum of the diffusion coefficient maxx∈N (T H){aM,i(x)}, and

the bottom curve is the minimum of the diffusion coefficient minx∈N (T H ){aM,i(x)}, M = 11, r =

{3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1}, a0(x) = 3 + sin(πx).

with symmetric and positive semidefinite matrices A,B of size rj , j = 1, 2, · · · , 11.
These are solved with MATLAB and saved in a file to be read by the main program.

The main program implements the additive Schwarz preconditioned recycling
FGMRES. PETSc [4] is employed for the parallel computation. Both the relative
tolerance and absolute tolerance for all the tests are set to 10−6.

4.1. Comparison of different recycling schemes. In this section, we study
the following four schemes

Scheme 1. No recycling of Krylov subspace and no recycling of preconditioner
Scheme 2. Recycle Krylov subspace and recycle symbolic factorizations of sub-

domain matrices for the entire sequence of systems
Scheme 3. Recycle Krylov subspace and recycle the preconditioner for the entire

sequence of systems
Scheme 4. An algorithm based on the Grouping Algorithm introduced in the

previous section
Scheme 1 is used to compare with the other schemes. To take advantage of the
fact that all the matrices have the same nonzero pattern, we recycle the symbolic
factorization of subdomain matrices and call this as scheme 2. In PETSc this ensures
that certain data structures and communication information are reused (instead of
being regenerated) during successive steps, thereby increases the efficiency of the
software. For example, for a parallel preconditioner such as incomplete factorization,
matrix colorings and communication patterns are determined only once and then
reused throughout the solution process. Scheme 3 uses the same preconditioner for all
systems. It saves almost all the preconditioner construction work for all the matrices.
However, this causes a steep increase in iteration numbers for some of the systems.
We can see in Figs. 4.1, 4.2, 4.4, 4.5, for scheme 2, all the iteration numbers of the
following systems are about half of the iteration of the first system. But for scheme
3, there are sudden increases of iteration numbers for some systems. The reason was
discussed in the previous section. Scheme 4 combines the advantages of scheme 2 and
scheme 3. It adaptively recycle the Krylov subspace and the preconditioner according
to the Grouping Algorithm.
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Table 4.1

Running time for different schemes and preconditioning, in second

scheme
preconditioner

1 2 3 4

one-level ASM 12030 7693 4205 3882
two-level ASM 20980 14130 10740 8476
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Fig. 4.1. One-level ASM, iteration number comparison of scheme 1 and 2

We first study the one-level additive Schwarz method; i.e. without the coarse
level preconditioning. The mesh size is 256 × 256. The number of processors is 16.
Figs. 4.1, 4.2 and 4.3 are the comparisons. The running time for both one-level and
two-level ASM are in Table 4.1.

From Fig. 4.1, we see that most of the iteration numbers of scheme 2 are less
than half of that using scheme 1. Many systems even have zero number of iterations,
which means the solution generated from the recycled Krylov subspace is already good
enough for the current system. This leads to big savings in the running time. In Fig.
4.2, we use the same preconditioner for all systems. The iteration numbers increase a
little for most systems, but still less than that of scheme 1 . In a few cases, the number
of iterations even reaches 50, which is the maximum iteration number we set in the
implementation. These are the bad cases we discussed in the previous section. Notice
that the systems with high iteration numbers in Fig. 4.2 are exactly the systems of
which the minima of the coefficients are close to zero. Without surprise, the running
time of scheme 3 is much less than that of scheme 2 and only about 1/3 of scheme
1. In Fig. 4.3, we recycle Krylov subspace and the preconditioner by the Grouping
Algorithm. The running time is about the same as scheme 3. The iteration numbers
required for solving those few systems are also controlled.

Figs. 4.4, 4.5 and 4.6 are for the comparison of the schemes when we use two-level
additive Schwarz preconditioner in the implementation. The coarse mesh is 16 × 16.
It shows the same effects as in the one-level case. In particular, we can see that in
scheme 4, there are more systems requiring zero iteration numbers.

4.2. Scalability of additive Schwarz method. In this section, we study the
scalability of the additive Schwarz methods. We use recycling scheme 4 for the exper-
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Fig. 4.2. One-level ASM, iteration number comparison of scheme 1 and 3
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Fig. 4.3. One-level ASM, iteration number comparison of scheme 1 and 4
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Fig. 4.4. Two-level ASM, iteration number comparison of scheme 1 and 2
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Fig. 4.5. Two-level ASM, iteration number comparison of scheme 1 and 3
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Fig. 4.6. Two-level ASM, iteration number comparison of scheme 1 and 4

iments. Table 4.2 shows the results of the one-level additive Schwarz method. Table
4.3 shows the results of the two-level additive Schwarz method. The iteration numbers
in the tables are the average iteration numbers for solving all systems.

From Table 4.2, we can see that, for the one-level ASM, as the mesh size increases,
the average iteration numbers actually decrease a little. As the number of processors
increases, the average iteration numbers increase except for the 16 processors case.
To conclude, with the one-level ASM, the method is scalable with respect to mesh
size but not to the number of processors.

From Table 4.3, we can see that the two-level ASM is scalable with respect to
both the mesh size and the number of processors. Actually, the average iteration
numbers decrease a little as the mesh size increases as in the one-level case. When the
number of processors increases, the average iteration numbers decrease too, except for
the mesh 136× 136. The number of iterations is higher than expected, more research
is still needed to fully understand the situation.
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Table 4.2

Average iteration numbers, one-level additive Schwarz preconditioner

number of subdomains
mesh overlap

1 4 16 64

128 × 128 4 5.89 5.81 5.83 6.83
256 × 256 8 3.79 5.52 4.28 7.76
512 × 512 16 2.08 5.46 4.10 5.78

Table 4.3

Average iteration numbers, two-level additive Schwarz preconditioner, coarse mesh 16 × 16

number of subdomains
mesh overlap

1 4 16 64

136 × 136 4 7.66 8.53 8.82 8.99
256 × 256 8 3.93 9.04 6.39 4.14
496 × 496 16 2.52 2.59 4.59 3.44

5. Conclusion. In this paper, we introduced a parallel domain decomposition
preconditioned recycling Krylov subspace method for stochastic elliptic partial differ-
ential equations. By recycling the Krylov subspace and the preconditioner, the overall
computational cost and time can be saved by as much as 50%. We carefully analyzed
the KL expansion and derived an useful algorithm that tells us when to recompute
and when to recycle some of the expensive components of the computation. We
showed theoretically and experimentally that the multilevel additive Schwarz precon-
ditioned recycling GMRES method is optimal for the entire family of linear systems
arising from the discretization of the stochastic elliptic partial differential equation.
A fully parallel implementation was provided and tested with up to 64 processors and
scalability results were reported in the paper.
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