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Abstract

High resolution and scalable parallel algorithms for the shallow water equations on the sphere are very

important for modeling the global climate. In this paper, we introduce and study some highly scalable

multilevel domain decomposition methods for the fully implicit solution of the nonlinear shallow water

equations discretized with a second-order well-balanced finite volume method on the cubed-sphere.

With the fully implicit approach, the time step size is no longer limited by the stability condition, and

with the multilevel preconditioners, good scalabilities are obtained on computers with a large number

of processors. The investigation focuses on the use of semismooth inexact Newton method for the case

with nonsmooth topography and the use of two- and three-level overlapping Schwarz methods with

different order of discretizations for the preconditioning of the Jacobian systems. We test the proposed

algorithm for several benchmark cases and show numerically that this approach converges well with

smooth and nonsmooth bottom topography, and scales perfectly in terms of the strong scalability and

reasonably well in terms of the weak scalability on machines with thousands and tens of thousands of

processors.
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1. Introduction

Numerical simulation of the shallow water equations (SWEs) in spherical geometry lies at the root

in the development of numerical algorithms and high performance software for the modeling of at-

mospheric circulation. There are several family of meshes available for numerical computation on the

sphere. In this study, we use the cubed-sphere mesh of gnomonic type [31], which is generated by map-

ping the six faces of an inscribed cube to the sphere surface using the gnomonic projection. The six

patches are attached together with proper interface conditions. The SWEs in the local curvilinear coor-

dinates on each patch can be written as follows.

∂Q

∂t
+ 1

Λ

∂(ΛF )

∂x
+ 1

Λ

∂(ΛG)

∂y
+S = 0, (x, y) ∈ [−π/4,π/4]2 (1)

with

Q =


h

hu

hv

 , F =


hu

huu

huv

 , G =


hv

huv

hv v

 , S =


0

S1

S2

 , (2)

where

S1 = Γ1
11(huu)+2Γ1

12(huv)+ f Λ
(
g 12hu − g 11hv

)+ g h

(
g 11 ∂Z

∂x
+ g 12 ∂Z

∂y

)
,

S2 = 2Γ2
12(huv)+Γ2

22(hv v)+ f Λ
(
g 22hu − g 12hv

)+ g h

(
g 12 ∂Z

∂x
+ g 22 ∂Z

∂y

)
.

(3)

Here h is the thickness of the fluid (atmosphere), (u, v) are the contravariant components of the fluid

velocity, g is the gravitational constant and f is the Coriolis parameter due to the rotation of the sphere.

The bottom topography is b which describes the height of the spherical surface, and the surface level of

the fluid is Z = h +b. The variable coefficients g mn , Λ and Γ`mn are only dependent on the curvilinear

coordinates and their detailed expressions can be found in [48].

The latitude-longitude (lat-lon) mesh, although has been popular with spectral methods in the last

several decades, is highly nonuniform and the resulting matrix is quite dense, which is not easy to deal

with in large scale parallel simulations. Recently several efforts have been made on using numerical

discretizations on composite meshes, such as the icosahedron geodesic mesh [35, 43], the cubed-sphere

mesh [34] and the Yin-Yang mesh [19], all consist of several patches that are either connected through

interfaces or overlapping in order to cover the whole sphere.
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Depending on the speed of the fastest wave that is of interest in the chosen climate model, the sim-

ulations can be carried out using either one or a combination of the three classes of methods: explicit,

semi-implicit and fully implicit. If the wave is so fast such that the corresponding Courant-Friedrichs-

Lewy (CFL) number is less than one, then explicit methods are the choice since they are easy to imple-

ment and the algorithms are highly parallelizable. If the fast waves don’t exist in the model, or are not of

interests, then one can choose to use a semi-implicit method which requires only linear solvers but may

have some limitations on the time step size or the fully implicit method whose time step size is limited

only by the accuracy requirement. Although fully implicit methods enjoy an advantage that the time step

size is no longer constrained by any stability conditions. If not used properly, the large time step size in

a fully implicit method may result in large simulation errors, especially when the dynamical timescale is

not properly resolved [22]. In [13], the accuracy of a fully implicit method for a spectral element shallow

water code on the cubed-sphere was carefully studied for several test cases and compared with exist-

ing fully explicit leapfrog and semi-implicit methods. The numerical experiments in [13] suggested that

typical fully implicit time step sizes that are 30 to 60 times larger than the gravity wave stability limits

and 6 to 20 times larger than the advective scale stability limits are free of unacceptable accuracy loss.

For high fidelity simulations on supercomputers with a large number of processors, the scalabilities

of the algorithm with respect to the number of processors are critically important. There are several scal-

ability issues we address in this paper including (a) the machine independent scalability of the algorithm

characterized mainly by the number of linear and nonlinear iterations; (b) the strong scalability of the

algorithm in terms of the total compute time when the size of the overall mesh is fixed; and (c) the weak

scalability of the algorithm in terms of the total compute time when the size of the mesh per processor

is fixed. Note that without (a), it is usually not possible to have (b) or (c), but even if (a) holds, (b) and (c)

may still not possible since both (b) and (c) depend on the machine and the software implementation of

the algorithm, among other factors.

Scalability by itself is not necessarily a sufficient measure of a good parallel algorithm. For example,

we show in this paper that both the classical explicit algorithm and our newly introduced fully implicit

algorithm are almost perfectly scalable in the strong sense, but the implicit algorithm can be, for exam-

ple, many times faster in terms of the total compute time. On the other hand, if we consider the weak

scalability, the explicit method is not scalable at all in the sense that the compute time increases lin-

early in the number of processors, but the growth of compute time of the implicit method is only a log
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function of the number of processors.

The price to pay for using fully implicit method is that a large nonlinear algebraic system, with an

extremely ill-conditioned sparse Jacobian matrix, has to be solved at each time step. To solve the non-

linear system efficiently, we use an inexact Newton method, within which a Krylov subspace method

is used to solve the Jacobian system at each inexact Newton step. If a non-scalable algorithm is used

for solving the system, as the mesh is refined or the number of processors is increased, the increase of

Krylov iterations will directly result in the simulation time increase, which may neutralize the benefits

from the unconstrained time step size [12]. One way to keep the simulation time at an acceptable level

is to use a preconditioner which is not only inexpensive to apply but also capable of maintaining the

number of Krylov iterations to nearly a constant as the mesh is refined or the number of processors is

increased. Therefore, the development of an effective and efficient preconditioner is crucial for a scal-

able fully implicit solver, which is the main goal of this paper.

A one-level domain decomposition method was studied by the authors in [48] for solving the SWEs

on the cubed-sphere. It was demonstrated that when the solution is smooth and when a first-order fi-

nite volume scheme is used in the spatial discretization, the one-level Schwarz preconditioner works

well in terms of the total number of linear iterations. The parallel scalability is quite acceptable when

the number of processors is not too large. However, the number of linear iterations grows as the number

of processors increases. The situation becomes worse when a higher order discretization is used, be-

cause the resulting Jacobian system is much more ill-conditioned and has considerably more non-zero

elements. To deal with these much denser linear systems, one-level additive Schwarz preconditioners

based on a lower order discretization of the SWEs was studied in [46]. To take advantage of modern

supercomputers for large-scale atmospheric simulations, and to exploit flexibilities of large time step

sizes and deal with nonsmooth bottom topography, we propose and study two- and three-level over-

lapping Schwarz preconditioners in this paper. Both strong and weak scalabilities are carefully studied

with around O(103 −105) processors. This class of multilevel methods is sufficiently robust and we be-

lieve they are suitable for even larger processor count, as long as more levels are included in the pre-

conditioner. When a variable bottom topography is involved in the SWEs, the spatial discretization

must satisfy a well-balanced property to avoid spurious oscillations near the non-smooth area of the

topography. In [46], a well-balanced finite volume method was proposed and studied for the SWEs on a

cubed-sphere, together with an explicit Runge-Kutta method. If a fully implicit method is used instead,
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the smoothness requirement by the Newton method is sometimes violated, due to the nonsmooth eval-

uations of nonlinear functions in the spatial discretization and the topographic source terms, and the

convergence of the Newton method may be problematic. In this situation, we introduce a semismooth

Newton method [27, 28] in which the generalized Jacobian [6] is calculated by freezing some multiple-

valued entries at each Newton step.

In the paper we focus only on issues related the fully implicit methods, and have not paid attention

to the comparison with semi-implicit methods which are excellent choices in some situations. For ex-

ample, semi-implicit semi-Lagrangian (SISL) method works quite well for hyperbolic problems such as

the SWEs, but it is beyond the scope of this paper to compare the parallel performance of our fully im-

plicit approach with SISL since it requires multiple linear solves per time step and these solves have to

be carried out one after another, which may reduce the overall parallelism in large scale calculations.

The remainder of this paper is organized as follows. In Section 2, we introduce a fully implicit finite

volume discretization of the SWEs on the cubed-sphere. The scheme is second-order and well-balanced

so that nonsmooth topographic source terms can be handled successfully. Some variants of Newton-

Krylov-Schwarz methods with adaptive stopping conditions are then discussed in Section 3 for solving

the nonlinear systems resulting from the fully implicit time integration. In Section 4, some multilevel

Schwarz preconditioning methods, which are the most important part of the scalable approach, are

covered in detail. Numerical results for two benchmark cases are provided in Section 5 where several

key issues are then discussed, including an accuracy and efficiency comparison with an explicit method,

the effects on using different parameters in the preconditioner, the robustness of the method when the

time step is large, and the strong and weak scalability of the algorithm when O(103 −105) processors are

used on two supercomputers. The paper is then concluded in Section 6.

2. Fully implicit well-balanced discretization of the SWEs on the cubed-sphere

Although the cubed-sphere mesh was initially proposed in 1972 [34], the research community paid

little attention to it until it was revisited in 1990s [29, 31]. Since then several discretization schemes have

been studied for the SWEs on the cubed-sphere, e.g., the finite volume method [5, 26, 32], the spectral

element method [39, 40], the discontinuous Galerkin method [9, 23]. In this paper, we introduce a fully

implicit, well balanced finite volume scheme, which is a reformulation of an explicit scheme from [46].

Let us denote the six patches of the cubed-sphere as P k , k = 1, · · · ,6. Suppose P k is covered by
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a logically rectangular N × N mesh, which is equally spaced in the computational domain {(x, y) ∈
[−π/4,π/4]2} with mesh size ~=π/2N . Patch P k is then divided into mesh cells C k

i j centered at (xi , y j ),

i , j = 1, · · · , N . The approximate solution in cell C k
i j at time t is defined as

Qk
i j ≈

1

Λk
i j~2

∫ y j+~/2

y j−~/2

∫ xi+~/2

xi−~/2
Λ

(
x, y

)
Q

(
x, y, t

)
d xd y.

HereΛk
i j is evaluated at the cell center. The superscript k is sometimes ignored for convenience.

After discretizing the shallow water system (1) using a cell-centered finite volume method, we obtain

the following semi-discrete system:

∂Qi j

∂t
+ 1

Λi j~
[
(ΛF )i+1/2, j − (ΛF )i−1/2, j

]+ 1

Λi j~
[
(ΛG)i , j+1/2 − (ΛG)i , j−1/2

]+Si j = 0. (4)

Here the numerical fluxes on the four cell boundaries are approximated as

(ΛF )i±1/2, j ≈
1

~

∫ y j+~/2

y j−~/2
Λ

(
xi ±~/2, y

)
F

(
xi ±~/2, y, t

)
d y,

(ΛG)i , j±1/2 ≈
1

~

∫ xi+~/2

xi−~/2
Λ

(
x, y j ±~/2

)
G

(
x, y j ±~/2, t

)
d x.

In this paper we use Osher’s Riemann solver [24, 25] to calculate the numerical fluxes, i.e.,

(ΛF )i+1/2, j =Λi+1/2, j F (o)
(
Q−

i+1/2, j ,Q+
i+1/2, j

)
=Λi+1/2, j F

(
Q∗

i+1/2, j

)
,

(ΛG)i , j+1/2 =Λi , j+1/2G (o)
(
Q−

i , j+1/2,Q+
i , j+1/2

)
=Λi , j+1/2G

(
Q∗

i , j+1/2

)
,

where Q±
i+1/2, j and Q±

i , j+1/2 are the reconstructed states of Q on the local cell boundaries. To deal with

the non-smooth bottom topography, we calculate Q∗
i+1/2, j with the following scheme ([46]):

h∗
i+1/2, j =

1

4g g 11
i+1/2, j

[
1

2

(
u−

i+1/2, j −u+
i+1/2, j

)
+

√
g g 11

i+1/2, j

(√
h−

i+1/2, j +
√

h+
i+1/2, j

)]2

,

u∗
i+1/2, j =

1

2

(
u−

i+1/2, j +u+
i+1/2, j

)
+

√
g g 11

i+1/2, j

(
Z−

i+1/2, j −Z+
i+1/2, j

)/(√
h−

i+1/2, j +
√

h+
i+1/2, j

)
,

v∗
i+1/2, j =


v−

i+1/2, j +
(

g 12
i+1/2, j

/
g 11

i+1/2, j

)(
u∗

i+1/2, j −u−
i+1/2, j

)
, ifu∗

i+1/2, j ≥ 0

v+
i+1/2, j +

(
g 12

i+1/2, j

/
g 11

i+1/2, j

)(
u∗

i+1/2, j −u+
i+1/2, j

)
, otherwise,

when |u| <
√

g g 11h. The calculation of (ΛG)i , j+1/2 follows a similar scheme,

h∗
i , j+1/2 =

1

4g g 22
i , j+1/2

[
1

2

(
v−

i , j+1/2 − v+
i , j+1/2

)
+

√
g g 22

i , j+1/2

(√
h−

i , j+1/2 +
√

h+
i , j+1/2

)]2

,

v∗
i , j+1/2 =

1

2

(
v−

i , j+1/2 + v+
i , j+1/2

)
+

√
g g 22

i , j+1/2

(
Z−

i , j+1/2 −Z+
i , j+1/2

)/(√
h−

i , j+1/2 +
√

h+
i , j+1/2

)
,

u∗
i , j+1/2 =


u−

i , j+1/2 +
(

g 22
i , j+1/2

/
g 12

i , j+1/2

)(
v∗

i , j+1/2 − v−
i , j+1/2

)
, if v∗

i , j+1/2 ≥ 0

u+
i , j+1/2 +

(
g 22

i , j+1/2

/
g 12

i , j+1/2

)(
v∗

i , j+1/2 − v+
i , j+1/2

)
, otherwise,
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when |v | <
√

g g 22h. In the explicit scheme [46], the values of v∗
i+1/2, j and u∗

i , j+1/2 are taken from the

previous time step, and in the fully implicit scheme, the values have to be taken in the current time level.

Because of these branching conditions, these equations may not be differentiable.

Suppose the cell-averaged values of Q on cell Ci j , Ci±1, j and Ci , j±1 are already known, there are

several different ways to reconstruct Q on the cell boundaries of Ci j . The simplest one is to use the

piecewise constant method by forcing Q = Qi j on Ci j , which leads to a first-order method [48]. To

achieve higher order of accuracy, we use a second-order reconstruction in this paper, i.e.,

Q∓
i±1/2, j =Qi j ±

(
Qi+1, j −Qi−1, j

)/
4 , Q∓

i , j±1/2 =Qi j ±
(
Qi , j+1 −Qi , j−1

)/
4 .

To pass information between the boundary of the six patches, ghost cells can be introduced by ex-

tending several layers of meshes outward for each patch [31, 32]. On each patch interface, we only use

one layer of ghost cells and the numerical fluxes are calculated symmetrically across the interface to

insure the numerical conservation of total mass; see [46] for further details.

The following two terms in the SWEs involve the bottom topography,

ST 1 = g h

(
g 11 ∂Z

∂x
+ g 12 ∂Z

∂y

)
, ST 2 = g h

(
g 12 ∂Z

∂x
+ g 22 ∂Z

∂y

)
.

The discretization of these terms should be carried out with special care, or spurious oscillations could

be introduced [14]. A well-balanced discretization was proposed in [46] for the explicit solution of the

SWEs in an equivalent form of (1)-(3), which corresponds to discretizing ST 1 and ST 2 as

(ST 1)i j =
(
g h∗

i+1/2, j + g h∗
i−1/2, j

)[(
g 11Λ

)
i+1/2, j +

(
g 11Λ

)
i−1/2, j

](
Z∗

i+1/2, j −Z∗
i−1/2, j

)/(
4Λi j~

)
+

(
g h∗

i , j+1/2 + g h∗
i , j−1/2

)[(
g 12Λ

)
i , j+1/2 +

(
g 12Λ

)
i , j−1/2

](
Z∗

i , j+1/2 −Z∗
i , j−1/2

)/(
4Λi j~

)
,

(ST 2)i j =
(
g h∗

i+1/2, j + g h∗
i−1/2, j

)[(
g 12Λ

)
i+1/2, j +

(
g 12Λ

)
i−1/2, j

](
Z∗

i+1/2, j −Z∗
i−1/2, j

)/(
4Λi j~

)
+

(
g h∗

i , j+1/2 + g h∗
i , j−1/2

)[(
g 22Λ

)
i , j+1/2 +

(
g 22Λ

)
i , j−1/2

](
Z∗

i , j+1/2 −Z∗
i , j−1/2

)/(
4Λi j~

)
,

where

Z∗
i+1/2, j =

1

4g g 11
i+1/2, j

[
1

2

(
u−

i+1/2, j −u+
i+1/2, j

)
+

√
g g 11

i+1/2, j

(√
Z−

i+1/2, j +
√

Z+
i+1/2, j

)]2

,

Z∗
i , j+1/2 =

1

4g g 22
i , j+1/2

[
1

2

(
u−

i , j+1/2 −u+
i , j+1/2

)
+

√
g g 22

i , j+1/2

(√
Z−

i , j+1/2 +
√

Z+
i , j+1/2

)]2

.

Given a semi-discrete system

∂Qi j

∂t
+L (Qi j ) = 0, (5)
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the second-order backward differentiation formula (BDF-2)

1

2∆t

(
3Q(m)

i j −4Q(m−1)
i j +Q(m−2)

i j

)
+L (Q(m)

i j ) = 0 (6)

is employed for the time integration. Here Q(m) denotes the value of Q at the m-th time step with a fixed

time step size ∆t . Only at the first time step, a first-order backward Euler (BDF-1) method is used. A

major advantage of the fully implicit method is that the time step size∆t is no longer constrained by the

CFL condition, which is often required by explicit or semi-implicit techniques.

For comparison purpose, we also implement an explicit second-order Strong Stability Preserving

Runge-Kutta (SSP RK-2) method

Q
(m) =Q(m−1) −∆tL

(
Q(m−1)) ,

Q(m) = ( 1/2 )(Q(m−1) +Q
(m)

)− (∆t/2 )L (Q
(m)

).
(7)

The time step size is adaptively controlled so that the corresponding CFL number is fixed to 0.5. Here

the explicit CFL number is calculated via max
{|u|+√

g g 11h, |v |+
√

g g 22h
}(
∆t

/
~

)
.

3. Some variants of Newton-Krylov-Schwarz methods

In the fully implicit method, a system of nonlinear algebraic equations

F (X ) = 0 (8)

has to be constructed and solved at each time step. We use a Newton-Krylov-Schwarz (NKS) [2, 3] type

method to solve (8). To turn the set of equations defined on a mesh into an algebraic system, both the

unknowns and the equations need to be sorted in a certain order. We use a point-wise (field-coupling)

ordering instead of a component-wise (field-splitting) ordering in our implementation. This ordering

helps improving not only in the cache performance but also the parallel efficiency in load and com-

munication balance. Interested readers should see a Gordon-Bell Prize winning application in [16] for

example.

3.1. Inexact Newton method with adaptive stopping conditions

To solve (8) at time step m, we first let the initial guess X0 = X (m−1) be the solution of the previous

time step, then the next approximate solution Xn+1 is obtained by

Xn+1 = Xn +λnSn , n = 0,1, ... (9)
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Here λn is the steplength determined by a linesearch procedure [8] and Sn is the Newton correction

vector. To calculate Sn , the Jacobian system

JnSn =−F (Xn) (10)

is constructed and solved for each Newton iteration. The Jacobian matrix Jn = F ′(Xn) is calculated at

the current approximate solution Xn . In inexact Newton method, the linear system (10) does not need to

be solved exactly. In practice, we use a restarted GMRES to approximately solve the right-preconditioned

system

Jn M−1(MSn) =−F (Xn), (11)

until the linear residual rn = JnSn +F (Xn) satisfies

‖rn‖ ≤ η‖F (Xn)‖. (12)

A flexible version of GMRES [33] has to be used if the preconditioner changes during the GMRES itera-

tions. This happens when the coarse problems in a multilevel preconditioner are solved iteratively. The

accuracy (relative tolerance) of the Jacobian solver is determined by the nonlinear forcing term η.

To achieve a uniform residual error for different time steps, we use the following adaptive stopping

conditions for the Newton iteration:

‖F (Xn+1)‖ ≤ min
{
ε̂a ,max

{
ε̌a ,εr ‖F (X0)‖}}. (13)

Here the relative tolerance εr and the safeguard ε̂a are both fixed for all time steps, and the absolute

tolerance ε̌a is chosen as ε̌(0)
a ∈ [0, ε̂a) at the first time step and then adaptively determined by

ε̌(m)
a = max

{
ε̌(m−1)

a ,‖F (X (m−1))‖}.

Remark 3.1. The optimal choices of the parameters that control the stopping conditions and the restart of

GMRES in the NKS solver are problem-dependent. In the numerical tests presented in this paper, FGMRES

restarts at every 30 iterations. A fixed nonlinear forcing term η= 10−3 is used to control the relative accu-

racy of the linear solver, the nonlinear tolerances for the Newton iteration are chosen as εr = 1.0×10−7,

ε̂a = 1.0×10−7 and ε̌(0)
a = 1.0×10−8. There are other more flexible choices for the nonlinear forcing term

[11] that can be used sometimes to obtain more efficient or more robust solutions, but we don’t play with

these tricks in this paper.
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3.2. Approximate formulations of the Jacobian matrix for nonsmooth functions

There are two discrete operators F and J in the Newton’s equation (10). In a traditional Newton

method, J (X ) is simply an algebraic derivative of F (X ) under the assumption that F (X ) is everywhere

differentiable. However, when a finite volume method is applied to hyperbolic conservation laws, F (X )

usually becomes non-differentiable, at some points, due to the conditional statements in the Riemann

solver or the flux/slope limiter. If non-smooth bottom topography is included, then the topographic

source term in the SWEs could be discontinuous thus makes J (X ) difficult to calculate. Denote F =
( f1, f2, ..., fd )T and X = (x1, x2, ..., xd )T . To obtain an entry of F ′(X ), say ∂ fm

∂xn
, we need to use the chain rule.

Without loss of generalities, we assume F (X ) is locally Lipschitz continuous and fm(xn) = p(q(r (xn))).

Here one or more of the intermediate functions p, q,r are piecewisely defined as, for instance

q(r ) =


q1(r ), if r ≥ r0,

q2(r ), otherwise.

Although it is possible that ∂q
∂r (r0) does not exist, we still can formally freeze it to be ∂q

∂r (r0) = ∂q1

∂r (r0).

Then by the chain rule we obtain
∂ fm

∂xn
= ∂p

∂q

∂q

∂r

∂r

∂xn
.

The method is based on the definition of the generalized Jacobian in the sense of Clarke [6] and its mod-

ification of Qi [27]. Local and global convergence studies on some nonsmooth or semismooth Newton

methods can be found in, e.g., [17, 27, 28].

It is easy to see that when F arises from the discretization of a nonlinear partial differential equa-

tion, the accuracy of the numerical solution of the continuous problem is determined solely by the order

of discretization employed in F . While the convergence rate of Newton method depends on the well-

posedness and the accuracy of the Jacobian matrix, it is independent of the preconditioner M−1 used

in (11), if we do not consider the impact of the preconditioner on the stopping conditions. In the pa-

per, as mentioned before, F is obtained by a second-order well-balanced discretization of the SWEs.

We refer to the generalized Jacobian of F as the second-order Jacobian J , and call the first-order Jaco-

bian, denoted as J̃ , as the Jacobian corresponding to an F̃ obtained from a first-order discretization of

the SWEs on the same mesh. In practice, the second-order Jacobian J , which is consistent to the non-

linear function F , is used throughout the Newton iterations (10). But the preconditioner M−1 in (11),

served as a “cheap" approximation of J−1, can be constructed from either J or J̃ . Here both Jacobians

are analytically calculated by hand.

10



There are several techniques available to calculate the Jacobian with less programming effort, such

the multi-colored finite difference (MCFD) [7] method and the automatic differentiation (AD) [15] method.

If a finite difference method is used, the numerical differentiation procedure needs to evaluate F at cer-

tain points repeatedly so that the Jacobian can be approximately calculated. In AD (or more precisely,

symbolic differentiation), the Jacobian is generated based on the fact that any computer program calcu-

lating F can be decomposed into a sequence of elementary assignments and thus can be differentiated

by the computer using the chain rule. Therefore, both AD and MCFD are in fact more time-consuming

and sometimes less accurate compared to the hand-coded method. Some comparison results between

using hand-coded method and using MCFD method for the SWEs can be found in [48].

In NKS, the second-order Jacobian is only needed in the form of matrix-vector multiplications, which

can be done approximately in a matrix-free manner [20], i.e.,

J (X )Y ≈ [F (X +εY )−F (X )]
/
ε , (14)

where ε > 0 is small. However at least one nonlinear function evaluation is needed for every matrix-

vector multiplication, which is costly. On the other hand, once an analytic Jacobian is generated, its

matrix-vector multiplication can be done much more economically. The main drawback of the latter

method is that extra memory is needed to explicitly store the Jacobian matrix. The Jacobian-free method

is potentially more favorable for three-dimensional atmospheric problems since the spatial discretiza-

tion is much more complicated and the analytic Jacobian matrix may be too expensive to form.

3.3. Several multilevel Schwarz preconditioners with mixed-order discretizations

We decompose all six patches of the cubed-sphere respectively into p ×p non-overlapping subdo-

mains. Each subdomain is then mapped onto one processor. Thus 6p2 is the number of processors and

also the total number of subdomains. To obtain an overlapping decomposition of the domain, we extend

each subdomain Ω j to a larger subdomain Ω′
j , j = 1, · · · ,6p2, as shown in Fig 1. Assume the sizes of Ω j

andΩ′
j are respectively Hx×Hy and H ′

x×H ′
y . Then the overlapping size is δ= (H ′

x −Hx )/2 = (H ′
y −Hy )/2.

Since the size of each patch is π/2×π/2, the logical length of subdomainΩ j is then Hx = Hy =π/(2p).

For each overlapping subdomain we define B j as the restriction of the second-order Jacobian J to

the overlapping subdomainΩ′
j . Then we can define a one-level restricted additive Schwarz (RAS, [4, 42])

preconditioner

M−1
one =

6p2∑
j=1

(R0
j )T B−1

j Rδ
j . (15)

11



Hxδ

Hy

δ

Figure 1: Domain decompositions of the cubed-sphere with overlaps. The red solid lines indicate the partition of the domain

into 24 = 6×22 non-overlapping subdomains of size Hx ×Hy , the dotted lines show the extended boundary of an overlapping

subdomain. Left figure: fine mesh with mesh size ~ and overlap δ = 2~. Right figure: coarse mesh of size 2~ and overlap

δ= 2(2~) = 4~.

In the following context, by RAS(δ) we mean the RAS preconditioner with overlapping factor δ. Let m

be the total number of cells and m′
j the total number of cells in Ω′

j . Then, Rδ
j is an m′

j ×m block matrix

that is defined as: its 3×3 block element (Rδ
j )p1,p2 is an identity block if the integer indices 1 ≤ p1 ≤ m′

j

and 1 ≤ p2 ≤ m belong to a cell inΩ′
j , or a block of zeros otherwise. The matrix Rδ

j serves as a restriction

operator because its multiplication by a block m × 1 vector results in a smaller m′
j × 1 block vector by

dropping the components corresponding to cells outside Ω′
j . In particular, R0

j in (15) is a restriction to

the non-overlapping subdomain. RAS(0) reduces to a block-Jacobi preconditioner.

When a first-order spatial discretization is used, the one-level RAS preconditioner (15) was found

to be robust [48]. Observations were made in [47] that the one-level RAS preconditioner constructed

based on the first-order scheme is still efficient when the spatial discretization is second-order, even

better than the preconditioner built directly from the second-order scheme in some cases. Denote B̃ j as

the restriction of the first-order Jacobian J̃ to the overlapping subdomainΩ′
j . The new one-level RAS(δ)

preconditioner is thus defined by:

M̃−1
one =

6p2∑
j=1

(R0
j )T B̃−1

j Rδ
j . (16)

Sparse LU or incomplete LU (ILU) factorizations can be used to obtain the inverse or an approximate

inverse of the subdomain Jacobian. Our experiments show that the regular pointwise incomplete fac-

torizations don’t work well for these highly ill-conditioned Jacobian matrices. We use some point-block

versions of ILU that keeps the coupling between all physical components of each mesh point. This is

12



essential for the success of our fully coupled solver.

To improve the scalability of the one-level RAS preconditioner (16), especially when a large number

of processors is used, we employ a hybrid preconditioner (see, [21]) by composing the one-level additive

Schwarz preconditioner B f with a coarse-level preconditioner Bc in a multiplicative manner

M−1
t wo = hybrid

J f

(
Bc ,B f

)= Bc +B f −B f J f Bc , (17)

where Bc = I
f

c J−1
c I c

f , and I c
f and I

f
c are restriction and prolongation operators mapping between

vectors defined on fine level and coarse level. On the coarse level, a smaller linear system associated

with the Jacobian matrix Jc is then solved for each application of the two-level preconditioner (17) by

using GMRES with a relative tolerance ηc . The coarse level preconditioner can be either one-level (16)

or two-level (17).

More precisely speaking, in the hybrid two-level preconditioner, we first apply a coarse mesh pre-

conditioning

w =
(
I

f
c J−1

c I c
f

)
x, (18)

and then correct the coarse solution by adding (without overlap) the fine level solution from each over-

lapping subdomain

y = w +
(

6p2∑
j=1

(R0
j )T B̃−1

j Rδ
j

)
(x − J f w). (19)

We note that in the traditional multiplicative Schwarz or the V-cycle multigrid approach, the operation

(19) is also applied before the coarse mesh preconditioning (18), but our experiments suggest that there

is no benefit to include the second swipe of the one-level preconditioning for the implicit solution of

the SWEs. We also remark that a similar performance can be observed if we switch the order of (18) and

(19). However, the pure additive version of the two-level approach performs considerably worse than

the hybrid methods.

The best choices for some of the options in the multilevel RAS preconditioner defined recursively

in (17) are problem-dependent. In the current study, we use a three-level version with a coarse-to-fine

mesh ratio 1 : 2 in each direction. On the finest level (N ×N ×6), the preconditioner is

M−1
N = hybrid

JN

(
I N

N /2 J−1
N /2I

N /2
N ,

6p2∑
j=1

[
((RN )0

j )T (B̃N )−1
j (RN )2~

j

])
, (20)
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where the subdomain solver of (B̃N )−1
j is ILU(2) factorization of the first-order Jacobian on this level.

Here a linear average restriction operator I N /2
N and a piecewise constant interpolation operator I N

N /2

are used due to their simplicities. Then the Jacobian system of JN /2 on the second level is solved by an

inner GMRES, preconditioned by one of the following methods.

(1) A one-level RAS(δN /2) preconditioner on the coarse level

M−1
N /2 =

6p2∑
j=1

[
(RN /2)0

j )T (B̃N /2)−1
j (RN /2)δN /2

j

]
. (21)

This results in a two-level method.

(2) Another two-level RAS(δN /2) preconditioner on the coarse level

M−1
N /2 = hybrid

JN /2

(
I N /2

N /4 M−1
N /4I

N /4
N /2 ,

6p2∑
j=1

[
(RN /2)0

j )T (B̃N /2)−1
j (RN /2)δN /2

j

])
, (22)

resulting in a three-level method. Here on the third level, instead of solving the Jacobian system itera-

tively, we apply the RAS(δN /4) preconditioner

M−1
N /4 =

6p2∑
j=1

[
(RN /4)0

j )T (B̃N /4)−1
j (RN /4)δN /4

j

]
. (23)

Choosing the right subdomain solver at each level is very important for the overall performance of the

preconditioner on a specific computer with the given amount of memory and cache. A large number of

numerical experiments is often necessary to identify the right selection. For example, for the SWEs on

an IBM BG/L, we use ILU(2) subdomain solvers for (22) and LU for (21), (23).

For a hyperbolic system like the SWEs, there is very little theoretical work on the convergence of

domain decomposition methods, see for instance [10, 45]. If a classical additive Schwarz preconditioner

is applied to solve an elliptical problem, the condition number of the preconditioned system satisfies

κ≤C (1+H/δ)/H 2 (24)

and

κ≤C (1+H/δ) (25)

for one-level and two-level methods respectively [36, 42]. Here H is the subdomain size and C is inde-

pendent of H , δ and ~. Suppose each processor is assigned with one subdomain, then the number of

processors is in proportion to 1/H 2. If the discretized system is solved using a Krylov-type method with
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a fixed relative tolerance, the required iteration number is approximately in proportion to 1/H when a

one-level method is used and this dependency can be removed by using coarse levels. However, these

condition number estimates do not apply to the SWEs. Some numerical results in [48] suggest that the

condition number growth of the Jacobian system preconditioned by the one-level RAS method for the

SWEs is less severe than for the elliptic case. The strong and weak scaling tests in this paper will provide

more understanding of the one-level and the multilevel methods for the SWEs.

4. Numerical results

The NKS algorithms described in the previous sections are implemented with PETSc [1]. Each of

the six patches corresponds to one MPI group, which is handled by a PETSc Distributed Array (DA)

object for parallel implementation. The DA object in PETSc, which contains the parallel data layout

and communication information, is intended for use with a logically rectangular mesh to optimize the

communication of vector operations among distributed processors. To take advantage of DA in PETSc,

the six patches of the cubed-sphere can either be put on top of each other as a “thick" DA with 3×6 = 18

degrees of freedom per mesh point [48] or side by side with six DAs and only 3 degrees of freedom per

mesh point for each patch. No significant difference is observed between the parallel performance of

the two strategies. In the current study we choose to use the latter method; the six patches are coupled

with each other via interface conditions on patch boundaries. The numerical tests are carried out on

an IBM BlueGene/L with 4096 dual-processor compute nodes. Each node contains 512 MB of memory

shared by two Power PC 440 processors, and there is a dual Floating Point Unit (FPU) on each processor.

In our tests, the BG/L works in the virtual-node mode so that both processors within each node are

available for computing. The second FPU is deactivated by using compiling option -qarch=440, thus

the theoretical peak performance of each processor is 1.4 GFLOPS.

4.1. Accuracy of the fully implicit solver

In this subsection, we study the accuracy and the conservative properties of the newly introduced

scheme and compare them with an explicit scheme for two benchmark problems.

4.1.1. Rossby-Haurwitz wave

The four-wave Rossby-Haurwitz problem is the 6th test case in the Williamson benchmark set [44].

It serves as a good tool for middle-term test, although it is not an analytic solution of the SWEs. The
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Figure 2: Height field contours of the Rossby-Haurwitz problem at day 7,14 and the numerical conservation histories of the

total mass, total energy, and potential enstrophy. The calculations are done on a 128×128×6 mesh with 96 processors. The

results using SSP RK-2 with CFL = 0.5 are shown in the top row and the results using BDF-2 with ∆t = 0.1days(CFL ≈ 55) are

in the bottom row. The contour levels are from 8100m to 10500m with an interval of 100m. The innermost lines near to the

equator are at 10500m.

detailed initial conditions for the Rossby-Haurwitz wave can be found in [44]. Numerical solutions ob-

tained using the explicit SSP RK-2 method and the implicit BDF-2 method are provided in the upper and

lower rows of Fig 2 respectively. The numerical results are consistent with the reference solutions in [18]

and the implicit results agree well with the explicit results.

Numerical conservation is crucial in the simulation of the SWEs. The normalized conservation error

at time t is measured as δ(·) = [I (·, t )− I (·,0)]/I (·,0), where I is the discrete integral operator

I (M) =
6∑

k=1

N∑
i , j=1

(
Λi j M k

i j

)
. (26)

The integral invariants of interest to us are the total mass δ(h), the total energy δ(E) and the potential

enstrophy δ(ξ), where

E = h

2
v ·v+ g

2
(Z 2 −b2) = Λ2h

2
(g 11v2 + g 22u2 −2g 12uv)+ g

2
(Z 2 −b2),

ξ= 1

2Λh

{
∂

∂x
[Λ2(g 11v − g 12u)]− ∂

∂y
[Λ2(g 22u − g 12v)]+Λ f

}2

.

Conservation evolutions of the three integral invariants can be found in the right panel of Fig 2, which

shows that the numerical conservation of the total mass is to the machine precision when the explicit
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time integration is used, and around 10−12 when the fully implicit method is used instead. The slight loss

of mass conservation comes mainly from the inexact solution of the nonlinear system arising from each

implicit time step. The accumulation of mass loss is not observed in Fig 2, which is crucial for long-term

simulations. The result is quantitatively, in terms of the conservation error, better than those reported

in [32] where the finite volume scheme is not well-balanced, and comparable to those presented in [38]

where a SISL method is applied. The numerical conservations of the other two integral invariants are

also satisfactory.

4.1.2. Isolated mountain

Test case 5 in [44] describes a zonal flow over an isolated mountain. The case is obtained by a

modification of a steady-state geostrophic flow by adding a compactly supported, conical mountain

to the domain. In this test the flow is purely zonal (α = 0) with initial parameters h0 = 5960m and

u0 = 20m · s−1. The mountain is centered at (λc ,θc ) = (−π/2,π/6) with height b = b0(1− r /r0), where

r0 = 2000m, r0 = π/9 and r = min{r0,
√

(λ−λc )2 + (θ−θc )2}. Note that the mountain height is not con-

tinuously differentiable at the center and on the boundary of the cone thus the topography term has

discontinuous coefficients. This discontinuity in the topography term could result in spurious oscilla-

tions [14] if the numerical scheme is not well-balanced.

Results using the explicit SSP RK-2 method and the implicit BDF-2 method are shown in the left and

the right columns of Fig 3 respectively. As no analytical solution is available for this test, we compare the

results with a reference solution obtained using a spectral method with high resolution in [18]. We find

that no spurious oscillations are observed in both the explicit and implicit solutions and the numerical

conservation histories are comparable to those in the first test case. The explicit solution is in agreement

with the reference solution, and the implicit solution reproduces most details except for some small

discrepancies near the equator (e.g., the 5950m contour line on day 15 is missing). In Fig 4 we provide

a result on day 15 using the same implicit method but with a time step that is comparable to the CFL

limit. The result in Fig 4 agrees perfectly with the explicit result, indicating that the discrepancies in the

implicit solution in Fig 3 are due to the much larger time step size.

4.2. Impact of the discretization order of J , and choices of solver options

Larger overlap between subdomains or larger fill-in of ILU factorization of subdomain matrices cer-

tainly helps reduce the total number of linear iterations as the number of processors increases. However,
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Figure 3: Height field contours of the isolated mountain problem at day 5, 10, 15 and the numerical conservation histories of

the total mass, total energy, and potential enstrophy. The calculations are carried out on a 128×128×6 mesh with 96 processors.

The results using SSP RK-2 with CFL = 0.5 are listed in the left column and the results using BDF-2 with∆t = 0.2days(CFL ≈ 79)

are in the right column. The contour levels are from 5000m to 5950m with an interval of 50m. The innermost lines near to the

equator are at 5950m.

the memory complexity and the amount of floating-point operations are both increased at every linear

iteration. When a first-order spatial discretization is used for the SWEs, our previous tests in [48] indi-
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Figure 4: Height field contours of the isolated mountain problem at day 15. The calculations are carried out on a 128×128×6

mesh with 96 processors by using BDF-2 with ∆t = 3.6minutes(CFL ≈ 1). The contour levels are from 5000m to 5950m with an

interval of 50m. The innermost lines near to the equator are at 5950m.

cate that zero overlap and complete LU factorization are the optimal choice in terms of the total compute

time. The situation becomes totally different when we switch to a second-order spatial discretization.

For the Rossby-Haurwitz problem, our recent work in [47] suggests: (1) Poor results are observed if the

one-level RAS preconditioner is constructed directly from the second-order Jacobian matrices; (2) Over-

lap δ = 2~ and ILU(3) or ILU(2) applied to the subdomain matrices from the first-order Jacobians give

better results in terms of the total compute time.

In the following tests, both LU and ILU(2) subdomain solvers are considered and the overlap size

is fixed to δ = 2~ which is found to be optimal in most cases. The second-order Jacobian matrices are

generated analytically and the performance is compared with a Jacobian-free method. Some results

using second-order Jacobian matrix to construct the RAS preconditioner as in (15) are also provided.

We experiment with the isolated mountain problem using a fixed 576× 576× 6 mesh (5.97 million

unknowns) and a fixed time step size ∆t = 0.2days. It is worth pointing out that although the time step

size in the fully implicit method is no longer constrained by any stability conditions, it still can not be

arbitrarily large due to dynamical timescale limits [13, 22]. We test the one-level fully implicit solver with

various parameters. Performance results on the average number of GMRES iterations per Newton step

and the total compute time are given in Fig 5 from which we have the following observations.

(1) We see much better performance when the RAS preconditioner is constructed from a first-order

discretization of the Jacobian (22) than from a second-order discretization that is the same as in the

nonlinear function evaluation. The trade-off between exact and inexact subdomain solver is interesting.

Although the number of iterations nearly doubles when we switch from LU to ILU(2), the total compute

time is actually shorter. However, the speed advantage of ILU(2) becomes less obvious when the number
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of processors becomes large (i.e., the size of the subdomain matrix per processor is much smaller.)

(2) Compared with explicitly generating the second-order Jacobian, the Jacobian-free method pro-

vides sufficiently accurate approximation to the Jacobian-vector multiplication thus gives similar GM-

RES iteration counts, yet the compute time is longer. Although using the second-order Jacobian in the

construction of the RAS preconditioner (15) provides better iteration counts, the compute speed is much

slower because the subdomain matrices are a lot denser. Besides, the number of iterations increases very

rapidly as the number of processors increases. We have also tried to use ILU as the subdomain solver in

(15), but find that GMRES fails to converge in most situations.
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Figure 5: Performance comparisons with various solver options for the isolated mountain problem on a fixed 576×576×6 mesh

with time step size ∆t = 0.2days. Left panel: the averaged number of GMRES iterations per Newton step. Right panel: the total

compute time per time step. Here High-Low-LU or High-Low-ILU(2) means using hand-coded method to generate both

the second-order and first-order Jacobian matrices and construct the RAS preconditioner based on the first-order Jacobian

with LU or ILU(2) as subdomain solvers, Matrixfree means using the Matrix-free method and High-High means the RAS

preconditioner is also based on the second-order Jacobian.

4.3. Performance and robustness

We focus on the isolated mountain problem in this subsection. The performance of the fully implicit

solver is tested and compared by using the abbreviations listed in Table 1. Both the second-order and

the first-order Jacobians are evaluated analytically using the method introduced in Section 3.2 and the

latter is used to construct the RAS preconditioner.

First we study the strong scalability of the algorithms by using a fixed mesh 1152×1152×6 (23.89 mil-

lion unknowns) and also a fixed time step size ∆t = 0.2days. As the number of processor (np) increases,
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Table 1: Preconditioners used in the NKS solver. For multilevel preconditioners, the respective values of each column are given

from the finest level to the coarsest level . The ? stands for the directly application of preconditioner without iteration.

Short name #Levels η δ Jacobian Subdomain solver

1-ILU one-level 0.001 2~ analytic ILU(2)

1-LU one-level 0.001 2~ analytic LU

2-level two-level 0.001, 0.1 2~, 0 analytic ILU(2), LU

3-level three-level 0.001, 0.1, ? 2~, 4~, 0 analytic ILU(2), ILU(2), LU

Table 2: Strong scaling results on the isolated mountain problem, fixed 1152×1152×6 mesh, ∆t = 0.2days, the simulation is

stopped at day two. The averaged number of inner iterations on the second level is shown in brackets.

np Newton/∆t GMRES/Newton/∆t Wall-clock time (sec)

1-ILU 1-LU 2-level 3-level 1-ILU 1-LU 2-level 3-level 1-ILU 1-LU 2-level 3-level

384 3.0 3.0 3.0 3.0 116.8 46.5 15.1 (9.7) 15.5 (6.8) 347.7 378.7 252.8 217.9

768 3.0 3.0 3.0 3.0 123.5 51.6 15.1 (10.9) 15.4 (7.2) 178.8 171.7 128.7 113.6

1536 3.0 3.0 3.0 3.0 127.4 57.3 14.7 (12.2) 14.9 (7.5) 89.7 86.5 62.4 57.7

3072 3.0 3.0 3.0 3.0 146.0 71.1 14.6 (13.9) 14.6 (8.1) 50.7 46.1 31.2 32.1

3456 3.0 3.0 3.0 3.0 142.5 70.8 14.3 (14.3) 14.4 (8.3) 45.9 42.7 29.2 27.0

6144 3.0 3.0 3.0 3.0 161.0 88.8 14.1 (16.4) 14.2 (9.0) 28.0 27.3 17.9 17.5

7776 3.0 3.0 3.0 3.0 172.4 98.4 14.1 (17.5) 14.2 (9.5) 23.6 23.5 15.1 15.3

the total compute time should be reduced proportionally in the ideal situation. Results on Newton and

GMRES iterations as well as compute times using the fully implicit solvers are provided in Table 2. The

table clearly indicates that the number of Newton iterations remains to be independent of np, and the

number of GMRES iterations depends on the preconditioner employed in the solver. For the one-level

solver, the number of GMRES iterations suffers as np increases, but the increase of iteration numbers is

much smaller than in the case of elliptic equations. Compared with ILU(2), LU subdomain solver helps

in reducing the number of GMRES iterations and outperforms ILU(2) in the case when np is large. With

the multilevel preconditioners, the number of GMRES iterations is kept to a low level and even slightly

decreases as np increases.

For further comparisons and analysis, we present some results in terms of the total compute time

and the sustained FLOPS in Fig 6. The results using the explicit SSP RK-2 method are also provided

for comparison. We observe that, in terms of the total compute time, the two-level method is about
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Figure 6: Plots on the total compute time (left) and sustained MFLOPS per processor (right) for the strong scaling tests in

Table 2. The results using an explicit RK-2 method are also provided. The left panel is drawn in the log-log scale so that the

ideal speedup curve appears as a straight line.

33−55% faster than the one-level, and the three-level method is another 5−15% faster if np is not too

large. The explicit method is about 34 times slower than the three-level method, although the scalability

is nearly ideal. For the fully implicit solver, the efficiency measured in the total compute time remains

above 85% as np increases to 3456, but slightly decrease when np becomes larger because the amount

of computations on each processor is too small. As np tends to 7776, the scalability efficiency of the

fully implicit solver with different numbers of levels are respectively 72.8%, 79.2%, 82.7% and 70.3%. In

terms of the FLOPS rate, the fully implicit solver is comparable to the explicit solver. The decrease of the

FLOPS when np > 3456 is due to the insufficient work load per processor.

It is worth pointing out that neither scalability nor FLOPS tells the whole story. For example, the

explicit method scales perfectly but is in fact far slower than the fully implicit method; the three-level

method has the lowest FLOPS rate yet is the fastest among all methods. If the Jacobian-free method is

used instead of generating the second-order Jacobian by hand, the FLOPS rate can be improved by about

50%, but the total compute time becomes longer as shown in Section 4.2.

In strong scaling tests, because the problem size is fixed, np can neither be too small (insufficient

memory for the problem) nor too large (insufficient work load per processor). Therefore we further test

our algorithm in terms of the weak scalability in which we refine the mesh as np increases so that the

same number of unknowns per processor is maintained. We start with a small 48×48×6 mesh for np = 6

and end up with a large 1728×1728×6 mesh (53.75 million unknowns) for np = 7776. The time step size
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is fixed to ∆t = 0.2days for all tests. We show the weak scaling results on the number of iterations and

the total compute times of the fully implicit solver in Table 3. The total compute time and the sustained

FLOPS are then plotted in Fig 6 which also includes comparisons with the explicit SSP RK-2 method.

Table 3: Weak scaling results on the isolated mountain problem with a fixed 48× 48 mesh per processor, ∆t = 0.2days, the

simulation ends at day two. The averaged number of inner iterations on the second level is shown in brackets. The * means

divergence of GMRES.

np Newton/∆t GMRES/Newton/∆t Wall time (sec)

1-ILU 1-LU 2-level 3-level 1-ILU 1-LU 2-level 3-level 1-ILU 1-LU 2-level 3-level

6 3.0 3.0 3.0 3.0 11.7 10.0 7.7 (3.6) 7.7 (3.0) 9.5 15.3 13.2 13.8

24 3.0 3.0 3.0 3.0 17.0 13.8 8.6 (4.6) 8.8 (3.4) 11.2 16.9 14.5 15.1

96 3.0 3.0 3.0 3.0 26.7 20.4 10.0 (5.9) 10.0 (4.1) 14.3 20.3 16.6 17.0

384 3.0 3.0 3.0 3.0 47.7 31.9 11.9 (7.8) 12.1 (5.0) 20.4 25.6 20.1 20.1

864 3.0 3.0 3.0 3.0 68.9 41.3 12.9 (9.6) 13.2 (5.8) 25.1 29.4 21.7 22.5

1536 3.0 3.0 3.0 3.0 91.5 50.5 13.6 (11.2) 13.7 (6.7) 30.7 33.1 23.7 24.6

1944 3.0 3.0 3.0 3.0 103.4 55.3 13.8 (12.0) 13.9 (7.0) 33.9 35.0 24.7 25.4

2904 3.0 3.0 3.0 3.0 129.0 65.5 14.1 (13.6) 14.2 (7.9) 41.1 39.9 27.2 26.6

4056 3.0 3.0 3.0 3.0 156.3 76.3 14.4 (15.1) 14.6 (8.7) 48.4 44.7 29.4 27.5

6144 3.0 3.0 3.0 3.0 207.8 93.5 14.8 (17.1) 15.0 (9.8) 61.5 52.3 31.7 29.1

7776 * 3.0 3.0 3.0 * 105.6 15.1 (18.5) 15.2 (10.6) * 57.7 34.3 31.1

As the mesh resolution doubles in each direction, the required number of time steps in the explicit

method grows proportionally due to the CFL limit. So even in the ideal situation, the explicit method

is highly non-scalable in terms of the weak scalability. For the fully implicit solver, as shown in Table 3,

although the mesh size does not affect the number of Newton iterations, the number of GMRES itera-

tions suffers because the condition number of the preconditioned Jacobian becomes worse as the mesh

is refined. For the one-level method, the number of GMRES iterations grows rapidly with np, though

slower than in the elliptic case, but faster than in strong scaling tests. In the one-level solvers, LU sub-

domain solver is more stable than ILU(2) and the latter sometimes results in GMRES failure when np is

large. Adding coarse levels does reduce the number of GMRES iterations but unlike that in the strong

scaling tests, the dependency on np is not removed. We believe that there is an extra term like log(1/~)

exists if there holds a theoretical condition number estimate for the SWEs analogous to (25) for elliptic

problems.

All the methods tested in the weak scaling study maintain nearly constant FLOPS rates. However,
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Figure 7: Plots on the total compute time (left) and sustained MFLOPS per processor (right) for the weak scaling tests in Table 3.

The results using the SSP RK-2 method are also provided.

in terms of the total compute time, none of them stays near the perfect scaling curve. For np = 7776,

the two-level method is about 68% faster than the one-level method and the three-level method offers

another 17% speedup. If the explicit RK-2 method is used instead, the compute time increases from

10.6s (np = 6) to 395.1s (np = 7776), which is over 10 to 30 times slower than the three-level method.

The compute time curve in Fig 7 of the three-level method is flatter compared to other methods. For

the three-level method, the compute time only increases by 125%, as np increases from 6 to 7776 (1296

times larger).
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Figure 8: Communication statistics of the three-level solver. Left panel: communication time breakdown. Middle panel: com-

munication time per GMRES iteration. Right panel: number of communication calls per GMRES iteration.

The communication statistics of the three-level method in the preceding weak-scaling test are given

in Fig 8, where we can see that the communication time increases slowly as the number of processors
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becomes larger and most of the communication time takes place in MPI_Allreduce and MPI_Waitany.

In terms of the wall clock time, the MPI_Waitany part is scalable which suggests that the work load

on different processors is well balanced. However, as shown in the second panel, the time spent by

MPI_Allreduce is not scalable even after averaged by the total number of GMRES iterations, although

we observe from the third panel that the number of MPI_Allreduce calls per GMRES iteration is ideal. In

other words, as the number of processors increases the time spent by each MPI_Allreduce call becomes

larger and thus degrades the overall scalability of the solver.
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Figure 9: Left panel: Solution time breakdown by solver components. Right panel: Preconditioning time breakdown by levels.

The solution times of the three-level method divided by solver components are provided in the left

panel of Fig 9. It clearly indicates that all components are scalable except for the preconditioner which

is in fact the dominant part of the solver. The compute time spent on each level of the preconditioner

is provided in the right panel of Fig 9. We observe that the scalability on the finest level is acceptable

and the time spent on the coarsest level is small, thus the major non-scalable part lies within the second

level.

Next, to show the robustness of the fully implicit solver and the unconditional stability of the time

integration scheme, we investigate the three-level method for solving the same problem with different

time step sizes. The results in Table 4 clearly indicate that the combination of Newton, FGMRES, three-

level RAS, and point-block ILU works well for even very large value of ∆t .
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Table 4: Robustness of the three-level method for various values of ∆t , the isolated mountain problem with 1944 processors,

the simulation is stopped at day one. The averaged number of inner iterations on the coarse level is shown in brackets.

576×576×6 Grid 1152×1152×6 Grid

∆t Steps Newton/∆t GMRES/Newton/∆t Wall time (sec) Newton/∆t GMRES/Newton/∆t Wall time (sec)

0.01 100 3.0 6.00 (2.77) 63.24 3.0 7.12 (3.01) 239.90

0.05 20 3.0 8.82 (4.08) 15.68 3.0 10.90 (4.31) 60.26

0.10 10 3.0 10.80 (4.71) 9.04 3.0 12.63 (5.58) 34.84

0.20 5 3.0 12.80 (6.58) 5.65 3.0 14.60 (7.67) 21.32

0.50 2 3.5 14.08 (11.7) 3.81 3.5 15.13 (14.0) 13.95

1.00 1 4.0 18.00 (21.6) 3.99 4.0 17.75 (26.3) 13.86

4.4. Performance with larger processor count and multi-threaded subdomain solve

Finally, we provide some preliminary studies of the algorithm on a new supercomputer, Tianhe-1A,

equipped with 14,336 six-core Xeon X5670 CPUs. In the tests we disable all GPUs and assign one MPI

process to each six-core CPU, corresponding to one subdomain. Multi-threading is used within each

MPI process to fully utilize the six cores in each subdomain solve. The isolated mountain problem is

selected in the tests with a fixed time step size of ∆t = 0.2days for the BDF-2 scheme. The three-level

method depicted in Table 1 is employed.

Figure 10: Strong scaling results of the three-level method on Tianhe-1A for the isolated mountain problem. The averaged

number of linear iterations per Newton step is shown in the left panel and the total compute time is in the right.

In the strong scaling test, we use a fixed 6144×6144×6 mesh (0.68 billion unknowns) and the results

are shown in Fig 10. It can be seen that as the number of CPU cores increases the averaged number of

linear iterations slightly decreases, analogous to the results in Table 2. The total compute time is saved

by more than 90% as the number of CPU cores increases from 4608 to 82944, indicating that the overall

parallel efficiency is about 60%.
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Figure 11: Weak scaling results of the three-level method on the Tianhe-1A, isolated mountain problem. The averaged number

of linear iterations per Newton step is shown in the left panel and the total compute time is in the right.

In the weak scaling test, we start with a small 256×256×6 mesh with 36 CPU cores and end up with

a large 10240×10240×6 mesh (1.89 billion unknowns) using up to 57600 CPU cores. The weak scaling

results using the fully implicit method are shown in Fig 11, from which we can see that the averaged

number of linear iterations becomes about 2.57 times larger and the total compute time increases by

about 6.3 times as the number of CPU cores goes from 36 to 57600. We tend to believe that better weak

scaling results might be obtainable on Tianhe-1A if more levels are included in the preconditioner.

5. Concluding remarks

Some multilevel domain decomposition based fully implicit approaches for the shallow water equa-

tions on the cubed-sphere were introduced and studied in this paper. The technique features a second-

order finite volume discretization which is capable of treating nonsmooth topographies. An inexact

Newton method with adaptive stopping conditions is employed to solve the nonlinear systems of equa-

tions arising from the fully implicit BDF-2 time integration. At each nonlinear iteration we use the flex-

ible GMRES method to solve the linear Jacobian system. The Jacobian matrices are generated analyt-

ically with a semismooth technique that freezes certain entries of the matrix associated with some of

nonsmooth components of the problem. Such a modification of Jacobian enables Newton to converge

rapidly even when some of the nonlinear functions in the system are not differentiable. The scalability

of the approach depends almost entirely on the design of the linear preconditioner. After experiment-

ing with many different overlapping Schwarz type preconditioners, we found one class of hybrid two-

and three-level restricted Schwarz methods based on a low order discretization of the SWEs that works

particularly well for the problems under investigation. We found that the use of a fully coupled order-

ing of the unknown/equations and a point-block version of ILU are extremely beneficial. Finally, we
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tested the proposed algorithms and software on some cases with nonsmooth topographies and achieved

nearly perfect strong scalability and reasonably good weak scalability on a IBM BlueGene/L machine

with about 8,000 processors, and a new supercomputer, Tianhe-1A, with more than 80,000 processors.

We believe that this family of approaches, when additional levels are added multiplicatively to the

preconditioner, is suitable for larger problems and on machines with much larger number of processors.

We plan to extend the approach to other climate models, such as the nonhydrostatic model based on the

compressible Euler or Navier-Stokes equations [30, 37, 41].
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